42
1 El costo del status quo: Valoración económica del costo social de la contaminación atmosférica en ciudades latinoamericanas Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering P. Universidad Católica de Chile Sesión 3: Política Fiscal y Medio Ambiente CEPAL, Santiago de Chile, 31 de enero de 2007

Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

  • Upload
    sumana

  • View
    29

  • Download
    0

Embed Size (px)

DESCRIPTION

El costo del status quo: Valoración económica del costo social de la contaminación atmosférica en ciudades latinoamericanas. Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering P. Universidad Católica de Chile. - PowerPoint PPT Presentation

Citation preview

Page 1: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

1

El costo del status quo:Valoración económica del

costo social de la contaminación atmosférica en

ciudades latinoamericanas

Luis A. Cifuentes

Center for the Environment and Industrial Engineering DeptSchool of Engineering

P. Universidad Católica de Chile

Sesión 3: Política Fiscal y Medio Ambiente

CEPAL, Santiago de Chile, 31 de enero de 2007

Page 2: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

Contenido

1. Introducción a la valoración económica de los impactos de la contaminación atmosférica 1. Método de la función de daño

2. Requerimientos de Información - Aplicabilidad en países en desarrollo

2. Valoración económica del impacto por contaminación aérea en ciudades latinoamericanas.  1. Estimación de la perdida económica y de bienestar resultante de

los actuales niveles de contaminación en 39 ciudades la Latinoamérica

3. Costos en salud evitados en Santiago de Chile debido al proceso de descontaminación iniciado en 1990. Costos económicos evitados por el Plan de Descontaminación Comparación con Costo de las medidas de reducción de

emisiones

2

Page 3: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

Introducción a la valoración económica de los impactos de la contaminación atmosférica

1. Fundamentos

2. Método de la función de daño

3. Requerimientos de Información

4

Page 4: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

5

Efectos de la contaminación atmosférica

• Efectos en la salud de la población

• Efectos en vegetacion y cultivos

• Efectos en materiales

• Efectos estéticos (visibilidad)

Page 5: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

6

Efectos en Materiales

German Ornamental Figure, 1908 (left) and 1968 (right), Herten Castle, Germany. Source: Westfalisches Amt Fur denkmalpflege, Munster)

Page 6: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

7

Efectos en vegetación

Daño a bosques en Alemania

Baja de productivid

ad de cosechas

Page 7: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

8

Visibilidad: Ciudad de México

Page 8: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

Efectos en Salud…

9

La primera pregunta que nos debemos hacer es:

¿puede la contaminación atmosférica tener un impacto negativo en la salud de la población?

Page 9: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

12

Londres, Invierno 1953Mortalidad Semanal vs. Concentraciones de SO2

Fuente: Bell, M. L. and D. L. Davis (2001). “Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic consequences of acute exposure to air pollution.” Environ Health Perspect 109 Suppl 3: 389-94.

Page 10: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

13

London Killer Smog

Page 11: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

14

SO4 and mortality rates in USA in 1980

Source: Ozkaynak, H. and G. D. Thurston (1987). “Associations Between 1980 U.S. Mortality Rates and Alternative Measures of Airborne Particle Concentration.” Risk Analysis 7(4): 449-461.

SO2 NAAQS Annual Avg: 80 ug/m3

Page 12: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

15

Long term study: Pope et al, 2002• DESIGN, SETTING, AND PARTICIPANTS

Vital status and cause of death data collected by the American Cancer Society as part of the Cancer Prevention II study, for 1.2 million adults in 1982.

Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures).

The risk factor data for approximately 500 000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998

• RESULTS: Fine particulate and sulfur oxide--related pollution were associated with all-cause, lung

cancer, and cardiopulmonary mortality. Each 10-ug/m3 of PM2.5 associated with approximately a 4%, 6%, and 8% increased

risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. Measures of coarse particle fraction and total suspended particles were not consistently

associated with mortality.

• CONCLUSION: Long-term exposure to combustion-related fine particulate air pollution is an important

environmental risk factor for cardiopulmonary and lung cancer mortality.

Page 13: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

16

Chronic Effects: All Cause Mortality

Source: Pope III, C. A., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito and G. D. Thurston (2002). “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution.” Jama 287(9): 1132-41.

PM2.5 NAAQS Annual Avg: 15 ug/m3

Page 14: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

17

Chronic Effects: All Cause MortalityExtrapolation to Santiago

Source: Pope III, C. A., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito and G. D. Thurston (2002). “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution.” Jama 287(9): 1132-41.

25 30 35 40 45 50

SantiagoPromedio 1989-2001Santiago

2001

Rango de estudio en EE.UU

Promedio Anual de PM2.5 [ug/m3]

Page 15: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

¿ Cómo estimar el impacto de la CA?

20

Page 16: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

21

Método de la Función de Daño

Daño SocialReducción de

Emisiones

PoblaciónExpuesta

RelacionConcentración

Respuesta

Cambios enConcentraciones

Efectos en laSalud

ConcentraciónBase

Valoraciónde Efectos

Page 17: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

Requerimientos de Informacion

• Modelo de calidad del aire Monitoreo ambiental Inventarios de emisiones

• Impacto en salud Demografía Estadísticas de salud de la población Funciones Concentración-Respuesta

• Valoración de los efectos Costos médicos Costos de productividad Perdida Disposición a pagar

• Integración de los resultados22

Page 18: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

Valoración económica del impacto por contaminación aérea en ciudades latinoamericanas.

Estimación de la perdida económica y de bienestar resultante de los actuales niveles de contaminación en 40 ciudades la Latinoamérica

(Trabajo realizado para el BID: Cifuentes, L. A., A. Krupnick, R. O'Ryan and M. Toman(2005). Urban Air Quality And Human Health In Latin America And The Caribbean. Washington, DC., Interamerican Development Bank. Disponible en http://www.iadb.org/sds/ENV/publication/publication_2492_4240_e.htm

24

Page 19: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

26

Epidemiologic studies of air pollution and health effects in Latin America and the Caribbean.

Source: An Assessment of Health Effects of Ambient Air Pollution in Latin America and the Caribbean, Working Draft, November 2004, Area of Sustainable Development and Environmental Health, Pan American Health Organization, World Health Organization

Effects studied include

• Premature Mortality

• Hospital admissions

• Emergency Room Visits

• Child Medical Visits

Page 20: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

27

Health Effects considered:

Type of Exposure Type of Endpoint Endpoint (specific cause)

City/Country providing C-R functions

Mortality Premature Mortality (All and Cardiopulmonary causes)

USA Chronic Exposure Illness or Disease Chronic Bronchitis USA

Mortality Premature Mortality (All causes) LA cities / USA

Cardiovascular disease (ICD9 390-429) USA

Dysrhytmias (ICD9 427) USA

Respiratory Causes (ICD9 460-519) Sao Paulo/USA Hospital Admissions

Pneumonia (ICD9 480-487) Sao Paulo/USA

Asthma (ICD9 493) Sao Paulo

Cardiovascular disease Sao Paulo

Respiratory Causes Santiago

Emergency Room Visits

Upper respiratory symptoms (ICD9 460, 465, 487) Santiago

Pneumonia (ICD9 480-486) Santiago

Asthma (ICD9 493) Ciudad Juarez

Child Medical Visits Lower Respiratory Symptoms Santiago, Mexico

Medical Actions

Medical Visits

Child Medical Visits Upper Respiratory Symptoms Santiago

Asthma Attacks USA Illness or Disease

Acute Bronchitis USA

Work Loss Days (WLD) USA

Restricted Activity Days (RAD) USA

Minor Restricted Activity Days (MRAD) USA

Acute Exposure

Days with Restriction in Activity

Shortness of Breath Days USA

Page 21: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

30

Valuation of the Health Effects

There are three components of the social value assigned to each health effect avoided:

1. Medical treatment: costs of the actual effect (for example, the cost of a visit to the emergency room)

2. Lost Productivity : the value of the labor lost due to the incidence of the health effect (e.g., while in the hospital and while recovering, work is missed)

3. Disutility: the direct welfare loss associated to the health effects (e.g the nuisance of experience an asthma attack)

The first two components can be estimated directly, and are referred to as the Cost of Illness (COI)

For disutility values, the method of choice is Contingent Valuation. There are very few CV studies in LAC.

Page 22: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

31

Transference of Unit Values

• If not local values are available, they can be transferred from other countries, using ratio of per-capita income:

• Income elasticity: can vary from 0.4 to 1. If 0.4, values are less sensitive to income differences.

• Purchase Power Parity (PPP) can also be used. The difference between countries will be smaller.

)(euw

eu

cleucl Y

YWW

Page 23: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

32

Values used

• For this work, we considered medical costs values from Mexico and Chile, and Willingness to Pay values from Chile transferred to all countries.

• We also used willingness to pay values from the USA transferred to all countries.

• There is a big difference of the two source of values: For example, the Value of a Statistical Life (VOSL) from the Chilean study is $634 thousand, while the VOSL from the USA studies in $6.3 million.

Page 24: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

Medical Unit Costs(US$ per case)

• Medical costs were transferred to other cities using the ratio of GNP in PPP terms

33

Buenos Aires Santiago

Age Group Conte Grand 2002

Cesar et al 2000 McKinley 2003 Holz 2000

Hospital Costs

Chronic Bronchitis All 218 17,750 2,667

Hospital AdmissionsRespiratory ( ICD 460-519) All 1,870 2,186 1,455Pneumonia (ICD 480-487) All 6,293 2,111 1,455

COPD (ICD 490-496) All 6,233 17,750Asthma (ICD 493) Adult 1,455

All 4,982 603 1,455Cardiovascular disease (ICD 390-429) All 7,377 5,611 10,890 3,267

Congestive Heart Failure (ICD 428) All 13,300Ischemic Heart Failure (ICD 410-414) All 8,481

Dysrhythmias (ICD 427) All 3,267

Emergency Room VisitsRespiratory ( ICD 460-519) All 91 269 65 Pneumonia (ICD 480-486) All 65

Upper respiratory symptoms (ICD 460, 465, 487)

All 65Asthma (ICD 493) All 154 317 65

Medical VisitsLower respiratory symptoms Children 44

Illness and SymptomsAsthma Attacks All 337

Respiratory Symptoms All 10

Mexico City

Endpoint

Page 25: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

34

Value of Statistical Life1000 US$/case

Ctiy

Buenos Aires, AR 475 4,070 Cordoba, AR 369 3,681 Mendoza, AR 313 3,446

Campinas, BR 490 4,185 Canoas, BR 922 5,389 Caxias, BR 423 3,945

Sao Jose Do Campos, BR 490 4,185 Sao Paulo, BR 422 3,943 Sorocaba, BR 490 4,185

Vitoria, BR 323 3,545 Calama, CL 320 3,305

Santiago, CL 475 3,869 Temuco, CL 463 3,828 Bogota, CO 325 3,897

Cali, CO 189 3,137 San Salvador, ES 201 2,762 Tegucigalpa, HO 38 1,535 Mexico City, MX 761 3,980

Monterrey, MX 570 3,547 Puebla, MX 570 3,547

Lima, PE 213 2,904 Montevideo, UR 421 4,062

Caracas, VZ 522 3,222

Note: Values from the US transfered using PPPI ratios and an elasticity of 0.4. Values from LA transferred using PCI ratios and an elasticity of 1.0.

Source of VSL Value

LA USA

Page 26: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

36

Ambient Pollutant Concentrations

• Data for 39 LAC cities was gathered from different sources: state-run monitoring networks, research monitors, etc.

• The quality of data was an issue: we separated the ‘good’ quality cities from the not so good, or unknown quality.

• Analyses scenarios: We analyzed two control scenarios: C1: a uniform 10% reduction in actual levels C2: the attainment of a 50 ug/m3 reference

level

(this level is similar to many countries annual standards. New WHO guidelines are 40–20 ug/m3)

Page 27: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

370 50 100 150 200 250

Buenos Aires, ARCordoba, ARMendoza, AR

Campinas, BRCanoas, BRCaxias, BR

Ciudad De Puebla, BRCubatao, BRCuritiba, BRItaguai, BR

Porto Alegre, BRRio De Janeiro, BR

Sao Paulo, BRSao Jose Do Campos,

Sao Joao De Meriti, BRSorocaba, BR

Vitoria, BRCalama, CL

Santiago, CLTemuco, CLBogota, CO

Cali, COHeredia, CR

San Jose, CRGuayaquil, EC

Quito, ECSan Salvador, ESTegucigalpa, HO

Kingston, JAGuadalajara, MX

Juarez, MXMexico City, MXMonterrey, MX

Valle De Toluca, MXManagua, NI

Panama City, PALima, PE

Montevideo, URCaracas, VZ

ug/m3

Reduction in C2 (less C1)

Reduction in C1

PM10 annual concentrations 2000-03

Page 28: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

38

Population exposure to PM10

All, 83.9

Children, 27.6

Adult, 50.4

Elder, 5.9

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

Mill

ion

s

PM10 Concentrations [ug/m3]

Exp

ose

d P

op

ula

tion

to C

on

c >

C

Reference: 50

Page 29: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

Reduction in Mortality and Morbidity (cases per year)

40

Scenario Endpoint Group C1 - 10% reduction

C2- Annual Standard

Premature Mortality 3,200 10,400

LAC Hospital Admissions 9,800 32,000

Emergency Room Visits 29,000 83,000

Medical Visits 71,000 240,000

Premature Mortality 3,900 13,500

USA Chronic Bronchitis 21,000 61,000

Hospital Admissions 31,000 100,000

Emergency Room Visits 4,900 15,000

Work Loss Days 3,800,000 12,000,000

Restricted Activity Days 21,000,000 64,000,000

Symptoms 39,000,000 110,000,000

Page 30: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

42

Per Capita Benefits(US$/person/yr)

Benefits Scenario

WTPLAC 17 70 USA 201 883

COILAC 1 5 USA 22 83

C1 10%

reduction

C2 Annual

Standard

Page 31: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

43

0% 5% 10% 15%

J uarezMonterrey

Mexico CityPuebla

CanoasValle De Toluca

CaracasCuritiba

Sao J ose Do CamposI taguai

CubataoSorocaba

GuadalajaraSantiago

CampinasSao Paulo

TemucoSan Salvador

CaxiasQuito

CalamaVitoriaBogota

GuayaquilSao J oao De Meriti

San J oseKingston

Porto AlegreLimaCali

Rio De J aneiroMendoza

Buenos AiresHeredia

Panama CityCordobaManagua

MontevideoTegucigalpa

Benefits as % of income for a 10% reduction in PM10 levels

A 10% reduction in PM10 levels results in considerable benefits as % of income.

The differences stem from different actual levels, and from mortality rates.

Page 32: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

Summary

• This analysis shows that there is a significant benefit to be accrued if ambient concentrations of PM are reduced, i.e. there is a significant damage being done now!

• Although the biggest figures are for lost of welfare (expressed as willingness to pay measures), the cost of illness figures are important

• For the scenario in which the annual PM standars are met, the benefits amount to up tp 83 US$/person per year (For Santiago, is 49 US/person, for Ciudad Juarez, Mexico, 97 US$/person). These are significant numbers.

45

Page 33: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

Costos en salud evitados en Santiago de Chile debido al proceso de descontaminación iniciado en 1990.

• Costos económicos evitados por el Plan de Descontaminación

• Comparación con Costo de las medidas de reducción de emisiones

47

Page 34: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

Puntos Principales• Monitoreo de PM2.5 permite centrarse en la fraccion fina

del material particulado, que es la mas peligrosa.

• Estudios epidemiológicos realizados en Santiago brindan una mayor confianza a los resultados, y ayudan a sobreponerse al síndrome ‘esto no le ocurre a nuestra población’

• Datos detallados de atenciones de salud nos permiten asignar los costos a los diferentes agentes: estado, población, sector privado

• Desarrollo de inventarios de emisiones permite, en forma aproximada, estimar el impacto de reducciones en emisiones en la calidad ambiental, y por ende, cuantificar los beneficios de estas reducciones, y realizar un análisis costo beneficio para las medidas de mitigación.

48

Page 35: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

50

PM2.5 [ug/m3]

Mue

rtes

Dia

rias

0 50 100 200

5055

6065

70

PM10-2.5 [ug/m3]

Mue

rtes

Dia

rias

20 60 100 140

5055

6065

70

PM2.5 - PM10-2.5 Mortalidad Diaria según Tamaño de Partícula

Fuente: Cifuentes, L., J. Vega, K. Kopfer and L. Lave (2000). “Effect of the fine fraction of particulate matter vs the coarse mass and other pollutants on daily mortality in Santiago, Chile.” Journal of the Air & Waste Management Association 50(August): 1287-1298.

Page 36: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

53

Excess effects in Santiago for year 2000

Effects computed for the whole population in Santiago, 4.8M people, for a change in PM2.5 concentrations from the current 35.1 ug/m3 to a reference level of 15 ug/m3 (the US standard). Chronic effects computed for a change from 52.5 to 15 ug/m2 of the long term average concentrations.

3,100

523

5,5003,2262,085

21,252

117,157986,484

3,375,150

100

1,000

10,000

100,000

1,000,000

10,000,000

MRADS &

Sym

ptom

Day

s

Wor

k Los

s Day

s

Asthm

a Atta

cks

All Em

erge

ncy

Room

Visi

ts

Acute

Bro

nchi

tis

Chron

ic Bro

nchi

tis

All Hos

pital

Adm

Prem

. Mor

tality

(lon

g-te

rm)

Prem

. Mor

tality

(sho

rt-te

rm)

Page 37: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

54

Quien recibe los beneficios?

SectorMedical

treatmentLost

Productivity Disutility TotalGovernment 1.1% 11.1% 12.2%

Private 0.5% 3.4% 3.8%Population 0.3% 6.3% 77% 83.9%

Total 1.9% 20.8% 77.3% 100%

• Usando la adscripción de la población a los diferentes sistemas de salud (publico, privado e independientes), y su empleador (que es responsable del pago de las licencias medicas), pudimos asignar los beneficios a cada sector:

Page 38: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

55

Benefits for the 1997 Santiago Decontamination Plan

0

10

20

30

40

50

60

70

80

1997 2000 2003 2006 2009 2012

Pm

2.5

(u

g/m

3)

No Plan

Plan

• In 1997 a Atmospheric Decontamination and Prevention Plan (PPDA) was signed into law.

• The Plan The Plan calls for a gradual reductions in AP concentrations, aiming to comply with the current Chilean PM10 and ozone standards in a 15 year time frame.

• The baseline conditions assume an increase in concentrations due to increase in population and in economic conditions

Page 39: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

57

Number of cases avoided by the Decontamination Plan

• Total number of cases accrued from 1997 to 2011, if the reduction in concentrations is achieved.

mid mid

Prem. Mortality (short-term) 9,157 (5,436 - 12,882) 1,001 (332 - 1,669)

Prem. Mortality (long-term) 61,668 (38,198 - 85,256)

All Hospital Adm 37,465 (25,150 - 51,393) 41,088 (19,544 - 67,611)

Chronic Bronchitis 95,867 (40,054 - 154,865)

Acute Bronchitis 187,363 -(1,257 - 403,829)

All Emergency Room Visits 218,509 (79,618 - 357,567) 356,577 (253,468 - 458,229)

Asthma Attacks 4,636,093 (3,328,309 - 5,990,541) 1,080,463 (409,643 - 1,744,095)

Work Loss Days 18,501,260 (16,164,860 - 20,853,300)

MRADS & Symptom Days 93,141,380 (81,812,550 - 104,760,400) 53,842,600 (23,955,610 - 87,009,140)

Endpoint90% CI 90% CI

PM2.5 Effects Ozone Effects

0

10

20

30

40

50

60

70

80

1997 2000 2003 2006 2009 2012

Pm

2.5

(ug

/m3)

No Plan

Plan

Page 40: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

58

Beneficios en Salud del PPDA 1997-2011(Mill. US$ de 2000)

Millones de dólares del 2000

EstadoSector Privado

Población Total

Mortalidad Prematuras 70 21 2,692 2,783 Bronquitis Crónica 335 106 218 659

Días de Actividad Restringida Menor - - 280 280 Días de Pérdida de Trabajo 124 37 57 217

Síntomas Respiratorios - - 55 55 Admisiones Hospitalarias 24 10 7.7 42

Ataques de Asma - - 12 12 Consultas Infantiles IRA Baja 5.6 2.8 1.2 9.5

Visitas Sala de Emergencia 1.8 0.4 1.4 3.7 Bronquitis Aguda - - 0.6 0.6

Total 560 178 3,324 4,061

EfectoSector

Page 41: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

59

Razón Beneficio/Costo para medidas de reducción

• Razón calculada como el Valor Presente de los beneficios sobre el valor presente de los costos, durante toda la vida útil de la medida, usando una tasa de descuento social del 12%. Beneficios bajos calculados considerando solo muertes de corta exposición. Beneficios altos incluye muertes debido a exposición prolongada.

• El beneficio incluye el beneficio de las reducciones de PM2.5 y de ozono. No se han valorado las reducciones de CO2.

B/CCriterio paralizacion FF 8 (13 -6)

PPC VL 15.7 (8.2 -24.3)

Norma Tier 1 VL INFNorma LEV VL 10.4 (4.8 -16.5)

Buses GNC 5.7 (2.7 -21.3)

Buses Hibridos 7.0 (4.3 -10.3)

Convertidor CC buses diesel 3.1 (1.8 -4.2)

Retrofitting CC buses EPA94 3.0 (1.8 -4.6)

Retrofitting CC buses EPA91 5.1 (3.3 -6.8)

Norma Euro III camiones 3.4 (2.2 -4.7)

Mejora calidad del diesel 3.0 (2.0 -3.8)

Aspirado de calles 2.6 (0.4 -5.3)

Pavimentado de calles 4.5 (0.6 -9.3)

IC 90%Medida

Page 42: Luis A. Cifuentes Center for the Environment and Industrial Engineering Dept School of Engineering

60