Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

  • Upload
    klim00

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    1/45

    The BFKL Pomeron in AdS/CFT

    Lorenzo CornalbaUniversity of Milano Bicocca & Centro Fermi

    The IST String Fest Lisbon, June 2009

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    2/45

    Introduction I

    High energy phenomena probe relevant features of interactions

    In flat space string theory they are controlled by the leading Reggetrajectory of states

    In perturbative YM theory (QCD and susy completions) dominated

    by Pomeron exchangeHigh energy strings in holographic backgrounds will interpolatebetween these two regimes

    We will present a general formalism valid both at weak and at strongcoupling

    At large t Hooft coupling, analyze graviReggeon exchange in AdSand recover flat space interactions

    At weak coupling, use holography to correctly analyze known pQCDresults

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    3/45

    High Energy Scattering in Flat Space I

    Scattering in flat space in the Regge limit s tSingle spin J exhange in the T-channel

    Maximal spin dominates

    J unbounded High s behavior controlled by leading Regge pole inthe complex J plane

    Atree (s, t)

    (t)

    sj(t)

    Strings in flat space

    j(t) = 2 +2

    t

    Violation of unitarity at ultra-high energies

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    4/45

    High Energy Scattering in Flat Space II

    Partial wave decomposition in the S-channel

    A J0

    CJ

    ts

    e2iJ(s) (ImJ (s) 0)

    In the Regge limit

    A 2s

    d3x eiqx+2i(s,x)

    q2 = t|x| = 2J/s

    Eikonal resummation of tree interaction

    Atree 4is

    d3x eiqx (s, x)

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    5/45

    High Energy Scattering in Flat Space III

    Eikonal limit when phase shift Atree (s, x) /s Gs/ |x| 1. Multigravireggeon exchange of linear gravitons

    In AdS5 we expect similar physics with

    Extra scale of the AdS radius Transverse space H3 instead ofE

    3

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    6/45

    High Energy Interactions in AdS I

    AdS5 given by

    X2 = 2 ( = 1)X M2 M4

    Boundary points given by rays

    Q2

    = 0 Q Q

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    7/45

    High Energy Interactions in AdS II

    Boundary points behave as momenta for AdS interactions. External

    wave functions

    1

    (2X Q)

    d eiXQ 1

    dual to CFT operator of dimension

    Scalar amplitudesA (Qi)

    depend on invariants

    Qij = Qi + Qj2and are homogeneous

    A ( , Qi, ) = iA ( ,Qi, )

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    8/45

    High Energy Interactions in AdS III

    Consider CFT correlator

    O1 (Q1)O1 (Q3)O2 (Q2)O2 (Q4) = 1Q113Q224

    A (cross ratios)

    Cross ratios

    Q13Q24

    Q12Q34

    Q14Q23

    Q12Q34

    Regge kinematics

    Q13,Q24

    0

    Basic example in N= 4 SYMO1=Tr(Z2) O2 = Tr(W2)

    A= 1 + N2

    Aplanar +

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    9/45

    T Channel View I

    Conventions

    X =

    X+, X, x M2 M4

    x =

    x+, x, x M4

    Scattering kinematics

    Q1 = (0, 1, 0) Q3 = (q2, 1,q)Q2 = (1, q

    2, q) Q4 =

    (1, 0, 0)

    with

    q, q Future light cone M4

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    10/45

    T Channel View II

    Transverse conformal group

    SO(3, 1) q, q vectorsSO(1, 1) q, q q, 1q

    Cross ratios

    2 = q2q2 cosh = q q

    Regge kinematics

    0 fixed

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    11/45

    T Channel View III

    Tchannel exchange TE,J (,) of a conformal block ofEnergy E+2

    Spin J

    Euclidean OPE for 0

    TE,J 2+E

    Scattering regime

    TE,J 1J E ()E () propagator of energy 1 + E in H3

    General spin J contribution to correlator

    1J

    d J () i ()

    H3 = 1 + 2

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    12/45

    T Channel View IV

    Maximal spin dominates. If spin J unbounded resum contributions.Leading Regge pole at J = j() gives

    Aplanar d 1j() () i ()

    In N= 4 SYMj(, g)

    (, g)

    g2 = g2YMN

    with j(, g) the spin of the twist two operator of dimension 2 + i

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    13/45

    S Channel Eixonal Resummation I

    Impact parameter representation

    A |qq|4

    Mdxdx eiqxiqx e2i(x,x)

    Cross ratios

    S = |x| |x|

    B impact parameter on H3

    No interactionA = 1 = 0

    Lattice sum

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    14/45

    S Channel Eixonal Resummation II

    For large E, J replace with M dxdx whereE =

    Scosh (B/2) J =

    Ssinh (B/2)

    Phase shift determined eikonally by planar amplitude

    1

    N2d Sj()1 () i (B)

    with

    () = Vmin (,j()) () Vmin (,j())High energy unitarity

    Im (S, B) 0Anomalous dimension 2/ of double trace O1 O2 ofdimension E and spin J for elastic AdS interactions

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    15/45

    Momentum Space I

    Correlator in momentum space

    O1 (p1)O1 (p3)O2 (p2)O2 (p4)with

    t , p2i fixed s AdS Poincar coordinates

    x+ , x , x , rH3

    External states

    eisx eip1x f1 (r)

    r2 1/p21

    Amplitude

    sdrd2x

    r3 f1 (r) f3 (r) eip

    x

    dr d2x

    r3 f2 (r) f4 (r) eip

    x

    e2i(S,B)

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    16/45

    Momentum Space II

    Phase shift depends on

    S = srr

    cosh B =1

    2rrr2 + r2 + (x x)2

    Bb

    single

    cross - ratio

    Final answer

    sd2b eipb e2i(s,b)

    with

    e2i(s,b) = s

    dr

    r3f1 (r) f3 (r)

    dr

    r3f2 (r) f4 (r) e2i(S,B)

    f C l

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    17/45

    Large t Hooft Coupling I

    Gravitational interaction in AdS5 with

    G 3

    N2

    Along O1 trajectory high energy states follow null geodesics in AdSparameterized by affine parameter x

    +

    and labelled by xand a pointx, r in H3 with propagator

    1s

    (x+j x+i )(xj xi ) H3(xj, rj|xi, ri)

    21

    34

    i

    j

    L H f C li II

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    18/45

    Large t Hooft Coupling II

    For graviton exchange phase given by tree level interaction betweengeodesics

    (S, B) = i

    dx+dx G3

    S 2(B)

    with 2 (B) propagator in H3 of scalar dimension 3

    For g2 j(, g) 2

    (, g) 2

    4 + 2

    Anomalous dimension of double trace O1 O2 of largedimension E and spin J

    1

    4N2

    (E J)4

    EJ Exact in 1/N2

    I l di S i Eff I

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    19/45

    Including String Effects I

    Regge trajectory of the graviton j(, g) with

    g2 =4

    2= g2YMN

    Flat space limit

    lim

    jt, 2/

    = 2 +

    2

    t

    Energy momentum tensor j(2i, g) = 2

    Decreasing intercept

    j(, g) = 2 4 + 2

    2g

    W k t H ft C li I

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    20/45

    Weak t Hooft Coupling I

    Amplitude Aplanar (,) computed to order g4

    g2

    221 (z, z) +

    g4

    1642 + 2zz z z

    4zz21 (z, z) z, z = e

    + g4

    164zz

    z z2 (z, z)2 (1 z, 1 z)2 z

    z 1 , zz 1

    with

    1 =zz

    z z[2H2

    logzzH1] Hp(z, z) = Lip(z)

    Lip(z)

    2 = 6H4 3logzzH3 + 12

    log2zzH2

    W k t H ft C li II

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    21/45

    Weak t Hooft Coupling II

    In scattering regime obtain spin 1 Regge pole

    Aplanar g4

    822

    sinh2 ()( 0)

    corresponding to

    j(, g) 1 (g 0) (, g)

    i

    g4

    16

    sinh

    2

    cosh3 2

    S ll d BFKL P E h I

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    22/45

    Small g and BFKL Pomeron Exchange I

    High energy hadron scattering (with s |t| QCD) at weak gdominated by hard perturbative Pomeron exchange

    Quantum numbers of the vacuumTwogluon color singlet state with ladder interactions (reggeizedgluons)Spin

    1 for g

    0

    j(, g) = 1 +g2

    42

    2 (1)

    1 + i

    2

    1 i

    2

    +

    BFKL picture for N= 4 SYM for g 0

    Small g and BFKL Pomeron Exchange II

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    23/45

    Small g and BFKL Pomeron Exchange II

    Amplitude (yi M gluon positions in transverse 2d space)

    A H3

    dy1dy3dy2dy4y413

    y424

    V (q, y1, y3) F (yi) V (q, y2, y4)

    Pomeron propagator F (yi) sum of transverse partial waves of spin nand energy |n 1|+ 1. Only n = 0 term contributes for scalaramplitudes

    d2

    (1 + 2)2

    Impact factor V (q, y1, y3) constrained by conformal symmetry to befunction of single cross ratio

    u =x2y2

    13

    (

    2x

    y1) (

    2x

    y3)

    Small g and BFKL Pomeron Exchange III

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    24/45

    Small g and BFKL Pomeron Exchange III

    Computable in perturbation theory

    V u2 (1 (u))

    Basis functions d V ()

    H3

    dy5

    We obtain () i

    4V () tanh

    2

    V ()

    with

    V () = V () =g2

    2

    1

    cosh

    2

    Saturation at Weak Coupling I

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    25/45

    Saturation at Weak Coupling I

    BFKL trajectory

    j(, g) = 1 + o(g2)

    (S, B) and () imaginary

    Vanishing momentum transfer t = 0

    s Q2 Q2p21 = p

    23

    p22 = p

    24

    Focus on cross section

    drr3

    f1 (r) f3 (r) r 1/Qdr

    r3f2 (r) f4 (r) r 1/Q

    d2b Re 1 e

    2i(S,B) (s, Q, Q)

    Saturation at Weak Coupling II

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    26/45

    Saturation at Weak Coupling II

    Integral over impact parameter (with S = s/QQ)

    (s, Q, Q) 1QQ

    |lnQ/Q| dB sinh BRe

    1 e2i(S,B)For large B one has || 1. Phase shift 1 along saturation line

    d elnS(j()1)B(1+i)

    so that

    B

    ln S

    B

    Bs (S) lnS

    = 0.06 g2 + 0.14 (exp. value)

    Saturation at Weak Coupling III

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    27/45

    Saturation at Weak Coupling III

    Deep Saturation

    |lnQ/Q| Bs (s/QQ)

    Approximate black disk

    1QQ

    Bs(S)|lnQ/Q| dB sinh B 1 B

    ln S

    B

    Dominant Contribution

    When Bs lnS then

    c

    QQ

    s

    QQ

    +

    s

    QQ

    c

    Q

    Q

    +

    Q

    with c, c, from r, r integrals

    Applications to DIS I

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    28/45

    Applications to DIS I

    O1 E&M current (photon)

    O2 proton

    Kinematics

    s Q2/xQ related to confinement scale &mass of proton

    (simulate confinement with wavefunction in r)

    Cross section for small x is

    Q2F2

    x, Q2

    Geometric Scaling I

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    29/45

    Geometric Scaling I

    Near saturation |lnQ/Q| Bs (s/QQ)cross section reads

    d2b Im (S, B) 1

    QQN2 d () sQQ

    j()1

    QQi

    B

    ln S

    B

    At saddle point

    1

    Q2 (1+is)

    12

    =

    Q

    Qs

    2with Qs = Q

    2

    1

    x

    21

    Geometric Scaling II

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    30/45

    Geometric Scaling II

    In deep saturation

    1

    QQ QxQ

    1

    Q2 12

    Specific dependence on the scaling variable

    Experimental evidence

    0.001

    0.01

    0.1

    1

    10

    0.0001 0.001 0.01 0.1 1 10 100

    fixed experimentally to be 0.138 0.021

    Fit to DIS Data I

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    31/45

    Fit to DIS Data I

    Expression for F2

    Q2, x

    cQQ

    QxQ

    + Q

    xQ

    cQ

    Q

    +

    Q

    Q/x

    Q

    105

    104

    103

    102

    10

    1

    10-1

    1 10 102

    GeV

    GeV

    (i)(ii)

    (iii)

    1

    Weak coupling

    Q> Qmin 0.7 1 GeV2 Inside saturation

    lnQ

    xQ > lnQ

    Q (Q 0.2 1 GeV)3 Asymptotic linear regime

    Q

    x

    Q

    10 ( 3)

    Fit to DIS Data II

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    32/45

    Minimize mean square deviation against experimental and simulateddata

    0.126

    c 0.13c

    0.14

    1 (GeV)

    Match experimental data inrather large kinematical

    range with 6% accuracy

    0.5 < Q2 < 10

    x< 102

    Real Data I

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    33/45

    0.5 1.0 2.0 4.0

    Q [GeV]

    0.5 1.0 2.0 4.0

    0.2

    0.4

    0.6

    0.8

    0.2

    0.4

    0.6

    0.8

    0.2

    0.4

    0.6

    0.8

    F2

    /Q

    Y = 3.6Y = 3.8

    Y = 4.0Y = 4.2

    Y = 4.6

    Y = 4.4

    Y = 4.8Y = 5.0

    Simulated Data I

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    34/45

    0.5 1.0 2.0 4.0

    Q [GeV]

    0.5 1.0 2.0 4.0

    0.2

    0.4

    0.6

    0.2

    0.4

    0.6

    F2

    /Q

    Y = 3.6Y = 3.8

    Y = 4.0Y = 4.24.4=Y

    Y = 4.8Y = 5.0 6.4=Y

    0.2

    0.4

    0.6

    Comments on Dipole Formalism I

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    35/45

    p

    Dipole phase shift

    (s, r, r,b) D (s, r, r,b)

    Bb b

    single

    cross - ratio

    two

    cross - ratios

    Representation ofDd () sj()1 Ti (r, r,b)

    where

    Ti (r, r,b) |r| |r| /b21+i for |r| , |r| |b|

    Comments on Dipole Formalism II

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    36/45

    For r, r

    |b

    |B lnb2/rr

    d Sj()1(rr/b)1+i

    D does not satisfy unitarity constraints (no asymptotic dipolestates)

    Even if one assumes saturation at ImD 1, a simple exponentialsaddling for D is not possible for general r, r,b

    For |r| , |r| |b| one obtains only the first term in . A pure blackdisk is then a poor approximation of experimental data

    Impact Factors for Spin 1 Operators I

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    37/45

    AdS graviton trajectory corresponds to n = 0 BFKL trajectory.

    What about n 1 trajectories ?Consider as external states spin 1 operators

    OA1 OA2

    Impact factorVmn (q, y1, y3)

    with

    symmetric in m, n and y1, y3vanishing weight in q, y1 , y3

    Full amplitude

    1

    |q|21 |q|22

    H3

    dy1dy3dy2dy4

    y413

    y424

    Vmn (q, y1, y3) F (yi) Vmn (q, y2, y4)

    Impact Factors for Spin 1 Operators II

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    38/45

    Transverse SO(3, 1) conformal symmetry implies

    Vmn =5

    i=1

    fi (u) Fmni

    with

    Fmn1 =

    mn

    Fmn2 =qmqn

    q2

    Fmn3 = 1

    2qm

    yn1

    q

    y1

    +yn3

    q

    y3

    12

    qn

    ym1

    q

    y1

    +ym3

    q

    y3

    Fmn4 = q2

    4

    ym1

    yn1

    (q y1)2 q

    2

    4

    ym3

    yn3

    (q y3)2

    Fmn5 =ym1

    yn3

    + ym3

    yn1

    y13

    Impact Factors for Spin 1 Operators III

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    39/45

    Conserved current with 1 = 3 and

    qm

    1q6

    Vmn = 0

    Projection on n = 0 and n = 2 trajectory

    Vmn = Vmn0 + Vmn2

    Construct n = 2 part using basis functions

    Vmn2

    d T ()

    H3dy5

    Spin 2 propagator from q to y5 is unique and one can verify that

    qmVmn2 = 0 qmV

    mn2 = 0 V

    mn2 mn = 0

    Impact Factors for Spin 1 Operators IV

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    40/45

    Remaining four structures are n = 0 terms

    Vmn0 =4

    i=1

    Dmni Si (u)

    with

    Dmn1 = mn qmqn

    q2

    Dmn2 =qmqn

    q2

    Dmn3 = qm

    qn + qn

    qm

    Dmn4 = q

    2 2

    qmqn+

    qm

    qn+ qn

    qm

    1

    3

    mn q

    mqn

    q2

    q2q

    Impact Factors for Spin 1 Operators V

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    41/45

    Easy to determine S1, S2, S3

    S1 = f1 +1

    6f4 +

    1 2u6

    f5

    S2 = f1 + f2 2f3 12

    f4 12u

    f5

    S3 = du

    4u2(2uf3 + uf4 + f5)

    Complex to disentangle S4 and the n = 2 contribution

    Vmn

    =

    Dmn4 S4 + V

    mn2

    with

    qmVmn = 0 V

    mn mn = 0

    Impact Factors for Spin 1 Operators VI

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    42/45

    Use mVmn2

    = 0 to determine

    ( 3) S4 =

    du

    4u2

    3uf4 + 5f5 + u

    2(3u 2)f4 + u(u 2)f5

    with

    = 4u

    2

    (1 u)d2

    du2 4u2 d

    du

    To determine Vmn2

    note that Vmn can be viewed as an infinitesimalvariation of the metric on H3. The n = 0 term is then a combineddiffeomorphism and Weyl transformation. Therefore, theinfinitesimal Cotton tensor

    Cabc (q, y1, y3)

    due to a metric fluctuation Vmn will only come from the n = 2 term

    Impact Factors for Spin 1 Operators VII

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    43/45

    Due to conformal invariance and the symmetries of the Cottontensor, we may construct a single Cotton function

    C (u) =

    q22(2y1 q) y13 y

    a1 y

    b3 y

    c1 Cabc

    given explicitly by

    C = (1 u)u2

    (3u 1)f4 + u(3u 2)f4 +u2

    2(u 1)f4

    f5 + (1

    2u)f5

    u

    2(u

    1)f5 From C one can immediately deduce T ()

    Examples in N= 4 SYM I

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    44/45

    Basic spin 1 operators with 1 = 3 in the free limit

    Tr (m)

    Tr

    iDm

    j

    + c Tr

    ijm

    TriDm j + c

    Tr ijm

    Only the Rsymmetry current in the 15 of SO(6) is chiral and hasprotected dimension. The other spin 1 operators (in the 15 and 1 ofSO(6)) acquire dimension in the g2 limitVery simple computation (compared to standard momentum space

    techniques) allows to compute

    Impact factor for scalar quark current Tr

    Dm

    3u2 Fmn4 + 2u3 Fmn5

    Examples in N= 4 SYM II

  • 8/3/2019 Lorenzo Cornalba- The BFKL Pomeron in AdS/CFT

    45/45

    Impact factor for quark current Tr(

    m

    )2u3 Fmn1 + 4u

    3 Fmn5

    The n = 0 contributions are different. The n = 2 contributions areidentical with Cotton function

    C = 36u3 (1 u) (1 2u)Reinserting the SO(6) factors one has that the Rsymmetry currenthas no overlap with the n = 2 trajectory

    Basic Conjecture (tested already in more cases) : The SUGRAchirally protected states in N= 4 SYM interact uniquely with then = 0 Pomeron / graviton trajectory