24
Losses in Electric Propulsion Motors and How to Reduce Them Rafal Wrobel 1

Losses in Electric Propulsion Motors and How to Reduce Them · Rafal Wrobel 1 . Loss components in electrical machines: ... 20 40 60 80 100 120 140 160 180 200 Temperature

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Losses in Electric Propulsion Motors and How to Reduce Them

    Rafal Wrobel

    1

  • Loss components in electrical machines:

    • mechanical loss

    bearing loss

    windage and drag loss

    • electromagnetic loss

    winding loss

    core loss

    permanent magnet loss

    2

  • Winding loss effects at ac operation:

    • skin effect

    • proximity effect

    • effect from rotating rotor

    3

  • How to assess significance of the ac winding effects for a particular machine design?

    • high-speed operation

    • high-frequency operation

    • other measures or indicators, e.g. skin depth

    4

    𝛿=𝜌

    𝜋𝜇𝑓

  • How to derive the ac winding loss components?

    • theoretical approach

    analytical formulae

    numerical techniques, e.g. FEM

    • experimental method

    tests on machine subassemblies

    5

  • How to quantify the ac winding effects?

    6

    𝑃𝑎𝑐 = 𝑃𝑑𝑐 + 𝑃 𝑎𝑐 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

    𝑃𝑎𝑐𝑃𝑑𝑐

    𝑇=𝑐𝑜𝑛𝑠𝑡

    =𝑅𝑎𝑐𝑅𝑑𝑐

    𝑇=𝑐𝑜𝑛𝑠𝑡

  • Temperature dependence of loss at ac operation:

    7

    𝑃𝑎𝑐 𝑇 = 𝐼2𝑅𝑑𝑐 𝑇0 1 + 𝛼 𝑇 − 𝑇0 +

    𝐼2 𝑅𝑑𝑐 𝑇0

    𝑅𝑎𝑐𝑅𝑑𝑐 𝑇0

    − 1

    1 + 𝛼 𝑇 − 𝑇0𝛽

    𝜌 𝑇

    = 𝜌 𝑇0

    1 + 𝛼 𝑇 − 𝑇0

    𝑃𝑑𝑐 𝑇

    𝑃𝑎𝑐 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑇

  • 8

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑑𝑐

  • 9

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑑𝑐

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑑𝑐 𝑃𝑎𝑐

    𝑃𝑎𝑐 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

    𝑛 = 1000𝑟𝑝𝑚

  • 10

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑑𝑐

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑑𝑐 𝑃𝑎𝑐

    𝑃𝑎𝑐 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

    𝑛 = 2000𝑟𝑝𝑚

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑎𝑐

    𝑃𝑎𝑐 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

    𝑃𝑑𝑐

  • 11

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑑𝑐

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑑𝑐 𝑃𝑎𝑐

    𝑃𝑎𝑐 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

    𝑛 = 3000𝑟𝑝𝑚

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑎𝑐

    𝑃𝑎𝑐 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

    𝑃𝑑𝑐

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑎𝑐

    𝑃𝑑𝑐 𝑃𝑎𝑐 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

  • 12

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑑𝑐

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑑𝑐 𝑃𝑎𝑐

    𝑃𝑎𝑐 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

    𝑛 = 4000𝑟𝑝𝑚

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑎𝑐

    𝑃𝑎𝑐 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

    𝑃𝑑𝑐

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑎𝑐

    𝑃𝑑𝑐 𝑃𝑎𝑐 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

    20 40 60 80 100 120 140 160 180 200

    Temperature [C]

    Pow

    er

    loss

    𝑃𝑎𝑐

    𝑃𝑎𝑐 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

    𝑃𝑑𝑐

  • 13

    Motor 1 Motor 2

  • 14

    Motor 1 Motor 2

  • 15

    Motor 1 Motor 2

    Rated speed nN = 4000rpm nN = 10000rpm

    Rated power PN = 7.5kW PN = 60kW

    Outer diameter DO/D = 155mm DO/D = 230mm

    Active length lA = 120mm lA = 160mm

    Number of poles p = 6 p = 8

    Number of slots q = 18 q = 12

  • Experimental setup

    16

    DC linkVariable frequency

    voltage source inverterLC filter

    Stator/Winding assembly

    Power analyser

    CTs

    Data acquisition system

    Thermocouples

  • 17

    Motor 1

    0 50 100 150 200 2501

    1.05

    1.1

    1.15

    1.2

    1.25

    1.3

    1.35

    1.4

    Frequency [Hz]

    Rac/R

    dc

    TW

    = 20C

    TW

    = 40C

    TW

    = 60C

    TW

    = 80C

    TW

    = 100C

  • 18

    Motor 2

    0 100 200 300 400 500 600 700 800

    2

    4

    6

    8

    10

    12

    14

    Frequency [Hz]

    Rac/R

    dc

    TW

    = 20C

    TW

    = 40C

    TW

    = 60C

    TW

    = 80C

    TW

    = 100C

  • Motorette setup

    19

    Multi-stranded copper bundle

    Profiled rectangular copper conductor

    𝑅𝑎𝑐𝑅𝑑𝑐

    200𝐶,700𝐻𝑧

    = 4.9

    𝑅𝑎𝑐𝑅𝑑𝑐

    1000𝐶,700𝐻𝑧

    = 4.4

    𝑅𝑎𝑐𝑅𝑑𝑐

    200𝐶,700𝐻𝑧

    = 11.6

    𝑅𝑎𝑐𝑅𝑑𝑐

    1000𝐶,700𝐻𝑧

    = 9.4

  • 20

    Motor 1 Motor 2

  • 21

    0 50 100 150 200 2501

    1.05

    1.1

    1.15

    1.2

    1.25

    1.3

    1.35

    1.4

    1.45

    1.5

    Frequency [Hz]

    Pac/P

    dc

    Stator/winding setup

    Motor setup - maximum torque/Ampere

    Motor setup - short-circuit

    Motor 1

    𝑇 = 200𝐶

  • 22

    0 100 200 300 400 500 600 7000

    2

    4

    6

    8

    10

    12

    Frequency [Hz]

    Pac/P

    dc

    Stator/winding setup

    Motor setup - maximum torque/Ampere

    Motor setup - short-circuit

    Motorette setup

    Motor 2

    𝑇 = 200𝐶

  • 23

    0 100 200 300 400 500 600 7000

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    Frequency [Hz]

    Pac/P

    dc

    Motor setup 1 - open-circuit

    Motor setup 2 - open-circuit

    𝑇 = 200𝐶

  • So, how to reduce the winding loss at ac operation?

    • better understanding of the loss mechanisms

    • better understanding of the initial design requirements

    • accounting for the multi-physics phenomena in design process

    • appropriate use of the existing techniques for loss mitigation

    24