91
Verfasser/Dokument Low alloy CrMo(V) steel plates for petrochemical reactors 1 Low Low alloy alloy CrMo(V) CrMo(V) steel steel plates plates for for petrochemical petrochemical reactors reactors

Low alloy CrMo(V) petrochemical reactors · • conventional CrMo steels: ASTM A387 Gr.11 Cl 1 and 2 or Gr. 22 Cl. 2 or ... Low alloy CrMo(V) steel plates for petrochemical reactors

Embed Size (px)

Citation preview

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 1

    LowLow alloyalloy CrMo(V)CrMo(V) steelsteel platesplates forforpetrochemicalpetrochemical reactorsreactors

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 2

    1. Introduction

    2. Application trends

    3. Requirements for CrMo(V) steels

    4. Heat treatment - Hollomon parameter

    5. General material behaviour and feasibility investigations

    6. Long term embrittlement and avoidance strategies

    7. The benefits of modern CrMoV steels

    8. General recommendations for processing: forming+welding

    9. Creep properties

    10. Conclusion

    Content

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 3

    Introduction

    conventional CrMo steels: ASTM A387 Gr.11 Cl 1 and 2 or Gr. 22 Cl. 2 or 13CrMo4-5 or 10CrMo9-10 acc. EN 10028 part2

    enhanced CrMo steels: quenched and tempered steels with increased mechanical properties, e.g. ASTM A 542A/B 3/4/4a or 12CrMo9-10 acc. EN 10028 part 2

    new generation of CrMo steels: Vanadium modified CrMo-steels, e.g. ASTMA542 D4a or 13CrMoV9-10 acc. to EN 10028 part 2.

    Wherever high temperatures and/or high hydrogen partial pressures in the processes are required, CrMo steels have been used for more than 50 years. Due to changing process parameters in chemical and petrochemical processes these steel grades have been developed to enhanced properties.

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 4

    1Cr Mo ASTM/ASME A/SA 387-12-1/2EN 10028-2: 1992 13CrMo4-5EN 10028-2: 2003 13CrMo4-5

    1Cr Mo ASTM/ASME A/SA 387-11-1/2EN 10028-2: 2003 13CrMoSi5-5

    2Cr 1Mo ASTM/ASME A/SA 387-22-1/2A/SA 542-A/B-3/4/4a

    EN 10028-2: 1992 10CrMo9-1011CrMo9-10

    EN 10028-2: 2003 10CrMo9-1012CrMo9-10

    2Cr 1Mo V ASTM/ASME A/SA832-22VA/SA 542-D-4/4a

    EN 10028-2: 2003 13CrMoV9-10

    3Cr 1Mo V ASTM/ASME A/SA832-23VA/SA 542-E-4/4a

    EN 10028-2: 2003 12CrMoV12-10

    A broad variety of CrMo(V) steels is commercially available

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 5

    200

    300

    400

    500

    600

    700

    800

    0 50 100 150 200 250

    Hydrogen partial pressure [bar]

    Tem

    pera

    ture

    [C

    ]

    6%Cr, 0,5%Mo

    3%Cr, 0,5%Mo V

    2,25%Cr, 1%Mo, V

    2,25%Cr, 1%Mo

    1,25%Cr, 0,5%Mo1%Cr, 0,5%Mo

    Carbon steel

    1%Cr, 0,5%Mo

    acc. API 941, 1997

    Nelson-curves

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 6

    Application and trends for the use of CrMo(V) steels

    typical applications are hydrotreating reactors

    operating temperatures up to 480 C

    hydrogen partial pressures up to 180 bar or even more

    Trends:

    ever bigger and heavier reactors (already more than 1000t per unit)

    higher operating temperatures and pressures resulting in higherwall thicknesses

    increasing demand due to expansion or new construction of plants

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 7

    Developments in different aspects between 2000 and 2008

    Example: 2Cr1Mo steels

    dramatic increase of deliveries deliveries in thickness over 100mm

    were increased even more than the overall deliveries for these grades

    deliveries in N+AC+T conditionwere also increased dramatically

    market is very tight as demand isfast rising and only few manufac-turers are able to meet the very high quality standards requested

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 8

    Factors contributing to more sophisticated steel plates

    strong safety requirements for core units designed from CrMo(V) steels increasing thickness with high demand in thickness over 100mm larger dimensions to allow for more freedom in vessel design PWHT requirements including 3 or often even 4 cycles chemical restrictions exceeding those of the standards specifying J- and X-factor for ultra clean steels specifying toughness values at low temperatures in combination with PWHT additional requirements in regard to grain size hardness requirements specifying step cooling test additional tensile test at elevated temperatures ...

    Many additional requirements; partly interfering each other

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 9

    CrMo-plate delivery dimensions of Dillinger Htte GTS

    Maximum thickness is often limited by requirements from specifications

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    1.500 1.750 2.000 2.250 2.500 2.750 3.000 3.250 3.500 3.750 4.000 4.250 4.500 4.750 5.000 5.250

    N + AC + T( Q + T)

    N + T

    up to 28 t

    up to 37 t

    depending on grade & thickness up to 37 t

    upon agreement

    up to 42 t

    up to 37 t

    width [mm]

    thic

    knes

    s [m

    m]

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 10

    Common additional requirements for different CrMo(V) grades

    > 100 mm

    Ch-V + PWHT

    Step CoolingHardness

    J- / X-Factor

    1Cr Mo1Cr Mo2Cr 1Mo2Cr 1Mo V

    100 %

    80 %

    60 %

    40%

    20%

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 11

    Concept of the Hollomon-Parameter (HP)

    The metallurgical effect of tempering and PWHT on the mechanical properties of steel can be combined by the HP-Parameter (T

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 12

    Description of a heat treatment cycle by the Hollomon Parameter:

    Time [h]

    Tem

    pera

    ture

    [C

    ]

    t +

    holding

    T Holding

    Temperature[C]

    [HP = T (+ 273) log ( T (+ 273) 2,3 * Kh ( 20 - log Kh )

    heating

    Kh heating rate

    [C/h]

    2,3 * Kc ( 20 -log Kc )

    T (+ 273) ) + 20 ] * 10 -3

    cooling

    Kc cooling rate

    [C/h]

    t Holding time

    [h]*

    *) holding time starts whenreaching temperatureover the whole cross section

    +

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 13

    Tempering PWHT HP700C/300Min. 20.15700C/250Min. 670C/180Min. 20.15680C/250Min. 680C/600Min. 20.15680C/60Min. 690C/300Min.+700C/90Min. 20.15680C/60Min. 675C/600Min.+680C/300Min. 20.15

    Equivalence of Tempering and PWHT on Hollomon Parameter:

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 14

    General influence of heat treatment on mechanical properties

    AfterPWHT

    Av,

    Rm

    , Rp0

    .2

    Hollomon parameter

    HB before

    HB after

    BeforePWHT

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 15

    Tensile strength in dependence of HP for CrMo and CrMoV steels

    500

    600

    700

    800

    900

    1000

    1100

    19,00 19,20 19,40 19,60 19,80 20,00 20,20 20,40 20,60 20,80 21,00 21,20 21,40

    Rm

    [MPa

    ]

    400

    HP

    12CrMo 910 acc. EN 10028-2:2003

    CrMoV: acc.SA 542-D-4a

    2,25CrMoV, t/42,25CrMoV, t/23CrMoV, t/43CrMoV, t/212CrMo 910

    HP 20,8: Tempering+705 C/10h

    HP 21,11: Tempering+705 C/30h

    thickness: 200 mmcondition: N+AC+T

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 16

    Yield strength for CrMo and CrMoV steels

    19,2 19,4 19,6300

    400

    500

    600

    700

    800

    900

    1000

    19 19,8 20 20,2 20,4 20,6 20,8 21 21,2 21,4HP

    Rp0

    2[M

    Pa]

    12CrMo 910 acc. EN10028-2:2003

    2CrMoV, t/42 CrMoV, t/23CrMoV, t/43CrMoV, t/212CrMo 910 (2CrMo)

    CrMoV acc. SA 542-D-4a

    HP 20,8: Tempering+705 C/10h

    HP 21,11: Tempering+705 C/30h

    thickness: 200 mmcondition: N+AC+T

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 17

    HP

    0

    50

    100

    150

    200

    250

    300

    350

    400

    19,00 19,20 19,40 19,60 19,80 20,00 20,20 20,40 20,60 20,80 21,00 21,20 21,40

    Cha

    rpy-

    V-tr

    ansv

    erse

    ,A

    vm

    ean

    [J]

    2CrMoV, t/4

    3CrMoV, t/4

    12CrMo 910 (2CrMo)

    test temperature: -60C

    CH-V-results vs HP compared between CrMo and CrMoV steels

    thickness: 200 mmcondition: N+AC+T test location: t/4

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 18

    General observations when dealing with transition curves

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 19

    SA 387-11-2: Feasibility in dependence of HP, Rm, Re, Ch-V, hardness and plate thickness of 1Cr steel

    0 20 40 60 80 100 120 140 160 180 200

    plate thickness [mm]

    Hol

    lom

    on p

    aram

    eter

    0 20 40 60 80 100 120 140 160 180 200

    plate thickness [mm]

    Hol

    lom

    on p

    aram

    eter

    195 HB

    200 HB

    205 HB

    210 HB

    215 HB

    220 HB

    225 HB

    220

    HB

    210

    HB

    205

    HB

    200

    HB

    195

    HB

    -29 C

    -18 C0 C

    0 C

    -18 C

    -29 C

    N+AC+T

    N+T

    (Q + T)

    N+AC+T(Q + T)

    N+T

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 20

    SA 387-22-2: Feasibility in dependence of HP, Rm, Re, Ch-V, hardness and plate thickness of 2Cr steel

    0 20 40 60 80 100 120 140 160 180 200

    plate thickness [mm]

    Hol

    lom

    on p

    aram

    eter N+AC+T

    - 40 C

    - 18 C & -29 C

    0 20 40 60 80 100 120 140 160 180 200

    plate thickness [mm]

    Hol

    lom

    on p

    aram

    eter

    - 29 C

    - 18 C

    - 10 C

    N+T(Q + T)

    195 HB

    200 HB190 HB200 HB

    N+AC+T

    205 HB

    N+T 205 HB

    195 HB

    210 HB

    215 HB

    210 HB

    215 HB

    (Q + T)

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 21

    Offset in hardness between 2CrMo and 2CrMoV steels in dependence of delivery condition

    180

    190

    200

    210

    220

    230

    240

    250

    2CrMo 2CrMoV

    hard

    ness

    [HB] Q + T

    10h @ 705 C

    Q + T

    Q + T30h @ 705 C

    Q + T5h @ 700 C

    N + AC + T(Q + T)

    Actual hardness distribution is depending on the steel design necessary to fulfillthe overall requirements of the specification

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 22

    Aspects of interchangeability between 2Cr and 1Cr steels

    -29 C

    -29 C

    -29 C

    -40 C

    2Cr N+T2Cr Q+T1Cr N+T1Cr Q+T

    Hol

    lom

    on P

    aram

    eter

    1CrMo Specs reflect more and more the attempt to replace 2Cr1Mosteels

    generally the 1Cr steels show a different toughness behaviour

    interchangeability is limited for different PWHT conditions andhigh thickness

    not only mech-tech properties butalso other restrictions by the codeslike e.g. listing in the Nelson curvesare of importance

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 23

    Tensile- and yield strength of enhanced 2CrMo steels (N+AC+T)

    300

    400

    500

    600

    700

    800

    900

    1000

    19,8 20,0 20,2 20,4 20,6 20,8 21,0 21,2HP-Factor

    Rp0

    ,2re

    sp. R

    m[N

    /mm

    2 ]

    Rp0.2

    Rm

    12CrMo9-10

    12CrMo9-10

    12CrMo9-10

    Thickness > 200 mm

    Tempering740 C/30

    PWHT-Max690 C/24h

    PWHT-Min690 C/8h

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 24

    Tensile- and yield strength of enhanced 2CrMo (V) steels (N+AC+T)

    300

    400

    500

    600

    700

    800

    900

    1000

    19,8 20,0 20,2 20,4 20,6 20,8 21,0 21,2HP-Factor

    Rp0

    ,2re

    sp. R

    m[N

    /mm

    2 ]

    Thickness > 200 mm

    Rm V-modified

    Rp0.2 enhanced

    Rm enhanced

    + 0,

    25%

    V

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 25

    Tensile- and yield strength of enhanced 2CrMo (V) steels (N+AC+T)

    300

    400

    500

    600

    700

    800

    900

    1000

    19,8 20,0 20,2 20,4 20,6 20,8 21,0 21,2HP-Factor

    Rp0

    ,2re

    sp. R

    m[N

    /mm

    2 ]

    Thickness > 200 mm

    Rm V-modified

    Rp0.2 enhanced

    Rp0.2V-modified

    + 0,

    25%

    V

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 26

    Tensile- and yield strength of enhanced 2CrMo (V) steels (N+AC+T)

    300

    400

    500

    600

    700

    800

    900

    1000

    19,8 20,0 20,2 20,4 20,6 20,8 21,0 21,2HP-Factor

    Rp0

    ,2re

    sp. R

    m[N

    /mm

    2 ]

    Thickness > 200 mm

    Rm V-modified

    Rp0.2V-modified

    A542-D-4a

    A542-D-4a

    A542-D-4a

    Tempering715 C/250

    PWHT-Max705 C/24h

    PWHT-Min705 C/8h

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 27

    Estimated impact toughness of enhanced 2CrMo(V) steels (N+AC+T)

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 28

    200

    300

    400

    500

    600

    0 50 100 150 200 250 300 350 400 450 500 550 600 650

    Testing temperature [C]

    2,25CrMoV, Rp02

    3CrMoV, Rp02

    12CrMo 910, Rp02, HP=21,0

    12CrMo 910 acc. EN 10028 part 2

    Rp0

    ,2[M

    Pa]

    300

    400

    500

    600

    700

    0 50 100 150 200 250 300 350 400 450 500 550 600 650

    Testing temperature [C]

    2,25CrMoV, Rm

    3CrMoV, Rm

    12CrMo 910, Rm, HP=21,0

    Rm

    [MPa

    ]

    Hot tensile properties (transverse, 1/4 thickness)

    - plate thickness: 200 mm - heat treatment: N+AC+T

    - plate thickness: 200 mm - heat treatment: N+AC+T

    2CrMoV acc. EN 10028 part 2

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 29

    Hot tensile properties (transverse, 1/4 thickness)

    300

    350

    400

    450

    500

    550

    600

    0 50 100 150 200 250 300 350 400 450 500 550 600 650testing temperature [C]

    Rm

    , Rp0

    .2[M

    Pa]

    plate thickness: 200mmheat treatment: N+AC+T

    2CrMoV, Rm

    2CrMoV, Rp0.2

    3CrMoV, Rm2CrMo, Rm ,HP=21.0

    3CrMoV, Rp0.22CrMo, Rp0.2 ,HP=21.0

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 30

    Notes to Table U (like table Y1 also) state clearly:

    values given are for calculating purposes only ASME doesnt require any hot tensile testing for production material If tests are performed, obtained values shall not be compared to tabulated values of table

    U for acceptance / rejection purposes

    Tensile testing at elevated temperatures - notes to ASME II D

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 31

    Comparison of real data and calculation values of ASME II DASME II D Table U: Tabulated values for calculation vs. measured values

    300

    350

    400

    450

    500

    550

    0 100 200 300 400 500 600

    Temperature [C]

    Tens

    ile s

    tren

    gth

    [MPA

    ]

    HP 20,63

    HP 20,81SA 387-11-2SA 387-22-2

    Rm,T tabulatedRm,T tabulated

    SA 387-22-2, measuredRm min20 C

    SA 387-22-2, measured

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 32

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 33

    ASME II D tables U and Y1 tabulated vs. measured

    150

    200

    250

    300

    350

    400

    450

    500

    550

    100 150 200 250 300 350 400 450 500 550 600

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 34

    Comparison of test results with Table U data for different grades

    300

    350

    400

    450

    500

    550

    600

    650

    0 100 200 300 400 500 600

    Temperature [C]

    Tens

    ile s

    treng

    th [M

    Pa]

    SA 387-22-2SA 542 D4aSA 542 C4atest datatest datatest data

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 35

    Basic connections between carbon content, tensile strength

    and toughness behaviour (unalloyed steel SA 516-70)

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 36

    Low contents of As, Sb, Sn and P for improved temper embrittlement behaviour

    temper embrittlement usually occurs in the temperature range between 370 and 580 C

    tramp elements like P, Sn, Sb and Ascause this phenomenon

    J-factor and X-factor are commonly used as additional specification criteria

    modern steels with very low contents oftramp elements show no obvious correlation between J-/X-factor and embrittlement any more

    for 2CrMo(V) steels usually the step cooling test is used toinvestigate the proneness totemper embrittlement Intergranular crack

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 37

    peration of installation(~30 years) 400 COperation of installation

    (~30 years) 400 C

    Temper EmbrittlementCrack

    high safety

    without danger of

    grain-boundary

    embrittlement!

    PAsSb

    Conclusion:

    aim for low content of embrittling tramp elements specify J- value, X- value

    LD- Route + special steel refining adventageous,due to less tramp elements compared to EA process

    specify Step-cooling

    The mechanism of temper embrittlement

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 38

    J-factor X-factor J-factor X-factor

    1Cr Mo 120 13 100 9

    1Cr Mo 165 13 120 9

    2Cr 1Mo 130 13 100 ** 9

    normal production special production

    Intergranular cracking and recommendations for avoidanceStrategies to avoid temper embrittlement

    aim for low content of embrittlingtramp elements

    specify J-factor, X-factor

    LD- Route (Basic Oxygen Furnace) + special steel refining is adventageouscompared to electric arc process, due to less tramp elements

    specify Step-cooling test

    X- (Bruscato) Factor = (10P + 5Sb + 4Sn + As)/100J- (Watanabe) Factor = (Mn + Si)(P + Sn)104

    normal production special production

    P 0,011 0,006 resp. 0,007*

    Sn 0,005 0,005

    As 0,007 0,007

    Sb 0,001 0,001

    Special production: higher cost

    * depending on Cr-content

    ** 80 for 2CrMoV

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 39

    Achievable P-contents as function of Cr-content for various process routes

    A

    B

    C

    250

    200

    150

    100

    50

    00 1 2 3

    Cr-content [%]

    [C]0.13 %

    [Si]0.25 %

    [Mn]0.60 %

    [Mo]1.00 %

    [Tliq]~1560C

    1.5 2.5 3.50.5

    Aim

    edP-

    cont

    ent[

    ppm

    ]conventional process

    special converter processconventional process with heating in VD units

    ABC

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 40

    80

    70

    60

    50

    40

    30

    20

    10

    0

    EAF with 70 % alloyed-rejects srap + ferrous alloysEAF with sheet-metal scrap + ferrous alloysLD-steel BOF process

    Arsenic (As) Tin (Sn) Antimony (Sb)

    Mas

    sco

    nten

    tin

    ppm

    Comparison of the tramp elements between EAF and LD-steelmaking

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 41

    Ductility vs. Charpy notch toughness for 2CrMo

    Ductility and Charpy-values taken from randomly picked Dillinger orders in SA 387-22-2 at different temperatures. Plate thickness 134 & 208 (G&B) mm

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 10 20 30 40 50 60 70 80 90 100

    Ductility [%]

    Av

    [J]

    0 C -20 C -30 C -40 C -60 C -80 C -100 C

    Test location: t/2

    A ductility requirement of 50% minimum would correspond to a toughnesslevel of 140 to 150 J ductility value is usually offered for information.A slight decrease in toughness due to higher thickness can be observed

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 42

    Requiremnets of low Oxygen

    Dillinger Htte offers 30ppm max. of total oxygen Ogygen is supposed to have a moderate negative impact on toughness, formability and machineability the higher oxygen content DH offers results from the requirement of low phosphorus to avoid embrittlement, which seems to be the

    main issue for these steels (keep J-factor low)

    low phosphorus steels produced by the BOF route have to undergo a special additional treatment, which leads to a higher oxygenlevel of the heat, when entering the vacuum degasser

    during vacuum treatment it cannot be guaranteed in all cases that oxygen can be removed to the level obtained for normal production.

    The large majority of the steels will have max. 15 ppm after vacuum degassing, but some heats wont show this amount due to production risk restrictions given by the management DH only offers max. 30ppm of oxygen

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 43

    Cumulative Oxigen content (example)

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 44

    aftercleanness

    stirring

    tundish mould plate0

    10

    20

    30

    40

    50

    60

    [O]

    in p

    pmto

    t

    aftervacuum

    treatment

    after CaSi-addition

    10

    0 5 10 15time in min

    0

    20

    30

    40

    50cleanness stirring with 100 l Ar/min

    O in

    ppm

    tot

    Development of [O]tot during production for continous casting and without special converter treatment

    Steps after vacuum treatment are still very important to bring total oxygen further down

    after inclusionshape control

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 45

    Step cooling - impact transition curve

    after service

    test temperature

    impact energy initial

    after step cooling

    TTSCSC

    TTtottot

    54 JTTtottot = 2.5 x TTSCSC

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 46

    Step cooling - heat treatment

    step-cooling-treatm ent inaccordance to EN 10028-2

    59 3 C

    53 8 C52 4 C

    4 9 6 C

    4 6 8 C

    2,8C/h

    5,6C/h

    3 15C

    2,8C/h

    3 15C

    250

    300

    350

    400

    450

    500

    550

    600

    0 1 2 3 4 5 6 7 8 9 10 11 12

    tim e [d]

    tem

    pera

    ture

    [C

    ]

    55,6C/ h

    15 h24 h

    60 h100 h

    1 h

    test duration approx. 12 days + mechanical testing (including specimen preparation)

    cooling in still air

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 47

    Step cooling on base metal - results

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    -140 -120 -100 -80 -60 -40 -20 0 20

    TT54J before Step Cooling [C]

    T

    afte

    r Ste

    p C

    oolin

    g [K

    ]Q+AN+A

    TT + 2.5 xT

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 48

    Step cooling on base metal - results

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    -140 -120 -100 -80 -60 -40 -20 0 20

    TT54J before Step Cooling [C]

    T

    aft

    er S

    tep

    Coo

    ling

    [K]

    Q+AN+A

    TT + 2.5 xT

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 49

    Advantages of Vanadium enhanced steels

    Higher strength / lighter weight reactors Improvement in temper embrittlement susceptibility Greater resistance to hydrogen attack (higher temperatures/H2 partial pressures are permissible)

    Greater resistance to hydrogen embrittlement Greater resistance to weld overlay disbonding

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 50

    Benefits for CrMoV steels when applied, calculating exemple outer Diameter: 3.400mm

    overall height: 36.000mm

    design pressure: 170 bar

    calculation based on some simplifications

    allowable stress[MPa]

    resulting wall thickness

    [mm]

    resulting weightof the vessel

    [t]

    allowable stress[MPa]

    resulting wall thickness

    [mm]

    resulting weightof the vessel

    [t]

    2CrMo Div. I 129 214 616 103 263 757

    2CrMoV Div. I 145 192 553 140 199 572

    2CrMo Div. II 151 185 533 117 234 674

    2CrMoV Div. II 169 167 480 163 172 497

    2007 Edition

    2CrMo Div. II 151 185 533 117 234 674

    2CrMoV Div. II 199 143 413 163 172 497

    design temperature 454 C design temperature 482 C

    Material ASME VIII

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 51

    Summary of parent material properties

    12CrMo9-10: The tensile and toughness properties are satisfactory in a HP-range between 19.6 and 20.8

    CrMoV-steels: In spite the higher tensile requirements HP-values up to 21.1 are acceptable

    CrMo(V)-steels: Impact toughness increase by tempering effect until an optimum HP value isreached.

    Good toughness reserves even for high HP-values

    Know-How about mechanical properties in dependence of HP and deliverycondition is the basis of the optimum steel design and safe production

    Even for the high plate thickness:

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 52

    Dillingers experience in processing CrMo(V) steels Dillinger Htte GTS regularly processes CrMo(V) steels in its Heavy Fabrication Division the scope of work comprises forming and welding of components for pressure vessels

    out of CrMo(V) steels, i.e. - cold or hot* forming by roll bending or pressing- longitudinal welding of shell courses- forming of heads in the pressing shop( *after hot forming the parts will be heat treated as per the material standard)

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 53

    Cold forming - Dillinger Httes roll bending machine

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 54

    Weld edge preparation

    weld edge hardness is mostly restricted by Engineering

    Specs e.g. API 934 to max 225BHN for conventionel

    and 235BHN for advanced steel grades;

    in some cases to the same level as the base metal .

    This can be reached by machining or

    oxycutting with subsequent grinding.

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 55

    Milling machine for edge preparation

    Possibilities: thickness up to 120 mm

    length up to 25000 mm

    width up to 5000 mm

    weight up to 40 t

    extremely tight tolerances

    shape profiling

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 56

    X-edge

    J-edge

    J-X combined edge

    Edge preparation possibilities

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 57

    Cold forming

    Bend test to check cold forming(cross section 200 x 50 mm) with severedeformation no cracks on the machined sideeven for bending at ambienttemperature

    a small crack in the flame cut edgeafter bending at 170C

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 58

    Forming

    General trend of the influence of cold deformation on mechanical properties

    Av(T=const.)

    Rp0,2

    Rm

    Av,

    Rm, R

    p0,2

    cold deformation

    Cold Forming:

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 59

    Warm and Hot Forming

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 60

    500

    550

    600

    650

    700

    750

    800

    Rp0

    ,2re

    sp. R

    m[M

    Pa]

    Rp0.2 Rm

    200

    250

    300

    350

    400

    Q 980 C/2h/W+A 730 C/90'/L

    Q 950 C/10'/W+A 730 C/90'/L

    HG 1100 C/2,5h/L+

    Q 950 C/10'/W+A 730 C/90'/L

    HG 1140 C/2,5h/L+

    Q 950 C/10'/W+A 730 C/90'/L

    HG 1170 C/2,5h/L+

    Q 950 C/10'/W+A 730 C/90'/L

    HG 1100 C/5,0h/L+

    Q 950 C/10'/W+A 730 C/90'/L

    HG 1140 C/5,0h/L+

    Q 950 C/10'/W+A 730 C/90'/L

    HG 1170 C/5,0h/L+

    Q 950 C/10'/W+A 730 C/90'/L

    HG 1100 C/2,5h/L+

    Q 980 C/120'/W+

    A 730 C/90'/L

    HG 1170 C/5,0h/L+

    Q 980 C/120'/W+

    A 730 C/90'/L

    Av

    [J],

    Cha

    rpy-

    V-tr

    ansv

    . Top

    Prftemperatur -60 CPrftemperatur -80 CTest Temperature -60CTest Temperature -80C

    Mechanical properties of 2.25Cr1MoV-steel in dependence of heat treatments

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 61

    Torispherical Heads: ID 3500; smin 180mm, Grade 2.25Cr1Mo (12CrMo9-10)

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 62

    Plate for torispherical heads ID 3500; smin 180mm, 12CrMo9-10

    heat treatment Q+T+PWHT, initial plate thickness 192mm

    Av average without step-coolingAv average after step-cooling

    0

    50

    100

    150

    200

    250

    300

    350

    -100 -80 -60 -40 -20 0 20 40 60 80 100

    Test Temperature C]

    Av

    [J]

    After step cooling

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 63

    Torispherical Heads ID 3500; smin 180mm, Steel Grade 2.25Cr1Mo (12CrMo9-10)

    head hot formed, Q+T + simulated PWHT

    0

    50

    100

    150

    200

    250

    300

    -100 -80 -60 -40 -20 0 20 40 60 80 100

    Test Temperature [ C]

    Av

    [J]

    After step cooling

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 64

    Welding - general recommendations

    Reactors made out of CrMo(V)-steels are characterized by:

    precaution and careful processing required

    closer look to:

    HAZ hardness Delayed HICC

    Toughness in the weld / step cooling

    API RP- 934, ASME VIII-2, App. 26

    extreme wall thickness strong hardenability severe service conditions

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 65

    SA 542 D4a

    120mm

    Shell inside

    Shell outside

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 66

    Fabrication aspects to be considered for the use of V modified steels vs. standard 2CrMo steels

    Mandatory request for intermediate stress relieving (ISR) application fornozzle welds

    Need for a tight control of preheating and interpass temperature application

    Tight control of PWHT temperature Careful attention for temporary attachment and/or attachment welds(e.g. insulation supports)

    Personnel education.

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 67

    Hydrogen induced cold cracking

    dry and clean weld bevels select low hydrogen consumables and treat them properly to minimisehydrogen input (rebaking, storage, heated quivers ...)

    keep the weld at sufficiently high temperatures until the weld iscompleted (>180C)

    lower the concentration of residual hydrogen by heat treatmentimmediately after welding (300-350C)

    lower the hardness and cracking susceptibility by PWHT (~700C) orintermediate PWHT (~650-670C)

    Weld metal and HAZ in the as welded condition are susceptible to hydrogen induced cold cracking

    how to avoid this defect ?:

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 68

    Influence of PWHT on thoughness charpy-V -20C for 2.25CrMoV

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 69

    Influence of PWHT on toughness; PWHT 710C, 30h for 2.25CrMoV

    0

    50

    100

    150

    200

    250

    300

    350

    400

    HAZ t

    opHA

    Z t/4

    HAZ t

    /2HA

    Z 3/4

    HAZ t

    opHA

    Z t/4

    HAZ t

    /2HA

    Z 3/4

    weld

    metal

    top

    weld

    metal

    t/4

    weld

    metal

    t/2

    weld

    metal

    3/4t

    weld

    metal

    top

    weld

    metal

    t/4

    weld

    metal

    t/2

    weld

    metal

    3/4t

    CH

    AR

    PY-V

    (J)

    Indiv 1 Indiv 2 Indiv 3 Average

    -20C -40C -40C-20C

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 70

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5

    Cha

    rpy-

    V [J

    ]

    weld metal HAZtop t/4 t/2 3/4t top t/4 t/2 3/4t

    2CrMoVtest temperature: -20C

    PWHT 30hrs @ 710 CPWHT 10hrs @ 680 CPWHT 5hrs @ 680 C

    Influence of PWHT on weld metal and HAZ thoughness @ -20C

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 71

    Weld metal: Transition curves for different PWHT conditions

    Source: Elettrotermochimica S.r.l.

    54 J TT 15C2 Cr-1Mo-V

    650C 8h

    54 J TT 38C2 Cr-1Mo

    350C 4h

    54 J TT -23C2 Cr-1Mo

    620C 4h

    54 J TT 85C2 Cr-1Mo-V

    350C 4h

    54 J TT 120C2 Cr-1Mo-V

    620C 4h

    54 J TT 72C2 Cr-1Mo-V

    650C 4h

    54 J TT -4C2 Cr-1Mo-V

    680C 4h

    2 Cr-1Mo

    2 Cr-1Mo-V

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 72

    Weld metal: Transition curves for different PWHT conditions

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 73

    Weld metal: Transition curves for different PWHT conditions

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 74

    PWHT limits: 680C, 5hours

    680C, 10 hours

    710C, 30 hours

    PWHT-limits to be destinated according to ASME VIII, App. 26

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 75

    All Weld Metal Tensile Test

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 76

    Impact Test Charpy-V, PWHT 705C, 30hrs

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 77

    Influence of step-cooling test, PWHT: 705 C/8 hrs; Location : HAZ center

    Order-No 674739Ref.-No 21250Heat-No 55470Material SA 542-D-4aThickness 120 [mm]HP:Weld seam XCurrent ACPosition HAZ center

    Faktor: 2,5max. Shift 10 CMin Av 54 JTTr without Step-Cooling: -99,15 CTTrsc with Step-Cooling: -80,40 CDTTr = TTr SC - TTr 18,75 Ctest criteria fullfilled Yes

    Test Criteria:TTr + Faktor * TTr max. shift

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    -120 -100 -80 -60 -40 -20 0 20 40 60 80 100

    Temperature [ C]

    Av [

    J]

    0 = with Step-Cooling-Test0 = without Step-Cooling Test

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 78

    Influence of Step-Cooling, PWHT: 705 C/ 8hrs; Location: Weld metal center

    Order-No 674739Ref.-No 21250Heat-No 55470Material SA 542-D-4aThickness 120 [mm]HP:Weld seam XCurrent ACPosition WM center

    Faktor: 2,5max. Shift 10 CMin Av 54 JTTr without Step-Cooling: -61,19 CTTrsc with Step-Cooling: -64,84 CDTTr = TTr

    SC - TTr -3,65 Ctest criteria fullfilled Yes

    Test Criteria:TTr + Faktor * TTr max. shif t

    0

    50

    100

    150

    200

    250

    300

    350

    -120 -100 -80 -60 -40 -20 0 20 40 60 80 100

    Temperature [ C]

    Av [

    J]

    0 = with Step-Cooling-Test0 = without Step-Cooling Test

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 79

    Influence of Step-cooling on the transition temperature

    not fulfilled!

    -125

    -100

    -75

    -50

    -25

    base material 2.25CrMoV

    weld metal 2.25CrMoVHAZ 2.25CrMoV

    base material 3CrMoVweld metal 3CrMoVHAZ 3CrMoV

    0

    25

    -100 -80 -60 -40 -20 0 20

    TT54J before Step Cooling [C]

    T T54

    Jaf

    ter S

    tep

    Coo

    ling

    [C

    ]

    x

    xxfulfilled

    x

    x

    T

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 80

    HAZ hardness comparison of CrMo- and CrMoV-steel

    235

    400

    700C-10h

    700C-10h675C-10h

    675C-10h

    cooling time t8/5

    hard

    ness

    [HV1

    0]

    250 650C-10h

    650C-10h

    725C-10h

    usual range

    2CrMoas welded

    2CrMoVas welded

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 81

    HAZ hardness vs. cooling time t8/5 and PWHT (bead on plate)

    1 10200

    250

    300

    350

    400

    450

    2.25CrMoV as welded 2.25CrMoV 705 C / 10 h 2.25CrMoV 705 C / 30 h 3CrMoV as welded 3CrMoV 705 C / 10 h 3CrMoV 705 C / 30 h 12CrMo9-10 as welded 12CrMo9-10 690 C / 10 h 12CrMo9-10 690 C / 30 h

    403020

    hard

    ness

    HV1

    0

    cooling time t8/5 [s]

    TIG ca. 3-5 secGTAW 3-12 secSMAW 5-20 secSAW 10-40 secElectro Slag > 50 sec

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 82

    150170190210230250

    Base

    Meta

    lBa

    se M

    etal

    Base

    Meta

    lHA

    ZHA

    ZHA

    ZWe

    ld Me

    talWe

    ld Me

    talWe

    ld Me

    tal HAZ

    HAZ

    HAZ

    Base

    Meta

    lBa

    se M

    etal

    Base

    Meta

    lH

    ardn

    ess

    HV1

    0

    top 1mm centre bottom 1mm

    top 1mm centre bottom 1mm

    PWHT 705C, 30hrsPWHT 705C, 8hrs

    Influence of PWHT on Vickers-hardness of the welded joint for2.25CrMoV

    2CrMoV

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 83

    170

    180

    190

    200

    210

    220

    Base

    Meta

    lBa

    se M

    etal

    Base

    Meta

    lHA

    ZHA

    ZHA

    ZWe

    ld Me

    talWe

    ld Me

    talWe

    ld Me

    tal HAZ

    HAZ

    HAZ

    Base

    Meta

    lBa

    se M

    etal

    Base

    Meta

    l

    Brin

    ell H

    ardn

    ess

    HB

    (1

    0mm

    Bal

    l)

    Top Bottom Top Bottom

    PWHT 705C, 30hrsPWHT 705C, 8hrs

    Influence of PWHT on Brinell-hardness for 2.25CrMoV

    PWHT 705C, 30hrs

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 84

    Development of carbides during PWHT

    730C - 8hM7C3, M23C6,fine V4C3, M2CTEM micrographs on carbon extraction replica 21/4CrMoV

    Ref.: Lundin,C.D. and K.K.Khan, WRC Bulletin 409

    620C - 15M3C few M23C6

    0,5m 0,5m

    As weldedno carbides

    0,5m

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 85

    Disadvantages of Vanadium modified steels

    No cost advantage over conventional steel even though lighter vessels. Greater sensitivity to weld cracking during fabrication. ISR mandatory for highly stressed joints e.g. nozzles, bed supports, etc.

    Higher PWHT temperature required. Field weld repairs more difficult. Weld materials not readily available (limited suppliers) Low toughness of "as welded" weld deposit prior to PWHT. Higher deposited weld metal hardness Successful fabrication requires experience and tight control of production parameters (narrow production window)

    ==> E.g. cracking problems from rolling of welded plate have been reported

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 86

    Creep properties

    German code (AD-Merkblatt) allows an extrapolation of creep results to a factor ofonly 3 necessity to provide the creep resistance for at least 30.000 h if a vessel is

    designed for 10 years, even 70.000 h for expected 20 years in service.This criterion will also be used in the future for the European Standard EN 13445 for Unfired Pressure Vessel.

    In case of reactor design in creep regime: if creep strength values on welded joints are verified to be within a 20%-scatter band of the base material

    welding consumable and base metal from the material manufacturer duly approved by tests within the creep regime can be used for fully stressed weldsusing a joint efficiency factor of 1 instead of 0.8 (design according to GermanAD-Merkblatt, in future also according to EN 13445)

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 87

    Heat affected zone hardness

    Welds of CrMo(V) reactors steels are always subjected to PWHT

    Coarse grained heat affected zone (CG-HAZ) is usually the areaof highest hardness within the HAZ

    The main tempering effect is obtained by intensive PWHT

    The essential parameter to control HAZ hardness are time and temperature of PWHT

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 88

    Benefits of Vanadium addition in regard to creep behaviour

    Vanadium carbides provide increased creep rupture life tochrome moly alloys.

    Vanadium addition enhances creep rupture life of 2 Cr alloys to a degree greater than that for 3Cr & 5Cr alloys.

    Source JSW

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 89

    100 1000 10000 10000050

    60

    70

    8090

    100

    200

    300

    400 T

    ensi

    le s

    tress

    [MPa

    ]

    Time [h]

    creep test interrupted12CrMo9-102.25CrMoV3CrMoVVdTV 404/1VdTV 525VdTV 491

    Creep test results CrMo(V) steels (base metal) at 500C

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 90

    CrMo steels with % V offer improved performance for petrochemical reactorscompared to enhanced 2Cr1Mo steels. Plates are commercially available up toabout 250 mm thickness.

    welding needs precautions, in particular: tight control of preheat, interpasstemperature intermediate stress relieving and post weld heating to avoid cold cracking

    optimized welding consumables have to be used with respect to low hydrogen inputand very low impurity level to limit in service embrittlement.

    screening tests of the weld metal before production starts, e.g. as per API RP 934, are recommended.

    the steels tolerate very high temperatures 690 - 710 C for post weld heat treatment, which is beneficial for the toughness of the weld metal.

    DH-GTS is a long term supplier with plenty of know how for high sophisticated steels

    a wide range of dimensions can be supplied.

    more and more vessels will be designed from CrMoV steels to take advantage of improved process possibilities and improved properties.

    Conclusion

  • Ver

    fass

    er/D

    okum

    ent

    Low alloy CrMo(V) steel plates for petrochemical reactors 91

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects true /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /Description >>> setdistillerparams> setpagedevice