Lund 9808

Embed Size (px)

Citation preview

  • 8/13/2019 Lund 9808

    1/5

    Institutionen för Reglerteknik

    Lunds Tekniska Högskola

    Olinjär reglering FRT 075

    Exam 1998-08-22 

    Grading 

    Solutions should be clearly motivated. The exam consists of 25 points.

    Grade 3: 12 points

    Grade 4: 17 points

    Grade 5: 22 points

     Allowed material

    Solved examples such as exams and exercises are not allowed. Otherwise, all

    material is allowed. The results will be posted outside the labs on the ground

    floor, M-building.

    50 60 70 80 90 100−20

    0

    20

    −20 −10 0 10 200

    20

    40

    60

     x1

         x        1

         x        3

    The chaotic Lorentz system

    1

  • 8/13/2019 Lund 9808

    2/5

    1.   The Lorentz equations (illustrated on the front page of the exam)

    d

    dt x1  σ ( x2 −  x1)

    d

    dt

     x2  rx1 − x2 − x1 x3

    d

    dt x3   x1 x2 − bx3,   σ , r, b > 0,

    where  σ , r, b  are constants, are often used as example of chaotic motion.

    a.   Determine all equilibrium points.   (1 p)

    b.  Linearize the equations around   x     0 and determine for what  σ , r, b   thisequilibrium is locally asymptotically stable.   (2 p)

    2.   A servo motor is controlled with a relay with hysteresis, see figure. Predict

    amplitude and frequency for possible limit oscillations in the system. Also

    predict if the oscillations are stable or not.

    1s(s+1)

    −1

    θ ref    θ u+

    The describing function for the relay in question satisfies

    −1/ N ( A) −π  A

    4

     1 − 1/(2 A)2 − i

    π 

    8.

    (2 p)

    3.   A stable linear system  G(s)  and a nonlinear function   f ( x)   x + arctan xare connected under negative feedback. What conditions must be put on the

    linear part  G(s)  for stability to be guaranteed via the circle criterion?(2 p)

    4.   By varying the center of gravity you can get a swing  (“gunga”)  to rest. Letthe equations for the swing be given by

     J d2Φ

    dt2  + mgl(t) sin Φ   0,

    where m  is the mass,  J  the moment of inertia. Show that the swing returns

    to rest if the length   l(t)  varies as

    l(t) l0 + ε  dΦ

    dt  sin Φ,   ε   > 0,   l(t) > 0.

    (Hint:  J  Φ̇2

    /2 + mgl0(1 − cos Φ).) (2 p)

    2

  • 8/13/2019 Lund 9808

    3/5

    5.

    a.   Consider the system

    ˙ x1     x1 +  x32

    ˙ x2  

      x1 −

     x2.

    Can the function

    V ( x1 , x2) − x21/2 +  x

    42/4

    be used as a Lyapunov function to show stability of this system? Motivate.

    (1 p)

    b.  What is the system gain G  of 

    G(s)   2

    (s + 1)(s + 2)

    ?

    (1 p)

    c.  Can a linear system with relative degree 2 be passive  (the relative degreeis the number of poles – number of zeros)? Motivate.   (1 p)

    d.  Can this be the state trajectory of a second order system of the form   ˙ x   f ( x, t)? Motivate.   (1 p)

    6.   Consider the system

    ˙ x1     x2

    ˙ x2   − x31 + u

     A sliding mode controller u −2sgn(σ ( x))   with  σ ( x)  x1 +  x2  is used.

    a.  Determine the closed loop dynamics and the equivalent control signal  u eqon the part of the surface  σ ( x) 0 where there is sliding.   (2 p)

    b.  On what parts of the surface  σ ( x) 0 is there sliding motion?   (1 p)

    7.   Consider the static nonlinearity

     f ( x)  x x

    a.   Calculate the describing function.   (2 p)

    b.   Is   f ( x)  passive?   (1 p)

    3

  • 8/13/2019 Lund 9808

    4/5

    8.   A simple model for the velocity and position of a cart is given by

    ˙ x1     x2

    ˙ x2     u.

    The control signal is limited so that  u ≤  1  (both acceleration and decele-ration is possible). The problem is to take the cart from any given initialposition and velocity to   x1   x2  0 so that the criterion

       t f 0

    (1 + 2u)dt

    is minimized, where   t f   (free)  is the time when   x(t f ) 0.

    Suppose the problem is “normal”  (n0  1).

    a.  Show that an extremal is of the form

    u(t)

    −1,   0 ≤ t < t1

    0,   t1 ≤ t < t2

    1,   t2 ≤ t ≤ t f 

    or

    u(t)

    1,   0 ≤ t < t1

    0,   t1 ≤ t < t2

    −1,   t2 ≤ t ≤ t f 

    for some   t1, t2  with 0 ≤ t1 < t2 ≤ t f .   (3 p)

    b.   If the controller is implemented as a state feedback controller the state

    space becomes partitioned as in the figure. Inside each domain one of the

    control signals  −1, 0 or 1 should be used. Determine which control signalshould be used inside each of the four domains  (only answer wanted).

    (1 p)

    −3 −2 −1 0 1 2 3−3

    −2

    −1

    0

    1

    2

    3

    Domain 1Domain 2

    Domain 3

    Domain 4

    x1

          x        2

    4

  • 8/13/2019 Lund 9808

    5/5

    9.   Show that the van der Pool equation

    ¨ y − (1 −  y2) ˙ y +  y 0

    does not have a limit cycle with   y(t) < 1 for all   t. (Hint:  V    y2 +   ˙ y2)

    (2 p)

    5