35
1 Low-power LSI - Through cooperation among levels - Prof. Takayasu Sakurai Center for Collaborative Research, and Institute of Industrial Science, University of Tokyo E-mail: [email protected] http://lowpower.iis.u-tokyo.ac.jp/ 1 14th German-Japanese Forum on IT 2002/4/30 Working group program: Semiconductor

Low-power LSI - Through cooperation among levels - Sakurai

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

1

Low-power LSI- Through cooperation among levels -

Prof. Takayasu Sakurai

Center for Collaborative Research,and Institute of Industrial Science,

University of TokyoE-mail: [email protected]://lowpower.iis.u-tokyo.ac.jp/

1

14th German-Japanese Forum on IT 2002/4/30Working group program: Semiconductor

T.SakuraiT.Sakurai

OutlineLow-power LSI - Through cooperation among levels -

Software

Circuit

Technology

Assembly

LSI

• Introduction

• Technology - Circuit cooperation : Boosted Gate MOS (BGMOS)

• Software - LSI cooperation : VDD / VTH-hopping

• LSI – Assembly cooperation:Superconnect technology

• Summary

T.SakuraiT.Sakurai

Ever increasing VLSI power(Power consumption of processors published in ISSCC)

959085800.01

0.1

1

10

100

Year

Pow

er (W

)x4 / 3years

T.SakuraiT.Sakurai

Year

Volta

ge [V

]

Pow

er p

er c

hip

[W]

VDD

cur

rent

[A]

VDD, power and current trend

1998 2002 2006 2010 20140

0.5

1

1.5

2

2.5

0 0

200 500

Current

Power

Voltage

International Technology Roadmap for Semiconductors 1999 update sponsored by the Semiconductor Industry Association in cooperation with European Electronic Component Association (EECA) , Electronic Industries Association of Japan (EIAJ), Korea Semiconductor Industry Association (KSIA), and Taiwan Semiconductor Industry Association (TSIA)

T.SakuraiT.Sakurai

Necessity for low-power design

Power range Concerns

< 0.1W • Battery life Portable• PDA• Communications

~ 1W Consumer• Set-Top-Box• Audio-Visual

• Inexpensive package limit • System heat (10W / box)

> 10W • Ceramic package limit• IR drop of power lines

Processor• High-end MPU's• Multimedia DSP's

Typical applications (All need high-perf.)

T.SakuraiT.Sakurai

Scaling law predicts power increase

k=2

VDD [V] 1/k

Tr. dimensions [x] 1/k

Tr. current [I~1/x x/x V^1.3] 1/k0.3

Tr. capacitance [C~1/x xx] 1/kTr. delay [d~CV/I] 1/k1.7 (=0.3 when k=2)Tr. power [P~VI~CVV/d] 1/k1.3

Power density [p~P/x/x] k0.7 (=1.6 when k=2)

Transistors Scaling coefficients

T.SakuraiT.Sakurai

Power & delay dependence on VDD & VTH

Power : P = pt •fCLK •CL •VDD + I0 •10 •VDD 2

V thS

(αααα=1.3)

k • CL • VDD

(VDD - Vth)ααααDelay =

k•QI

=

12

34

-0.400.40.8

00.2

0.4

0.6

0.8

1x 10-4

Vth (V)

VDD(V)

Pow

er (W

)

A

B

12

34

-0.400.40.8

0

1

2

3

4

5x 10

-10

Del

ay (s

)

Vth (V)VDD(V)

A B

T.SakuraiT.Sakurai

Controlling VDD and VTH for low powerLow power →→→→ Low VDD →→→→ Low speed →→→→ Low VTH →→→→ High leakage →→→→ VDD-VTH control

Active Stand-byMultiple VTH Dual-VTH MTCMOSVariable VTH VTH hopping VTCMOSMultiple VDD Dual-VDD Boosted gate MOSVariable VDD VDD hopping

*) MTCMOS: Multi-Threshold CMOS*) VTCMOS: Variable Threshold CMOS• Multiple : spatial assignment• Variable : temporal assignment

Software-hardware cooperationTechnology-circuit cooperation

T.SakuraiT.Sakurai

Previous circuit schemes

[1] S.Mutoh et al. IEEE, JSSC, 1995. [2] T.Kuroda et al. IEEE, JSSC, 1996.

MTCMOS [1] VTCMOS [2]

• Tunneling leakagecannot be cut-off.

• Area penalty increaseswhen VDD < 1V.

• Junction leakage increases due toband-to-band tunneling.

• Tunneling leakage isnot suppressed.

High Vth(Stand-by)

Low Vth (Active)VDD

Vnn

Vpp

GND

VDD

GNDV

GNDHigh Vth

Low Vth

(~0.6V)

(~0.2V) (~0.2V)

(~0.6V)

T.SakuraiT.Sakurai

Transistors go leaky

1999 2002 2005 2008 201110-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

Requirement(Stand-by Power = 1mW)

(Vbs= -1V)

JunctionLeakage

0.1V

0.2V

0.3V

0.4V

Vth= 0.4V

SubthresholdLeakage

Gate TunnelingLeakage

(180nm) (50nm)(70nm)(100nm)(130nm)

I off

(A/u

m)

Year (Technology Node)

T.SakuraiT.Sakurai

OutlineLow-power LSI - Through cooperation among levels -

Software

Circuit

Technology

Assembly

LSI

• Introduction

• Technology - Circuit cooperation : Boosted Gate MOS (BGMOS)

• Software - LSI cooperation : VDD / VTH-hopping

• LSI – Assembly cooperation:Superconnect technology

• Summary

T.SakuraiT.Sakurai

Boosted-Gate MOS (BGMOS)

Leak cut-off Switch (LS)- high VTH- thick TOX

VDD

Virtual VSS

CMOS circuits- low VTH- ultra thin TOX

T.Inukai, M.Takamiya, K.Nose, H.Kawaguchi, T.Hiramoto and T. Sakurai, "Boosted Gate MOS (BGMOS): Device/Circuit Cooperation Scheme to Achieve Leakage-Free Giga-Scale Integration," CICC'00, p.409, May 2000.

0VVDD

VBOOST<Standby> <Active>

Technology-Circuit cooperative approach

T.SakuraiT.Sakurai

Leak switch optimization

1 2 3 4 5 6 7 8

0

1

2

3

Vth = 0.5V (const.)Tech. Node: 50nm

Tox(nm)

Dra

in C

ondu

ctan

ce (m

S/µµ µµm

)1 2 3 4

Vboost (V)

50

100

150

200

L g(n

m)

T.SakuraiT.Sakurai

GSI’s in deep-submicron era

High voltageHigh VTHThick TOX

Low voltage Low VTHThin TOX

Logic CircuitsF/F

SRAM (leak cut-off by high VTH)

Leak cut-offPower Switch

Analog(low VDDReducesS/N ratio)

I/O (for compatibility)

VDD

VBOOST

<Standby> <Active>

VSS

T.SakuraiT.Sakurai

OutlineLow-power LSI - Through cooperation among levels -

Software

Circuit

Technology

Assembly

LSI

• Introduction

• Technology - Circuit cooperation : Boosted Gate MOS (BGMOS)

• Software - LSI cooperation : VDD / VTH-hopping

• LSI – Assembly cooperation:Superconnect technology

• Summary

T.SakuraiT.Sakurai

Controlling VDD and VTH for low power

Active Stand-byMultiple VTH Dual-VTH MTCMOSVariable VTH VTH hopping VTCMOSMultiple VDD Dual-VDD Boosted gate MOSVariable VDD VDD hopping

- Software-Hardware cooperation -

T.SakuraiT.Sakurai

Energy consumption isproportional tothe square of VDD.

Energy consumption isproportional tothe square of VDD.

VDD should be loweredto the minimum levelwhich ensuresthe real-time operation.

VDD should be loweredto the minimum levelwhich ensuresthe real-time operation.

Normalized workload0.0 0.2 0.4 0.6 0.8 1.0

Nor

mal

ized

pow

er

0.0

0.2

0.4

0.6

0.8

1.0

Variable VddFixed Vdd

If you don’t need to hussle,VDD should be as low as possible

T.SakuraiT.Sakurai

Application slicing and software feedback loop in Voltage Hopping

S.Lee and T.Sakurai, “Run-time Power Control Scheme Using Software Feedback Loop for Low-Power Real-time Applications,”ASPDAC'00, A5.2, pp.381~pp.386, Jan. 2000.S.Lee and T.Sakurai, “Run-time Voltage Hopping for Low-power Real-time Systems,” DAC'00, June 2000.

3

1 2 3 N...4

TR3

TR1TR2

TR4

TSF = Time constraint of sync frame

1 2TC2TC3

TTAR3

fVAR = f1 = fCLK TTD

TTD

fVAR = f2 = fCLK/2

fVAR = f3 = fCLK/3

fVAR = f4 = fCLK/4

TTD

TTD

TL3,f1 = TTD + TW3

TL3,f2 = TTD + TW3 x 2

TL3,f4 = TTD + TW3 x 4TL3,f3 = TW3 x 3

Clock frequency for the previous timeslot was f3.

Processor coreProcessor core

Voltagefrequencycontroller

Voltagefrequencycontroller

Clock & VDDClock & VDDControl info

T.SakuraiT.Sakurai

Voltage hoppingachieves more than 70% power saving

MPEG-4 video encoding

Transition Delay TTD (ms)0.0 0.2 0.4 0.6 0.8 1.0

Nor

mal

ized

Pow

er P

/PFI

X

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

RVH: 2 levels (f,f/2)RVH : 3 levels (f,f/2,f/3)RVH : 4 levels (f,f/2,f/3,f/4)RVH : infinite levelspost-simulation analysis

SH-4

Clock

VDDSH-4 Modified

Clock

VDD

T.SakuraiT.Sakurai

Measured power characteristics

Total power = 0.8 x 0.08 + 0.16 x 0.86 + 0.07 x 0.06 = 0.2WTotal power = 0.8 x 0.08 + 0.16 x 0.86 + 0.07 x 0.06 = 0.2W

VDD hopping can cut down power consumption to 1/4VDD hopping can cut down power consumption to 1/4

0.8W

0

0.2

0.4

0.6

0.8

1

Supply voltage: VDD [V]

Pow

er: P

[W]

0 1 2

ƒ=100MHz

ƒ=200MHz

0.16W

Downto 1/5

Time for sleep: 6% 0.07W

Time for VDDmin: 86%

Time for VDDmax: 8%

T.SakuraiT.Sakurai

Cooperative Voltage Scaling (CVS) between OS and Applications

0 10 3020 40 50 60

Proposed scheduling: cooperation of OS and applications (power consumption=0.24)

0 10 3020 40 50 60

Speed control within application slices (power consumption=0.47)

0 10 3020 40 50 60

Conventional rate-monotonic scheduling (power consumption=1)

0 10 3020 40 50 60

Speed control with power-conscious OS (power consumption=0.85)

Y.S.Shin, H.Kawaguchi, T.Sakurai, "Cooperative Voltage Scaling (CVS) between OS and Applications for Low-Power Real-Time Systems," CICC'01, pp.553-556, May 2001.

T.SakuraiT.Sakurai

Power switches

Supply voltage to SH-4

(B) SH-4 embedded board

(A) System

Hardware

T.SakuraiT.Sakurai

Power comparison to conventional RMS

ConventionalRMS

(No modification)

CVS(2.0V <> 1.2V)

CVS(2.0V <> 0.9V)

0.0

0.5

1.0

Pow

er [W

]Sleep

100MHz

NOP

200MHz

0.66

0.20 0.16

• CVS can reduce power to less than 1/4 of the conventional.

37.5% workload

T.SakuraiT.Sakurai

VTH-hopping

-0.1 0 0.1 0.20

1

2

4

6

8

1

0

2

Dynamic power

Delay

Leakage power

Nor

mal

ized

del

ay :

t d(t d

(VTH

=0)=

1)

Nor

mal

ized

pow

er :

P (P

(VTH

=0)=

1)

Threshold voltage : VTH [V]

VDD=0.5V0.35µµµµm process

Fixed VTHDynamic VTH control

Normalized workloadN

orm

aliz

ed P

ower

0 0.5 10

0.5

1

VTHlow=0VVDD=0.5V0.35µµµµm process

T.SakuraiT.Sakurai

Schematic of VTH-hopping

VTHcontroller

Freq. control

CONT

fCLK or fCLK/2

VBSP2

Target processor

VTH-hopping(VTHlow&VTHhigh)

Power control block

VBSP1

VBSN2VBSN1

VTHlow_Enable

VTHhigh_Enable

VDD

GND

VBSN

VBSP

T.SakuraiT.Sakurai

Microphotograph of RISC processor

0.6µµµµm process

Overhead of VTH-hopping= 14%

RISC core = 2.1mm x 2.0mm

VBS selector = 0.2mm x 0.6mm

T.SakuraiT.Sakurai

Power comparison

Fixed VTHFixed freq.

Dual VTH0

0.5

1

Leakage powerDynamic power

VDD=0.5VVTHlow=0V94% f/2 operation

Nor

mal

ized

pow

er

VTH-hopping VTH-hopping+ Dual VTH

T.SakuraiT.Sakurai

OutlineLow-power LSI - Through cooperation among levels -

Software

Circuit

Technology

Assembly

LSI

• Introduction

• Technology - Circuit cooperation : Boosted Gate MOS (BGMOS)

• Software - LSI cooperation : VDD / VTH-hopping

• LSI – Assembly cooperation:Superconnect technology

• Summary

T.SakuraiT.Sakurai

Super-connect technologyD

esig

n ru

le (µ

m)

0.01

0.1

1

10

100

Past Present Future

Tr. gate

Tr. gate

Tr. gate

InterconnectUpper layerLower layer

Upper layer

Middle layer

Lower layer

Super-connect

PackagePackagePackage

Technology Vacuum

M. Kimura,"Superconnect : 21st Century LSI Production and Design Method", Nikkei Microdevices, no.180, pp.62-79, June 2000.

T.SakuraiT.Sakurai

Super-connect

• Printed circuit board (PCB) : Low-perf., high-power

• SoC : High-performance but issues remain

• New system level integration : Super-connect

- Connects separately built and tested chips not by the

PCB but rather directly to construct high-performance

yet low-cost electronic systems

- May use around 10 micron level design rules

T.SakuraiT.Sakurai

Super-connect example

PURE LOGIC

Heat Sink

ANALOG

RF/ANALOG

DRAM

K.Ohsawa, H.Odaira, M.Ohsawa, S.Hirade, T.Iijima, S.G.Pierce, “3-D Assembly Interposer Technology for Next-Generation Integrated Systems,” ISSCC Digest of Tech. Papers, pp.272-273, Feb.2001.

T.SakuraiT.Sakurai

Power distribution in CMOS LSI's

Clock

ASSP1

LogicMemory

I/O

ASSP2

Clock

Logic

MemoryI/O

MPU1 Clock

Logic

MemoryI/O

MPU2Clock

Logic

Memory

I/O

T.SakuraiT.Sakurai

Bandwidth

0.1

1

10

100

Design rule Power@1GB/s

Area

102

103

104

105

[µµµµm] [mW] [GB/sec]

[µµµµm2

/bit]

Super-connect

Off-chip On-chip

1

10

100

1000

Cost/line

[AU]

10

1000[day]

100

Turn-aroundtime

1

10

100

1000

1

10

100

1000

Super-connect

T.SakuraiT.Sakurai

3D integration by super-connect

50µm thick x 4

By ASET

T.SakuraiT.Sakurai

Summary• Power consumption of LSI’s tend to increase due

to the scaling law and due to the leakage increase (sub-threshold, gate tunneling, and junction leakage).

• New trend for low-power LSI’s is to pursue cooperative approaches among levels: BGMOS to cut-off standby leakage, VDD / VTH hopping to reduce operating power, and super-connect to reduce I/O power.

• One of the biggest barriers to the scaling is the leakage power increase and solutions are yet to be discovered.