39
Functional Data Analysis Lukasz Kidzi´ nski epartement de Math´ ematique Universit´ e Libre de Bruxelles Lukasz Kidzi´ nski (ULB) FPCA 1 / 39

Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Functional Data Analysis

Lukasz Kidzinski

Departement de Mathematique

Universite Libre de Bruxelles

Lukasz Kidzinski (ULB) FPCA 1 / 39

Page 2: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Outline

I Principal component analysis

I Introduction to Functional Data Analysis

I (Static) Functional PCA

I Dynamic FPCA

I Examples

Lukasz Kidzinski (ULB) FPCA 2 / 39

Page 3: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Statistics

”I can prove anything by statistics except the truth.” - George Canning

Lukasz Kidzinski (ULB) FPCA 3 / 39

Page 4: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Statistics

F = ma

Lukasz Kidzinski (ULB) FPCA 4 / 39

Page 5: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Statistics

F = ma + ε

Lukasz Kidzinski (ULB) FPCA 5 / 39

Page 6: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Statistics

Explaining the variance is one of the main concerns.

Lukasz Kidzinski (ULB) FPCA 6 / 39

Page 7: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Multivariate statistics

Figure 1 : Sweets Recommender System

Lukasz Kidzinski (ULB) FPCA 7 / 39

Page 8: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Multivariate statistics

1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

10 1 1 2 2 5 4 5 1 3 1 2 5 2 3 3 3 5 5 5 311 5 4 4 1 5 5 2 4 2 3 1 3 3 1 2 4 4 4 512 2 3 1 2 4 5 3 4 1 3 4 1 2 3 3 1 4 4 4 413 3 3 1 4 4 2 5 5 5 3 4 2 3 4 4 3 514 4 4 5 1 2 5 4 5 5 2 3 3 2 2 2 4 4 4 3 415 4 4 5 4 4 3 3 4 4 4 1 3 3 3 216 5 2 4 1 5 1 3 3 3 4 4 4 2 5 5 5 4 517 4 4 4 5 5 2 3 3 4 5 3 1 3 5 5 418 4 4 3 5 5 5 1 3 5 5 4 4 4 4 3 5 5 2 319 5 4 1 5 3 5 2 1 1 5 5 5 3 4 5 1 4 5 4 420 4 3 4 5 5 1 3 4 3 2 2 2 4 4 4 5 5 421 3 3 1 4 3 5 3 2 3 3 4 5 2 3 3 2 5 4 4 5

Table 1 : Ratings of some sweets. Users in rows and sweets in columns.

Lukasz Kidzinski (ULB) FPCA 8 / 39

Page 9: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Principal Component Analysis

Let X ∈ Rd zero-mean random vector

Let (λi , ei ) eigenvalues and eigenvectors of C = Var(X ), in non-increasingorder of λi .

We define m-th princtipal component

Ym = X ′em.

We haveVar(Y ) = diag(λ1, λ2, . . .).

Moreover, (ei ) form an orthonormal basis and thus

X =d∑

m=1

Ymem.

Classical solution found by Pearson (1901) and Hotelling (1933). Lukasz Kidzinski (ULB) FPCA 9 / 39

Page 10: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Time series

Lukasz Kidzinski (ULB) FPCA 10 / 39

Page 11: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Functional data analysis

0 5 10 15 20 25 30

8010

012

014

016

018

0

x

Figure 2 : Berkeley Growth Data: Heights of 20 girls taken from ages 0 through18 (left). Growth process easier to visualize in terms of speed of growth (right).Tuddenham and Snyder (1954) and Ramsey and Silverman (1997)

Lukasz Kidzinski (ULB) FPCA 11 / 39

Page 12: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

EMG

Figure 3 : Lower lip movement (top), acceleration (middle) and EMG of a facialmuscle (bottom) of a speaker pronouncing the syllable “bob” for 32 replications.Malfait, Ramsay, and Froda (2001)

Lukasz Kidzinski (ULB) FPCA 12 / 39

Page 13: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Minicircles

Figure 4 : Projections of DNA minicircles on the planes given by the principalaxes of inertia (three panels on the left side: TATA curves, right: CAP curves).Mean curves are plotted in white. Panaretos, Kraus and Maddocks (2011)

Lukasz Kidzinski (ULB) FPCA 13 / 39

Page 14: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Motivation

Time

0 2000 4000 6000 8000 10000

27560

27580

27600

27620

27640

27660

Figure 5 : Horizontal component of the magnetic field measured in one minuteresolution at Honolulu magnetic observatory from 1/1/2001 00:00 UT to1/7/2001 24:00 UT. 1440 measurements per day. Gabrys and Kokoszka (2007)

Lukasz Kidzinski (ULB) FPCA 14 / 39

Page 15: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Functional data representation

A (theoretical) problem in FDA is the dimensionality of the model.

Functions are intrinsically infinite dimensional.

How can we store functional data?

We can consider a function as an infinite vector of coefficient in anorthonormal basis.

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

01

2

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

01

2

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

01

2

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

01

2

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

01

2

Figure 6 : First 5 Fourier basis functions

Lukasz Kidzinski (ULB) FPCA 15 / 39

Page 16: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Example

0.0 0.2 0.4 0.6 0.8 1.0

−2.

0−

1.5

−1.

0−

0.5

0.0

0.5

time

valu

es

Figure 7 : A function with following Fourier coefficients:-0.45, 0.55, 0.051, -0.45, 0.12, -0.07, -0.06, 0.13, -0.14, 0.04, 0.00, ...

0.0 0.2 0.4 0.6 0.8 1.0

−0.

6−

0.5

−0.

4−

0.3

time

valu

es

0.0 0.2 0.4 0.6 0.8 1.0

−1.

0−

0.5

0.0

time

valu

es

0.0 0.2 0.4 0.6 0.8 1.0

−1.

0−

0.5

0.0

time

valu

es

0.0 0.2 0.4 0.6 0.8 1.0−

1.5

−1.

0−

0.5

0.0

0.5

time

valu

es

0.0 0.2 0.4 0.6 0.8 1.0

−1.

5−

1.0

−0.

50.

00.

5

time

valu

es

Figure 8 : Projections on the space spanned by 1,2,3,4,5 basis functions

Lukasz Kidzinski (ULB) FPCA 16 / 39

Page 17: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Dimension reduction

Techniques for dimension reduction are even more important than inmultivariate statistics.

Functional principal component analysis (FPCA) is considered as a keytechniques in FDA.

The idea is to find the ”optimal” basis. As a measure we take the L2

distance from projection:

E

∥∥∥∥∥X −p∑

i=1

〈X , ei 〉ei

∥∥∥∥∥2

≤ E

∥∥∥∥∥X −p∑

i=1

〈X , bi 〉bi

∥∥∥∥∥2

,

for any ONB (bi ).

Lukasz Kidzinski (ULB) FPCA 17 / 39

Page 18: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Example H = L2([0, 1])

We need a notion of mean and variance. This can be easily establish forrandom variables in Hilbert space.

The mean is given by (EX )(t) = E (X (t)) for t ∈ [0, 1]

The covariance operator is given by

C (y)(t) =

∫ 1

0Cov(X (t),X (s))y(s)ds.

(just a continous extension of (Cv)k =∑d

l=1 Cov(Xk ,Xl)vl .)

C is a symmetric, non-negative definite, Hilbert-Schmidt operator =⇒ wecan find it’s eigenfunctions.

Lukasz Kidzinski (ULB) FPCA 18 / 39

Page 19: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

FPCs

Suppose for the rest of the presentation that {Xt} is zero mean andweakly stationary taking values in H = L2.

Let λ1 ≥ λ2 ≥ . . . (assumption) be the eigenvalues of C and let e1, e2, . . .be the eigenfunctions (standardized to unit length).

The functional principal components are defined as

Ym = 〈X , em〉.

We haveVar(Y ) = diag(λ1, λ2, . . .).

Karhunen-Loeve expansion: In a separable Hilbert space (ei ) form an ONBand thus

X =∞∑i=1

Ymei .

Lukasz Kidzinski (ULB) FPCA 19 / 39

Page 20: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Example

Figure 9 : Imagine you want to measure the intraday variation of the magneticfield in your garden but you can send only 3 real numbers per day.

Lukasz Kidzinski (ULB) FPCA 20 / 39

Page 21: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Example

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

12

Intraday time

Sqrt(

PM10

)

Figure 10 : We display√

xt(u), 1 ≤ t ≤ 175, where xt(u) are daily functionalobservations of PM10 represented with 15 Fourier basis functions. The solid blackline represents the sample mean curve.

Lukasz Kidzinski (ULB) FPCA 21 / 39

Page 22: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Example

0 5 10 15 20

−0.

3−

0.1

0.0

0.1

0.2

0.3

Time

Eig

enfu

nctio

ns

Figure 11 : The eigenfunctions e1 (black), e2 (red) and e3 (green) belonging tothe three largest eigenvalues of the corresponding covariance operator. First 3principal components explain 84% of variability.

Lukasz Kidzinski (ULB) FPCA 22 / 39

Page 23: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Example

0 5 10 15 20

−30

−20

−10

010

Time

Orig

inal

obs

erva

tion

0 5 10 15 20

−30

−20

−10

010

Time

3−te

rm K

−L−

expa

nsio

nFigure 12 : A comparison of x1 − x and

∑3i=1〈x1 − x , ei 〉ei .

Lukasz Kidzinski (ULB) FPCA 23 / 39

Page 24: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Motivation

Time

0 2000 4000 6000 8000 10000

27560

27580

27600

27620

27640

27660

Figure 13 : Horizontal component of the magnetic field measured in one minuteresolution at Honolulu magnetic observatory from 1/1/2001 00:00 UT to1/7/2001 24:00 UT. 1440 measurements per day. Gabrys and Kokoszka (2007)

Lukasz Kidzinski (ULB) FPCA 24 / 39

Page 25: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Dynamic FPCA: Motivation

Let Y1 = (Y11, . . . ,Yp1)′.

1 We ignore valueable information hidden in the serial dependence ofthe data.

=⇒ more efficient compression may be possible.

2 ThoughVar(Y1) = diag(λ1, λ2, . . . , λp),

we have (unlike in the iid case)

Cov(Y1,Yh) non-diagonal (in general).

=⇒ needs to be studied as a multivariate series.

Lukasz Kidzinski (ULB) FPCA 25 / 39

Page 26: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Dynamic FPCA: Motivation

Instead ofYmt = 〈Xt , em〉

we consider filter (φmk)m∈N,k∈Z and the convolution

Ymt =∑l∈Z〈Xt−k , φmk〉.

We claim that there exists (φmk)m∈N,k∈Z s.t.I For k 6= m, and any s, t ∈ Z

Cov(Yks ,Ymt) = 0,

I Reconstructed

Xt =n∑

m=1

∑t∈Z

Ymtφmt

has the L2 smaller than FPCA.

We propose a construction of such a filter (φmk)m∈N,k∈Z . Lukasz Kidzinski (ULB) FPCA 26 / 39

Page 27: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Dynamic FPCA

Rather than only using

C (y)(t) =

∫ 1

0Cov(X0(t),X0(s))y(s)ds.

in the derivation functional PCs we want to use (Ch : h ∈ Z) where

Ch(y)(t) =

∫ 1

0Cov(X0(t),Xh(s))y(s)ds.

This leads to the concept of

SPECTRAL DENSITY OPERATORS

ΓXθ =

∑h

Che−ihθ.

Converges if∑

h ‖Ch‖S <∞. (Key assumption.)

Brillinger (1975) for multivariate data. Now, in the functional context,Panaretos and Tavakoli (2013), Hormann, Kidzinski and Hallin (2013).

Lukasz Kidzinski (ULB) FPCA 27 / 39

Page 28: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Dynamic FPCA

Definition (Dynamic functional principal components)

Assume that (Xt : t ∈ Z) is a mean zero, stationary process with values inL2([0, 1]) and summable cross-covariances. Then the m-th dynamicfunctional principal component (DFPC) score of Xt is defined by

Ymt :=∑`∈Z〈Xt−`, φm`〉, t ∈ Z, m ≥ 1. (1)

We call Φm := (φm` : ` ∈ Z) the m-th DFPC filter.

Lukasz Kidzinski (ULB) FPCA 28 / 39

Page 29: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Properties

We have proven that

I Ymt is real-valued

I If there is no temporal dependence (Ch) our method coincide withPCA

I For m 6= m′, the principal components Ymt and Ym′s are uncorrelatedfor all s, t.

I Ymt is optimal in the sense that

E‖Xt −p∑

m=1

Xmt‖2 ≤ E‖Xt −p∑

m=1

Xmt‖2.

for any different p-dimensional filter (φ′m`)1≤m≤p.

Lukasz Kidzinski (ULB) FPCA 29 / 39

Page 30: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Implementation (in a nutshell)

(I) Transform discrete data into functions by basis functions approach:

X 7→ X (t) = Z1v1(t) + . . .+ Zdvd(t) = v′(t)Z.

(II) We are working on finite dimensional space now. Operators have acorresponding matrix. This matrix acts on the coefficients of the curves.

For example

GXθ =

(∑h∈Z

C Zh e−ihθ

)V ′,

when V := (〈vi , vj〉 : 1 ≤ i , j ≤ d).

Lukasz Kidzinski (ULB) FPCA 30 / 39

Page 31: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Implementation (in a nutshell)

(III) Eigenfunctions/values of ΓXθ correspond to eigenvectors/values of

GXθ : ϕm(θ) = v′ϕm(θ). Then

φmk =v′

∫ π

−πϕm(s)e−iksds =: v′φmk ,

and

Ymt =∑k∈Z

∫ 1

0Z′t−kv(u)v′(u)φmkdu =

∑k∈Z

Z′t−kVφmk .

(IV) All involved quantities need to be estimated (consistency results havebeen established).

(V) Numerical integration is used.

Lukasz Kidzinski (ULB) FPCA 31 / 39

Page 32: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Real data example

0 50 100 150

−4−2

02

4

days

1st s

core

sequ

ence

s

Figure 14 : The sequence of the first static FPC scores (red) [73%] and thedynamic ones (black) [80%].

Lukasz Kidzinski (ULB) FPCA 32 / 39

Page 33: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Real data example

0.0 0.2 0.4 0.6 0.8 1.0

−0

.50

.00

.51

.0

Intraday time

va

lue

0.0 0.2 0.4 0.6 0.8 1.0

−0

.50

.00

.51

.0Intraday time

va

lue

Figure 15 : First static FPC (left) and filters corresponding to first dynamicFPC. The filters φ1t(u), t ≥ 1, are dashed and for i ≤ 0 solid. The larger |t|, thelighter the curve.

Lukasz Kidzinski (ULB) FPCA 33 / 39

Page 34: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Real data example

0.0 0.2 0.4 0.6 0.8 1.0

−6

−4

−2

02

Intraday time

Sq

rt(

PM

10

) −

me

an

0.0 0.2 0.4 0.6 0.8 1.0

−6

−4

−2

02

Intraday time

Sq

rt(

PM

10

) −

me

an

0.0 0.2 0.4 0.6 0.8 1.0

−6

−4

−2

02

Intraday time

Sq

rt(

PM

10

) −

me

an

Figure 16 : We show 10 subsequent observations (left panel), the correspondingstatic KL expansion with one component (middle panel) and the dynamic KLexpansion with one component (right panel).

Lukasz Kidzinski (ULB) FPCA 34 / 39

Page 35: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Conclusion

I Nature is a Hilbert space!

I One can analyse a time series of anythingI Dynamic PCA in the time series context:

I explains more variance,I gives uncorrelated processes.

Lukasz Kidzinski (ULB) FPCA 35 / 39

Page 36: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Thank you for your attention

Lukasz Kidzinski (ULB) FPCA 36 / 39

Page 37: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Dynamic FPCA

One can show that applying the functional filter Φ = (φk) to (Xt),

Xt 7→ Yt =∑k∈Z

φk(Xt−k),

with φk(x) = (〈x , φ1k〉, . . . , 〈x , φpk〉)′, results in spectral density matrix

ΓYθ =

〈ΓXθ (φ?1(θ)), φ?1(θ)

⟩· · · 〈ΓX

θ (φ?p(θ)), φ?1(θ)⟩

.... . .

...〈ΓXθ (φ?1(θ)), φ?p(θ)

⟩· · · 〈ΓX

θ (φ?p(θ)), φ?p(θ)⟩ ,

where φ?m(θ) :=∑

k∈Z φmkeikθ.

If φ?m(θ) are eigenfunctions of ΓXθ , then cross spectra are zero.

Lukasz Kidzinski (ULB) FPCA 37 / 39

Page 38: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Dynamic FPCA

Let (λm(θ), ϕm(θ)) be m-th eigenvalue and eigenvector of spectral densityΓXθ . We choose φmk ∈ H such that

φmk =1

∫ π

−πϕm(θ)e−kiθdθ.

Remarks1 We can show that ΓX

θ isI symmetricI non-negativeI Hilbert Schmidt

=⇒ Spectral decomposition of ΓXθ is possible.

2 We see that φmk are Fourier-coefficients ϕm(θ).

Lukasz Kidzinski (ULB) FPCA 38 / 39

Page 39: Luk asz Kidzinski - Université libre de Bruxelles · Luk asz Kidzinski (ULB) FPCA 9 / 39. Time series Luk asz Kidzinski (ULB) FPCA 10 / 39. Functional data analysis 0 5 10 15 20

Cookies

Figure 17 : http://sweetrs.org/

Lukasz Kidzinski (ULB) FPCA 39 / 39