181
Motivation The Challenge of Quantum Gravitaty Secured Land Unknown Territory Open Questions and Summary Loop Quantum Gravity (LQG) From secured land to unknown territory Thomas Thiemann 1,2 1 Albert Einstein Institut, 2 Perimeter Institute for Theoretical Physics Loops’07, Morelia h G c Thomas Thiemann Elements of Loop Quantum Gravity

Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ? = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Loop Quantum Gravity (LQG)From secured land to unknown territory

Thomas Thiemann1,2

1 Albert Einstein Institut, 2 Perimeter Institute for Theoretical Physics

Loops’07, Morelia

h G

c

Thomas Thiemann Elements of Loop Quantum Gravity

Page 2: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Contents

Motivation

The Challenge of Quantum Gravity

Secured Land

Unknown Territory, first Steps and open Problems

Open Questions and Summary

Thomas Thiemann Elements of Loop Quantum Gravity

Page 3: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Contents

Motivation

The Challenge of Quantum Gravity

Secured Land

Unknown Territory, first Steps and open Problems

Open Questions and Summary

Thomas Thiemann Elements of Loop Quantum Gravity

Page 4: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Contents

Motivation

The Challenge of Quantum Gravity

Secured Land

Unknown Territory, first Steps and open Problems

Open Questions and Summary

Thomas Thiemann Elements of Loop Quantum Gravity

Page 5: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Contents

Motivation

The Challenge of Quantum Gravity

Secured Land

Unknown Territory, first Steps and open Problems

Open Questions and Summary

Thomas Thiemann Elements of Loop Quantum Gravity

Page 6: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Contents

Motivation

The Challenge of Quantum Gravity

Secured Land

Unknown Territory, first Steps and open Problems

Open Questions and Summary

Thomas Thiemann Elements of Loop Quantum Gravity

Page 7: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Cosmological Puzzles A: Isotropy of the CMB

New era: high precision cosmology (COBE, WMAP, PLANCK)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 8: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Classical GR: Time had a beginning

Thomas Thiemann Elements of Loop Quantum Gravity

Page 9: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Usual matter: Horizon Problem

η

η

η

η

rec

0

(0)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 10: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Exotic matter (inflaton): solves horizon problem

η

η

η0

(0)

ηrec

Thomas Thiemann Elements of Loop Quantum Gravity

Page 11: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Cosmological standard model

Thomas Thiemann Elements of Loop Quantum Gravity

Page 12: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Inflation also explains temperature fluctuations, but:

Is GR really valid until tP?

Maybe quantum mech. absence of singularity

Inflaton would no longer be necessary! Pre – big bang?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 13: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Inflation also explains temperature fluctuations, but:

Is GR really valid until tP?

Maybe quantum mech. absence of singularity

Inflaton would no longer be necessary! Pre – big bang?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 14: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Inflation also explains temperature fluctuations, but:

Is GR really valid until tP?

Maybe quantum mech. absence of singularity

Inflaton would no longer be necessary! Pre – big bang?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 15: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Cosmological Puzzle B: Dark Energy

Thomas Thiemann Elements of Loop Quantum Gravity

Page 16: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Problem of cosmological constant:

Dark energy = vacuum fluct.? E.g. zero point energy

< bH >scalar − <: bH :>scalar=~

2

Z

R3d3x

Z

R3d3k |k|

Naive: Quantum gravity Cut – off at k`P ≈ 1 where `2P = ~G ?

< bH > − <: bH :>=~

2

Z

R3d3x `−4

P

Comparison with cosmological term

Hcosmo =Λ

G

Z

R3d3x

p| det(g)| ⇒ Λ`2

P ≈ 1

Worst prediction in history of physics:Experimentally: Λ`2

P ≈ 10−120.

What is dark energy (matter), why Λ so unnaturally tiny?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 17: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Problem of cosmological constant:

Dark energy = vacuum fluct.? E.g. zero point energy

< bH >scalar − <: bH :>scalar=~

2

Z

R3d3x

Z

R3d3k |k|

Naive: Quantum gravity Cut – off at k`P ≈ 1 where `2P = ~G ?

< bH > − <: bH :>=~

2

Z

R3d3x `−4

P

Comparison with cosmological term

Hcosmo =Λ

G

Z

R3d3x

p| det(g)| ⇒ Λ`2

P ≈ 1

Worst prediction in history of physics:Experimentally: Λ`2

P ≈ 10−120.

What is dark energy (matter), why Λ so unnaturally tiny?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 18: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Problem of cosmological constant:

Dark energy = vacuum fluct.? E.g. zero point energy

< bH >scalar − <: bH :>scalar=~

2

Z

R3d3x

Z

R3d3k |k|

Naive: Quantum gravity Cut – off at k`P ≈ 1 where `2P = ~G ?

< bH > − <: bH :>=~

2

Z

R3d3x `−4

P

Comparison with cosmological term

Hcosmo =Λ

G

Z

R3d3x

p| det(g)| ⇒ Λ`2

P ≈ 1

Worst prediction in history of physics:Experimentally: Λ`2

P ≈ 10−120.

What is dark energy (matter), why Λ so unnaturally tiny?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 19: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Problem of cosmological constant:

Dark energy = vacuum fluct.? E.g. zero point energy

< bH >scalar − <: bH :>scalar=~

2

Z

R3d3x

Z

R3d3k |k|

Naive: Quantum gravity Cut – off at k`P ≈ 1 where `2P = ~G ?

< bH > − <: bH :>=~

2

Z

R3d3x `−4

P

Comparison with cosmological term

Hcosmo =Λ

G

Z

R3d3x

p| det(g)| ⇒ Λ`2

P ≈ 1

Worst prediction in history of physics:Experimentally: Λ`2

P ≈ 10−120.

What is dark energy (matter), why Λ so unnaturally tiny?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 20: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Problem of cosmological constant:

Dark energy = vacuum fluct.? E.g. zero point energy

< bH >scalar − <: bH :>scalar=~

2

Z

R3d3x

Z

R3d3k |k|

Naive: Quantum gravity Cut – off at k`P ≈ 1 where `2P = ~G ?

< bH > − <: bH :>=~

2

Z

R3d3x `−4

P

Comparison with cosmological term

Hcosmo =Λ

G

Z

R3d3x

p| det(g)| ⇒ Λ`2

P ≈ 1

Worst prediction in history of physics:Experimentally: Λ`2

P ≈ 10−120.

What is dark energy (matter), why Λ so unnaturally tiny?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 21: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Astrophysical Puzzles: Black Holes

Thomas Thiemann Elements of Loop Quantum Gravity

Page 22: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Entropy of Black Holes

Class. GR (Penrose & Hawking): δAr(H) ≥ 0 ⇒ S ∝ Ar(H)(cf. 2nd law).

QFT on CST (Hawking – effect): Black holes = blackradiators kT = ~ω ≈ ~c/r.

Entropy (Bekenstein): For Schwarzschild solutionr = 2Gm/c2 with S = E/(kT) = mc2/(kT)

SBH =Ar(H)

4`2p

What is the microscopic origin of this entropy?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 23: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Entropy of Black Holes

Class. GR (Penrose & Hawking): δAr(H) ≥ 0 ⇒ S ∝ Ar(H)(cf. 2nd law).

QFT on CST (Hawking – effect): Black holes = blackradiators kT = ~ω ≈ ~c/r.

Entropy (Bekenstein): For Schwarzschild solutionr = 2Gm/c2 with S = E/(kT) = mc2/(kT)

SBH =Ar(H)

4`2p

What is the microscopic origin of this entropy?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 24: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Entropy of Black Holes

Class. GR (Penrose & Hawking): δAr(H) ≥ 0 ⇒ S ∝ Ar(H)(cf. 2nd law).

QFT on CST (Hawking – effect): Black holes = blackradiators kT = ~ω ≈ ~c/r.

Entropy (Bekenstein): For Schwarzschild solutionr = 2Gm/c2 with S = E/(kT) = mc2/(kT)

SBH =Ar(H)

4`2p

What is the microscopic origin of this entropy?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 25: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Entropy of Black Holes

Class. GR (Penrose & Hawking): δAr(H) ≥ 0 ⇒ S ∝ Ar(H)(cf. 2nd law).

QFT on CST (Hawking – effect): Black holes = blackradiators kT = ~ω ≈ ~c/r.

Entropy (Bekenstein): For Schwarzschild solutionr = 2Gm/c2 with S = E/(kT) = mc2/(kT)

SBH =Ar(H)

4`2p

What is the microscopic origin of this entropy?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 26: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Cosmological Puzzles A: Isotropy of the CMBCosmological Puzzles B: Dark EnergyAstrophysical Puzzles: Black Holes

Holographic Explanation of BH – Entropy? [’t Hooft, Susskind 92]

Thomas Thiemann Elements of Loop Quantum Gravity

Page 27: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

Principle of Background Independence

It is widely believed that only a full fledged quantum theoryof gravity can answer these fundamental questions.

For more than 70 years physicists are looking for a unifiedtheory of general relativity and quantum mechanics – sofar w/o success.

Why?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 28: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

Principle of Background Independence

It is widely believed that only a full fledged quantum theoryof gravity can answer these fundamental questions.

For more than 70 years physicists are looking for a unifiedtheory of general relativity and quantum mechanics – sofar w/o success.

Why?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 29: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

Principle of Background Independence

It is widely believed that only a full fledged quantum theoryof gravity can answer these fundamental questions.

For more than 70 years physicists are looking for a unifiedtheory of general relativity and quantum mechanics – sofar w/o success.

Why?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 30: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

Gravity=Geometry, Curvature=Matter Energy Density

Einstein’s equations

Rµν [g] −12

R[g] gµν = 8πG Tµν [g]

Background independence: Geometry g not prescribed butdynamically determined by matter energy density T.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 31: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

Gravity=Geometry, Curvature=Matter Energy Density

Einstein’s equations

Rµν [g] −12

R[g] gµν = 8πG Tµν [g]

Background independence: Geometry g not prescribed butdynamically determined by matter energy density T.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 32: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

Gravity=Geometry, Curvature=Matter Energy Density

Einstein’s equations

Rµν [g] −12

R[g] gµν = 8πG Tµν [g]

Background independence: Geometry g not prescribed butdynamically determined by matter energy density T.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 33: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

Background independence and backreaction (gravitationalwaves)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 34: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

Usual QFT (on CST) background dependent

g0

PSfrag replacementssupp(f)

supp(f’)

E.g. via causality axiom:If supp(f), supp(f’) spacelike separated wrt g0 then

[φ(f), φ(f′)] = 0, φ(f):=∫

Md4x f(x) φ(x)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 35: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

Usual QFT (on CST) background dependent

g0

PSfrag replacementssupp(f)

supp(f’)

E.g. via causality axiom:If supp(f), supp(f’) spacelike separated wrt g0 then

[φ(f), φ(f′)] = 0, φ(f):=∫

Md4x f(x) φ(x)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 36: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

The structure crucial for ordinary QFT

g0 ⇒ (x − y)2 < 0 ⇒ A

Background Light Cone Algebra

collapses when g0 not available.ignores gravitational backreaction.invalid approx. in extreme cosm. & astrophys. situat.Perturbative approach

g = g0 + h↑ ↑ ↑

Total Metric Background Perturbation (Graviton)

violates BI, inacceptable due to non – renormalisability,merely effect. graviton QFT over g0.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 37: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

The structure crucial for ordinary QFT

g0 ⇒ (x − y)2 < 0 ⇒ A

Background Light Cone Algebra

collapses when g0 not available.ignores gravitational backreaction.invalid approx. in extreme cosm. & astrophys. situat.Perturbative approach

g = g0 + h↑ ↑ ↑

Total Metric Background Perturbation (Graviton)

violates BI, inacceptable due to non – renormalisability,merely effect. graviton QFT over g0.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 38: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

The structure crucial for ordinary QFT

g0 ⇒ (x − y)2 < 0 ⇒ A

Background Light Cone Algebra

collapses when g0 not available.ignores gravitational backreaction.invalid approx. in extreme cosm. & astrophys. situat.Perturbative approach

g = g0 + h↑ ↑ ↑

Total Metric Background Perturbation (Graviton)

violates BI, inacceptable due to non – renormalisability,merely effect. graviton QFT over g0.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 39: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

The structure crucial for ordinary QFT

g0 ⇒ (x − y)2 < 0 ⇒ A

Background Light Cone Algebra

collapses when g0 not available.ignores gravitational backreaction.invalid approx. in extreme cosm. & astrophys. situat.Perturbative approach

g = g0 + h↑ ↑ ↑

Total Metric Background Perturbation (Graviton)

violates BI, inacceptable due to non – renormalisability,merely effect. graviton QFT over g0.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 40: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

The structure crucial for ordinary QFT

g0 ⇒ (x − y)2 < 0 ⇒ A

Background Light Cone Algebra

collapses when g0 not available.ignores gravitational backreaction.invalid approx. in extreme cosm. & astrophys. situat.Perturbative approach

g = g0 + h↑ ↑ ↑

Total Metric Background Perturbation (Graviton)

violates BI, inacceptable due to non – renormalisability,merely effect. graviton QFT over g0.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 41: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

We need the

Rµν −

12 R gµν = 8πG Tµν(g)

Quantum - Einstein - Equations

Radical generalisation of principles of QFT on CST.

QFT on diff. mfd. M rather than QFT on spacetime (M,g0).

No Fock spaces but new BI Hilbert spaces.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 42: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

We need the

Rµν −

12 R gµν = 8πG Tµν(g)

Quantum - Einstein - Equations

Radical generalisation of principles of QFT on CST.

QFT on diff. mfd. M rather than QFT on spacetime (M,g0).

No Fock spaces but new BI Hilbert spaces.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 43: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

We need the

Rµν −

12 R gµν = 8πG Tµν(g)

Quantum - Einstein - Equations

Radical generalisation of principles of QFT on CST.

QFT on diff. mfd. M rather than QFT on spacetime (M,g0).

No Fock spaces but new BI Hilbert spaces.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 44: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

We need the

Rµν −

12 R gµν = 8πG Tµν(g)

Quantum - Einstein - Equations

Radical generalisation of principles of QFT on CST.

QFT on diff. mfd. M rather than QFT on spacetime (M,g0).

No Fock spaces but new BI Hilbert spaces.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 45: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

Ordinary QFT: Matter propagates on rigid spacetime

Thomas Thiemann Elements of Loop Quantum Gravity

Page 46: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

New QFT: Matter can exist only where geometry is excited

Thomas Thiemann Elements of Loop Quantum Gravity

Page 47: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Principle of Background Independence

Thomas Thiemann Elements of Loop Quantum Gravity

Page 48: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Classical Formulation

Canonical formulation: M ∼= R×σ

Thomas Thiemann Elements of Loop Quantum Gravity

Page 49: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Palatini action with (on shell) topological term

S =1

8πG

Z

MΩIJ ∧ [εIJKLeK ∧ eL +

eI ∧ eJ]

Legendre transformation reveals canonical pair

(ωIJa ,E

aIJ =

12ε

abc[εIJKLeKb eL

c +1β

ebIecJ])

plus constraints, in particular simplicity constraints,

Sab = εIJKLEa

IJEbKL = 0

spatial diffeo, Hamiltonian and Spin(1,3) Gauß constraints

GIJ = ∂aEaIJ − 2ωa[I

KEaJ]K = 0

2nd class system! Solving 2nd class constr. yields canonical pair

(Ajka =Γjk

a + βKabeblεjkl, Ea

jk = | det(e)|εabcebjeck)

where Γ = spin connection of triad and K= extrinsic curvatureassociated to qab = ej

aejb

Thomas Thiemann Elements of Loop Quantum Gravity

Page 50: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Palatini action with (on shell) topological term

S =1

8πG

Z

MΩIJ ∧ [εIJKLeK ∧ eL +

eI ∧ eJ]

Legendre transformation reveals canonical pair

(ωIJa ,E

aIJ =

12ε

abc[εIJKLeKb eL

c +1β

ebIecJ])

plus constraints, in particular simplicity constraints,

Sab = εIJKLEa

IJEbKL = 0

spatial diffeo, Hamiltonian and Spin(1,3) Gauß constraints

GIJ = ∂aEaIJ − 2ωa[I

KEaJ]K = 0

2nd class system! Solving 2nd class constr. yields canonical pair

(Ajka =Γjk

a + βKabeblεjkl, Ea

jk = | det(e)|εabcebjeck)

where Γ = spin connection of triad and K= extrinsic curvatureassociated to qab = ej

aejb

Thomas Thiemann Elements of Loop Quantum Gravity

Page 51: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Palatini action with (on shell) topological term

S =1

8πG

Z

MΩIJ ∧ [εIJKLeK ∧ eL +

eI ∧ eJ]

Legendre transformation reveals canonical pair

(ωIJa ,E

aIJ =

12ε

abc[εIJKLeKb eL

c +1β

ebIecJ])

plus constraints, in particular simplicity constraints,

Sab = εIJKLEa

IJEbKL = 0

spatial diffeo, Hamiltonian and Spin(1,3) Gauß constraints

GIJ = ∂aEaIJ − 2ωa[I

KEaJ]K = 0

2nd class system! Solving 2nd class constr. yields canonical pair

(Ajka =Γjk

a + βKabeblεjkl, Ea

jk = | det(e)|εabcebjeck)

where Γ = spin connection of triad and K= extrinsic curvatureassociated to qab = ej

aejb

Thomas Thiemann Elements of Loop Quantum Gravity

Page 52: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Palatini action with (on shell) topological term

S =1

8πG

Z

MΩIJ ∧ [εIJKLeK ∧ eL +

eI ∧ eJ]

Legendre transformation reveals canonical pair

(ωIJa ,E

aIJ =

12ε

abc[εIJKLeKb eL

c +1β

ebIecJ])

plus constraints, in particular simplicity constraints,

Sab = εIJKLEa

IJEbKL = 0

spatial diffeo, Hamiltonian and Spin(1,3) Gauß constraints

GIJ = ∂aEaIJ − 2ωa[I

KEaJ]K = 0

2nd class system! Solving 2nd class constr. yields canonical pair

(Ajka =Γjk

a + βKabeblεjkl, Ea

jk = | det(e)|εabcebjeck)

where Γ = spin connection of triad and K= extrinsic curvatureassociated to qab = ej

aejb

Thomas Thiemann Elements of Loop Quantum Gravity

Page 53: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Palatini action with (on shell) topological term

S =1

8πG

Z

MΩIJ ∧ [εIJKLeK ∧ eL +

eI ∧ eJ]

Legendre transformation reveals canonical pair

(ωIJa ,E

aIJ =

12ε

abc[εIJKLeKb eL

c +1β

ebIecJ])

plus constraints, in particular simplicity constraints,

Sab = εIJKLEa

IJEbKL = 0

spatial diffeo, Hamiltonian and Spin(1,3) Gauß constraints

GIJ = ∂aEaIJ − 2ωa[I

KEaJ]K = 0

2nd class system! Solving 2nd class constr. yields canonical pair

(Ajka =Γjk

a + βKabeblεjkl, Ea

jk = | det(e)|εabcebjeck)

where Γ = spin connection of triad and K= extrinsic curvatureassociated to qab = ej

aejb

Thomas Thiemann Elements of Loop Quantum Gravity

Page 54: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Palatini action with (on shell) topological term

S =1

8πG

Z

MΩIJ ∧ [εIJKLeK ∧ eL +

eI ∧ eJ]

Legendre transformation reveals canonical pair

(ωIJa ,E

aIJ =

12ε

abc[εIJKLeKb eL

c +1β

ebIecJ])

plus constraints, in particular simplicity constraints,

Sab = εIJKLEa

IJEbKL = 0

spatial diffeo, Hamiltonian and Spin(1,3) Gauß constraints

GIJ = ∂aEaIJ − 2ωa[I

KEaJ]K = 0

2nd class system! Solving 2nd class constr. yields canonical pair

(Ajka =Γjk

a + βKabeblεjkl, Ea

jk = | det(e)|εabcebjeck)

where Γ = spin connection of triad and K= extrinsic curvatureassociated to qab = ej

aejb

Thomas Thiemann Elements of Loop Quantum Gravity

Page 55: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Full set of first class constraints

SU(2) Gauß constraint

Cj = ∂aEaj + Aaj

kEak = 0

spatial diffeomorphism constraint

Ca = Tr(

FabEb)

= 0

Hamiltonian constraint

C =Tr

(FabEaEb

)√|det(E)|

+ ...

Convenient to summarise them in Master Constraint

M =

σ

d3x

[C2 + qabCaCb + δjkCjCk

]√|det(E)|

Thomas Thiemann Elements of Loop Quantum Gravity

Page 56: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Full set of first class constraints

SU(2) Gauß constraint

Cj = ∂aEaj + Aaj

kEak = 0

spatial diffeomorphism constraint

Ca = Tr(

FabEb)

= 0

Hamiltonian constraint

C =Tr

(FabEaEb

)√|det(E)|

+ ...

Convenient to summarise them in Master Constraint

M =

σ

d3x

[C2 + qabCaCb + δjkCjCk

]√|det(E)|

Thomas Thiemann Elements of Loop Quantum Gravity

Page 57: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Full set of first class constraints

SU(2) Gauß constraint

Cj = ∂aEaj + Aaj

kEak = 0

spatial diffeomorphism constraint

Ca = Tr(

FabEb)

= 0

Hamiltonian constraint

C =Tr

(FabEaEb

)√|det(E)|

+ ...

Convenient to summarise them in Master Constraint

M =

σ

d3x

[C2 + qabCaCb + δjkCjCk

]√|det(E)|

Thomas Thiemann Elements of Loop Quantum Gravity

Page 58: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Full set of first class constraints

SU(2) Gauß constraint

Cj = ∂aEaj + Aaj

kEak = 0

spatial diffeomorphism constraint

Ca = Tr(

FabEb)

= 0

Hamiltonian constraint

C =Tr

(FabEaEb

)√|det(E)|

+ ...

Convenient to summarise them in Master Constraint

M =

σ

d3x

[C2 + qabCaCb + δjkCjCk

]√|det(E)|

Thomas Thiemann Elements of Loop Quantum Gravity

Page 59: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Problem of Time

Master Constraint M = 0 (Constraint Hypersurface)

Gauge invariant (Dirac) observables

O, O,MM=0 = 0

Problem of Time:1. No canonical Hamiltonian in generally covariant theories2. No time evolution of observables, frozen picture

Thomas Thiemann Elements of Loop Quantum Gravity

Page 60: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Problem of Time

Master Constraint M = 0 (Constraint Hypersurface)

Gauge invariant (Dirac) observables

O, O,MM=0 = 0

Problem of Time:1. No canonical Hamiltonian in generally covariant theories2. No time evolution of observables, frozen picture

Thomas Thiemann Elements of Loop Quantum Gravity

Page 61: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Problem of Time

Master Constraint M = 0 (Constraint Hypersurface)

Gauge invariant (Dirac) observables

O, O,MM=0 = 0

Problem of Time:1. No canonical Hamiltonian in generally covariant theories2. No time evolution of observables, frozen picture

Thomas Thiemann Elements of Loop Quantum Gravity

Page 62: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Problem of Time

Master Constraint M = 0 (Constraint Hypersurface)

Gauge invariant (Dirac) observables

O, O,MM=0 = 0

Problem of Time:1. No canonical Hamiltonian in generally covariant theories2. No time evolution of observables, frozen picture

Thomas Thiemann Elements of Loop Quantum Gravity

Page 63: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Observables & Physical Hamiltonian

Relational Ansatz [Rovelli 92 – ], [Dittrich 04 – ]

Suitable scalar matter φ: Brown – Kuchar deparam. [Brown,Kuchar 92],[T.T. 06]

M = 0 ⇔ π(x) + H(x) = 0

Physical Hamiltonian (dep. only on non scalar d.o.f.)

H =

Z

σ

d3x H(x)

Dirac observables (f: spat. diff. inv.)

Of(τ ) :=∞X

n=0

1n!

Hτ , f(n), Hτ =

Zd3x (τ − φ)H

Physical time evolution

ddτ

Of(τ ) = H,Of(τ )

Thomas Thiemann Elements of Loop Quantum Gravity

Page 64: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Observables & Physical Hamiltonian

Relational Ansatz [Rovelli 92 – ], [Dittrich 04 – ]

Suitable scalar matter φ: Brown – Kuchar deparam. [Brown,Kuchar 92],[T.T. 06]

M = 0 ⇔ π(x) + H(x) = 0

Physical Hamiltonian (dep. only on non scalar d.o.f.)

H =

Z

σ

d3x H(x)

Dirac observables (f: spat. diff. inv.)

Of(τ ) :=∞X

n=0

1n!

Hτ , f(n), Hτ =

Zd3x (τ − φ)H

Physical time evolution

ddτ

Of(τ ) = H,Of(τ )

Thomas Thiemann Elements of Loop Quantum Gravity

Page 65: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Observables & Physical Hamiltonian

Relational Ansatz [Rovelli 92 – ], [Dittrich 04 – ]

Suitable scalar matter φ: Brown – Kuchar deparam. [Brown,Kuchar 92],[T.T. 06]

M = 0 ⇔ π(x) + H(x) = 0

Physical Hamiltonian (dep. only on non scalar d.o.f.)

H =

Z

σ

d3x H(x)

Dirac observables (f: spat. diff. inv.)

Of(τ ) :=∞X

n=0

1n!

Hτ , f(n), Hτ =

Zd3x (τ − φ)H

Physical time evolution

ddτ

Of(τ ) = H,Of(τ )

Thomas Thiemann Elements of Loop Quantum Gravity

Page 66: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Observables & Physical Hamiltonian

Relational Ansatz [Rovelli 92 – ], [Dittrich 04 – ]

Suitable scalar matter φ: Brown – Kuchar deparam. [Brown,Kuchar 92],[T.T. 06]

M = 0 ⇔ π(x) + H(x) = 0

Physical Hamiltonian (dep. only on non scalar d.o.f.)

H =

Z

σ

d3x H(x)

Dirac observables (f: spat. diff. inv.)

Of(τ ) :=∞X

n=0

1n!

Hτ , f(n), Hτ =

Zd3x (τ − φ)H

Physical time evolution

ddτ

Of(τ ) = H,Of(τ )

Thomas Thiemann Elements of Loop Quantum Gravity

Page 67: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Quantum Kinematics

Lattice – inspired canon. q’ion [Gambini,Trias et al 81], [Jacobson,Rovelli,Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

A(e) = P exp(

eA)

Electr. dof: flux

Ej(S) =

S

12

Eakl εjkl εabc dxb ∧ dxc

Poisson – brackets:

Ej(S),A(e) = G A(e1) τj A(e2); e = e1 e2, e1 ∩ e2 = e ∩ S

Reality conditions:

A(e) = [A(e−1)]T, Ej(S) = Ej(S)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 68: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Quantum Kinematics

Lattice – inspired canon. q’ion [Gambini,Trias et al 81], [Jacobson,Rovelli,Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

A(e) = P exp(

eA)

Electr. dof: flux

Ej(S) =

S

12

Eakl εjkl εabc dxb ∧ dxc

Poisson – brackets:

Ej(S),A(e) = G A(e1) τj A(e2); e = e1 e2, e1 ∩ e2 = e ∩ S

Reality conditions:

A(e) = [A(e−1)]T, Ej(S) = Ej(S)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 69: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Quantum Kinematics

Lattice – inspired canon. q’ion [Gambini,Trias et al 81], [Jacobson,Rovelli,Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

A(e) = P exp(

eA)

Electr. dof: flux

Ej(S) =

S

12

Eakl εjkl εabc dxb ∧ dxc

Poisson – brackets:

Ej(S),A(e) = G A(e1) τj A(e2); e = e1 e2, e1 ∩ e2 = e ∩ S

Reality conditions:

A(e) = [A(e−1)]T, Ej(S) = Ej(S)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 70: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Quantum Kinematics

Lattice – inspired canon. q’ion [Gambini,Trias et al 81], [Jacobson,Rovelli,Smolin 88]

Magnet. dof.: Holonomy (Wilson – Loop)

A(e) = P exp(

eA)

Electr. dof: flux

Ej(S) =

S

12

Eakl εjkl εabc dxb ∧ dxc

Poisson – brackets:

Ej(S),A(e) = G A(e1) τj A(e2); e = e1 e2, e1 ∩ e2 = e ∩ S

Reality conditions:

A(e) = [A(e−1)]T, Ej(S) = Ej(S)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 71: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

e

S

e

+

1

2

e S

Thomas Thiemann Elements of Loop Quantum Gravity

Page 72: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

HS Reps.: In QFT no Stone – von Neumann Theorem!!!

Theorem [Ashtekar,Isham,Lewandowski 92-93], [Sahlmann 02], [L., Okolow,S.,T.T. 03-05], [Fleischhack 04]

Diff(σ) inv. states on hol. – flux algebra A unique.

wave functions

ψ(A) = ψγ(A(e1), ..,A(eN)), ψγ : SU(2)N → C

Holonomy = multiplication – operator

[A(e) ψ](A) := A(e) ψ(A)

Flux = derivative – operator

[Ej(S) ψ](A) := i~ Ej(S), ψ(A)

Scalar product

< ψ,ψ′>:=

Z

SU(2)NdµH(h1) .. dµH(hN) ψγ(h1, .., hN) ψ′

γ(h1, .., hN)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 73: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

HS Reps.: In QFT no Stone – von Neumann Theorem!!!

Theorem [Ashtekar,Isham,Lewandowski 92-93], [Sahlmann 02], [L., Okolow,S.,T.T. 03-05], [Fleischhack 04]

Diff(σ) inv. states on hol. – flux algebra A unique.

wave functions

ψ(A) = ψγ(A(e1), ..,A(eN)), ψγ : SU(2)N → C

Holonomy = multiplication – operator

[A(e) ψ](A) := A(e) ψ(A)

Flux = derivative – operator

[Ej(S) ψ](A) := i~ Ej(S), ψ(A)

Scalar product

< ψ,ψ′>:=

Z

SU(2)NdµH(h1) .. dµH(hN) ψγ(h1, .., hN) ψ′

γ(h1, .., hN)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 74: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

HS Reps.: In QFT no Stone – von Neumann Theorem!!!

Theorem [Ashtekar,Isham,Lewandowski 92-93], [Sahlmann 02], [L., Okolow,S.,T.T. 03-05], [Fleischhack 04]

Diff(σ) inv. states on hol. – flux algebra A unique.

wave functions

ψ(A) = ψγ(A(e1), ..,A(eN)), ψγ : SU(2)N → C

Holonomy = multiplication – operator

[A(e) ψ](A) := A(e) ψ(A)

Flux = derivative – operator

[Ej(S) ψ](A) := i~ Ej(S), ψ(A)

Scalar product

< ψ,ψ′>:=

Z

SU(2)NdµH(h1) .. dµH(hN) ψγ(h1, .., hN) ψ′

γ(h1, .., hN)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 75: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

HS Reps.: In QFT no Stone – von Neumann Theorem!!!

Theorem [Ashtekar,Isham,Lewandowski 92-93], [Sahlmann 02], [L., Okolow,S.,T.T. 03-05], [Fleischhack 04]

Diff(σ) inv. states on hol. – flux algebra A unique.

wave functions

ψ(A) = ψγ(A(e1), ..,A(eN)), ψγ : SU(2)N → C

Holonomy = multiplication – operator

[A(e) ψ](A) := A(e) ψ(A)

Flux = derivative – operator

[Ej(S) ψ](A) := i~ Ej(S), ψ(A)

Scalar product

< ψ,ψ′>:=

Z

SU(2)NdµH(h1) .. dµH(hN) ψγ(h1, .., hN) ψ′

γ(h1, .., hN)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 76: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

HS Reps.: In QFT no Stone – von Neumann Theorem!!!

Theorem [Ashtekar,Isham,Lewandowski 92-93], [Sahlmann 02], [L., Okolow,S.,T.T. 03-05], [Fleischhack 04]

Diff(σ) inv. states on hol. – flux algebra A unique.

wave functions

ψ(A) = ψγ(A(e1), ..,A(eN)), ψγ : SU(2)N → C

Holonomy = multiplication – operator

[A(e) ψ](A) := A(e) ψ(A)

Flux = derivative – operator

[Ej(S) ψ](A) := i~ Ej(S), ψ(A)

Scalar product

< ψ,ψ′>:=

Z

SU(2)NdµH(h1) .. dµH(hN) ψγ(h1, .., hN) ψ′

γ(h1, .., hN)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 77: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

HS Reps.: In QFT no Stone – von Neumann Theorem!!!

Theorem [Ashtekar,Isham,Lewandowski 92-93], [Sahlmann 02], [L., Okolow,S.,T.T. 03-05], [Fleischhack 04]

Diff(σ) inv. states on hol. – flux algebra A unique.

wave functions

ψ(A) = ψγ(A(e1), ..,A(eN)), ψγ : SU(2)N → C

Holonomy = multiplication – operator

[A(e) ψ](A) := A(e) ψ(A)

Flux = derivative – operator

[Ej(S) ψ](A) := i~ Ej(S), ψ(A)

Scalar product

< ψ,ψ′>:=

Z

SU(2)NdµH(h1) .. dµH(hN) ψγ(h1, .., hN) ψ′

γ(h1, .., hN)

Thomas Thiemann Elements of Loop Quantum Gravity

Page 78: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Spin Network Basis Tγ,j,I ∼ Hj Hermite Polynomials

PSfrag replacements

v1,I1

v2,I2

v3,I3

v4,I4 v5,I5

v6,I6

v7,I7

v8,I8

v9,I9

v10,I10

vm,Im

e1,j1

e2,j2 e3,j3

e4,j4

e5,j5

e6,j6 e7,j7

e8,j8

e9,j9

e10,j10

e11,j11

e12,j12 e13,j13

e14,j14

e15,j15

e16,j16

e17,j17

e18,j18

e19,j19

e20,j20

e21,j21

e22,j22

en,jn

Thomas Thiemann Elements of Loop Quantum Gravity

Page 79: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Colour Coding of Spin Quantum Numbers on graph edges ...

Thomas Thiemann Elements of Loop Quantum Gravity

Page 80: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

... or on Faces of Dual Cell Complex (Triangulation)

Animation:

http://www.einstein-online.info/de/vertiefung/Spinnetzwerke/index.html.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 81: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Kinematical spatial geometry operators

Area – Operator [Rovelli & Smolin 94], [Ashtekar & Lewandowski 95]

Class. Area functional for 2 – mfd. S

Ar(S) =

S

√Tr

([Eaεabcdxb ∧ dxc

]2)

Operator Ar(S) exists on Hgeo! Not possible on Fockspace.

Spectrum explicitly known, purely discrete. Eigenstates =spin – network – states Tγ,j,I

In LQG: spacetime distances & `P , discrete, discont.Planck – scale structure.

Similar results for length and volume operators.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 82: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Kinematical spatial geometry operators

Area – Operator [Rovelli & Smolin 94], [Ashtekar & Lewandowski 95]

Class. Area functional for 2 – mfd. S

Ar(S) =

S

√Tr

([Eaεabcdxb ∧ dxc

]2)

Operator Ar(S) exists on Hgeo! Not possible on Fockspace.

Spectrum explicitly known, purely discrete. Eigenstates =spin – network – states Tγ,j,I

In LQG: spacetime distances & `P , discrete, discont.Planck – scale structure.

Similar results for length and volume operators.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 83: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Kinematical spatial geometry operators

Area – Operator [Rovelli & Smolin 94], [Ashtekar & Lewandowski 95]

Class. Area functional for 2 – mfd. S

Ar(S) =

S

√Tr

([Eaεabcdxb ∧ dxc

]2)

Operator Ar(S) exists on Hgeo! Not possible on Fockspace.

Spectrum explicitly known, purely discrete. Eigenstates =spin – network – states Tγ,j,I

In LQG: spacetime distances & `P , discrete, discont.Planck – scale structure.

Similar results for length and volume operators.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 84: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Kinematical spatial geometry operators

Area – Operator [Rovelli & Smolin 94], [Ashtekar & Lewandowski 95]

Class. Area functional for 2 – mfd. S

Ar(S) =

S

√Tr

([Eaεabcdxb ∧ dxc

]2)

Operator Ar(S) exists on Hgeo! Not possible on Fockspace.

Spectrum explicitly known, purely discrete. Eigenstates =spin – network – states Tγ,j,I

In LQG: spacetime distances & `P , discrete, discont.Planck – scale structure.

Similar results for length and volume operators.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 85: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Kinematical spatial geometry operators

Area – Operator [Rovelli & Smolin 94], [Ashtekar & Lewandowski 95]

Class. Area functional for 2 – mfd. S

Ar(S) =

S

√Tr

([Eaεabcdxb ∧ dxc

]2)

Operator Ar(S) exists on Hgeo! Not possible on Fockspace.

Spectrum explicitly known, purely discrete. Eigenstates =spin – network – states Tγ,j,I

In LQG: spacetime distances & `P , discrete, discont.Planck – scale structure.

Similar results for length and volume operators.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 86: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

.25

.50

.75

1.00

1.25

Area Gap

A/lp2

A/lp5

7

9

11

10

8

6

1.4 1.6 1.8 2.0 2.2 2.4

ln(E(A))

Thomas Thiemann Elements of Loop Quantum Gravity

Page 87: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Kinematical Coherent States

Non – pert. approach, no pert. theory, rather different tool:[T.T. 00], [T.T., Winkler 00 – 02], [Varadarajan 02], [Ashtekar & Lewandowski 02]

∃ minimal uncertainty states f. A, i.e.1. F. each point (A0,E0) obtain ψ(A0,E0) s.t.

< ψA0,E0 ,A(e)ψA0,E0 >= A0(e), < ψA0,E0 ,Ej(S)ψA0,E0 >= Ej0(S)

2. and

<∆A(e)> <∆Ej(S))>=12| < [A(e), Ej(S))]> |

Thomas Thiemann Elements of Loop Quantum Gravity

Page 88: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Kinematical Coherent States

Non – pert. approach, no pert. theory, rather different tool:[T.T. 00], [T.T., Winkler 00 – 02], [Varadarajan 02], [Ashtekar & Lewandowski 02]

∃ minimal uncertainty states f. A, i.e.1. F. each point (A0,E0) obtain ψ(A0,E0) s.t.

< ψA0,E0 ,A(e)ψA0,E0 >= A0(e), < ψA0,E0 ,Ej(S)ψA0,E0 >= Ej0(S)

2. and

<∆A(e)> <∆Ej(S))>=12| < [A(e), Ej(S))]> |

Thomas Thiemann Elements of Loop Quantum Gravity

Page 89: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Kinematical Coherent States

Non – pert. approach, no pert. theory, rather different tool:[T.T. 00], [T.T., Winkler 00 – 02], [Varadarajan 02], [Ashtekar & Lewandowski 02]

∃ minimal uncertainty states f. A, i.e.1. F. each point (A0,E0) obtain ψ(A0,E0) s.t.

< ψA0,E0 ,A(e)ψA0,E0 >= A0(e), < ψA0,E0 ,Ej(S)ψA0,E0 >= Ej0(S)

2. and

<∆A(e)> <∆Ej(S))>=12| < [A(e), Ej(S))]> |

Thomas Thiemann Elements of Loop Quantum Gravity

Page 90: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Classical FormulationProblem of TimeQuantum KinematicsKinematical spatial geometry operatorsKinematical Coherent States

Coherent States

-0.2

-0.1

0

0.1

0.2-0.1

-0.05

0

0.05

0.1

0

0.25

0.5

0.75

1

-0.2

-0.1

0

0.1

0.2

PSfrag replacements

arcsin(=(A(e)))

E(S)/L2E(S)/L2

Thomas Thiemann Elements of Loop Quantum Gravity

Page 91: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Master Constraint: Definition

For simplicity: cubic graph and dual cell complex

e

PSfrag replacements

~nSeSe

Thomas Thiemann Elements of Loop Quantum Gravity

Page 92: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Difference: BD & BI theories

Yang – Mills on (R4, η) [Kogut & Susskind 74]

H =~

2 g2 ε

X

v∈V(γ)

3X

a=1

Tr“

E(Sav)

2 + [A(αav) − A(αa

v)−1]2

Gravity on R × σ [T.T. 96 – 05, Giesel & T.T. 06]

M =~

`4P

X

v∈V(γ)

3X

j=0

˛˛˛

3X

a=1

Tr“τj A(αa

v) A(eav) [A(ea

v)−1,V1/2

v ]”˛

˛˛

2

Volume operator

Vv =q

|εabcTr`E(Sa

v) E(Sbv) E(Sc

v)´|

Lattice spacing ε disappears, replaced by `P

No continuum limit, automat. UV finite.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 93: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Difference: BD & BI theories

Yang – Mills on (R4, η) [Kogut & Susskind 74]

H =~

2 g2 ε

X

v∈V(γ)

3X

a=1

Tr“

E(Sav)

2 + [A(αav) − A(αa

v)−1]2

Gravity on R × σ [T.T. 96 – 05, Giesel & T.T. 06]

M =~

`4P

X

v∈V(γ)

3X

j=0

˛˛˛

3X

a=1

Tr“τj A(αa

v) A(eav) [A(ea

v)−1,V1/2

v ]”˛

˛˛

2

Volume operator

Vv =q

|εabcTr`E(Sa

v) E(Sbv) E(Sc

v)´|

Lattice spacing ε disappears, replaced by `P

No continuum limit, automat. UV finite.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 94: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Difference: BD & BI theories

Yang – Mills on (R4, η) [Kogut & Susskind 74]

H =~

2 g2 ε

X

v∈V(γ)

3X

a=1

Tr“

E(Sav)

2 + [A(αav) − A(αa

v)−1]2

Gravity on R × σ [T.T. 96 – 05, Giesel & T.T. 06]

M =~

`4P

X

v∈V(γ)

3X

j=0

˛˛˛

3X

a=1

Tr“τj A(αa

v) A(eav) [A(ea

v)−1,V1/2

v ]”˛

˛˛

2

Volume operator

Vv =q

|εabcTr`E(Sa

v) E(Sbv) E(Sc

v)´|

Lattice spacing ε disappears, replaced by `P

No continuum limit, automat. UV finite.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 95: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Difference: BD & BI theories

Yang – Mills on (R4, η) [Kogut & Susskind 74]

H =~

2 g2 ε

X

v∈V(γ)

3X

a=1

Tr“

E(Sav)

2 + [A(αav) − A(αa

v)−1]2

Gravity on R × σ [T.T. 96 – 05, Giesel & T.T. 06]

M =~

`4P

X

v∈V(γ)

3X

j=0

˛˛˛

3X

a=1

Tr“τj A(αa

v) A(eav) [A(ea

v)−1,V1/2

v ]”˛

˛˛

2

Volume operator

Vv =q

|εabcTr`E(Sa

v) E(Sbv) E(Sc

v)´|

Lattice spacing ε disappears, replaced by `P

No continuum limit, automat. UV finite.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 96: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Difference: BD & BI theories

Yang – Mills on (R4, η) [Kogut & Susskind 74]

H =~

2 g2 ε

X

v∈V(γ)

3X

a=1

Tr“

E(Sav)

2 + [A(αav) − A(αa

v)−1]2

Gravity on R × σ [T.T. 96 – 05, Giesel & T.T. 06]

M =~

`4P

X

v∈V(γ)

3X

j=0

˛˛˛

3X

a=1

Tr“τj A(αa

v) A(eav) [A(ea

v)−1,V1/2

v ]”˛

˛˛

2

Volume operator

Vv =q

|εabcTr`E(Sa

v) E(Sbv) E(Sc

v)´|

Lattice spacing ε disappears, replaced by `P

No continuum limit, automat. UV finite.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 97: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Master Constraint: Solution

Physical Hilbert Space

Dirac’s basic idea MΨ = 0

General solution Ψ = δ(M)ψ, ψ ∈ Hkin in general ill defined

Must equip solution space with new inner product. Heuristically:

< Ψ,Ψ′> phys :=

< δ(M) ψ, δ(M) ψ′ >

< δ(M) ψ0, δ(M) ψ0 >=δ(0)

δ(0)

< ψ, δ(M) ψ′ >

< ψ0, δ(M) ψ0 >

< Ψ,Ψ′> phys = c < ψ, δ(M) ψ′

>

Rigorously: Spectral resolution of s.a. M [Dittrich, T.T. 04]

Thomas Thiemann Elements of Loop Quantum Gravity

Page 98: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Master Constraint: Solution

Physical Hilbert Space

Dirac’s basic idea MΨ = 0

General solution Ψ = δ(M)ψ, ψ ∈ Hkin in general ill defined

Must equip solution space with new inner product. Heuristically:

< Ψ,Ψ′> phys :=

< δ(M) ψ, δ(M) ψ′ >

< δ(M) ψ0, δ(M) ψ0 >=δ(0)

δ(0)

< ψ, δ(M) ψ′ >

< ψ0, δ(M) ψ0 >

< Ψ,Ψ′> phys = c < ψ, δ(M) ψ′

>

Rigorously: Spectral resolution of s.a. M [Dittrich, T.T. 04]

Thomas Thiemann Elements of Loop Quantum Gravity

Page 99: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Master Constraint: Solution

Physical Hilbert Space

Dirac’s basic idea MΨ = 0

General solution Ψ = δ(M)ψ, ψ ∈ Hkin in general ill defined

Must equip solution space with new inner product. Heuristically:

< Ψ,Ψ′> phys :=

< δ(M) ψ, δ(M) ψ′ >

< δ(M) ψ0, δ(M) ψ0 >=δ(0)

δ(0)

< ψ, δ(M) ψ′ >

< ψ0, δ(M) ψ0 >

< Ψ,Ψ′> phys = c < ψ, δ(M) ψ′

>

Rigorously: Spectral resolution of s.a. M [Dittrich, T.T. 04]

Thomas Thiemann Elements of Loop Quantum Gravity

Page 100: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Master Constraint: Solution

Physical Hilbert Space

Dirac’s basic idea MΨ = 0

General solution Ψ = δ(M)ψ, ψ ∈ Hkin in general ill defined

Must equip solution space with new inner product. Heuristically:

< Ψ,Ψ′> phys :=

< δ(M) ψ, δ(M) ψ′ >

< δ(M) ψ0, δ(M) ψ0 >=δ(0)

δ(0)

< ψ, δ(M) ψ′ >

< ψ0, δ(M) ψ0 >

< Ψ,Ψ′> phys = c < ψ, δ(M) ψ′

>

Rigorously: Spectral resolution of s.a. M [Dittrich, T.T. 04]

Thomas Thiemann Elements of Loop Quantum Gravity

Page 101: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Master Constraint: Semiclassical Limit

Semiclass. Limit of Q. Dynamics testable only with kinemat. coh. states

Theorem [Giesel & T.T. 06] For any (A0,E0)

1. Exp. Value < ψA0,E0 ,bMψA0,E0 >= M(A0,E0) + O(~)

2. Fluctuation< ψA0,E0 ,bM2ψA0,E0 > − < ψA0,E0 ,

bMψA0,E0 >2= O(~)

Corollary

i. Quantum Master Constraint correctly implemented

ii. If M(A0,E0) = 0 obtain approx. phys. states

< ψA0,E0 ,bM ψA0,E0 >≈< ψA0,E0 ,

bM2ψA0,E0 >≈ 0

Thomas Thiemann Elements of Loop Quantum Gravity

Page 102: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Master Constraint: Semiclassical Limit

Semiclass. Limit of Q. Dynamics testable only with kinemat. coh. states

Theorem [Giesel & T.T. 06] For any (A0,E0)

1. Exp. Value < ψA0,E0 ,bMψA0,E0 >= M(A0,E0) + O(~)

2. Fluctuation< ψA0,E0 ,bM2ψA0,E0 > − < ψA0,E0 ,

bMψA0,E0 >2= O(~)

Corollary

i. Quantum Master Constraint correctly implemented

ii. If M(A0,E0) = 0 obtain approx. phys. states

< ψA0,E0 ,bM ψA0,E0 >≈< ψA0,E0 ,

bM2ψA0,E0 >≈ 0

Thomas Thiemann Elements of Loop Quantum Gravity

Page 103: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Master Constraint: Semiclassical Limit

Semiclass. Limit of Q. Dynamics testable only with kinemat. coh. states

Theorem [Giesel & T.T. 06] For any (A0,E0)

1. Exp. Value < ψA0,E0 ,bMψA0,E0 >= M(A0,E0) + O(~)

2. Fluctuation< ψA0,E0 ,bM2ψA0,E0 > − < ψA0,E0 ,

bMψA0,E0 >2= O(~)

Corollary

i. Quantum Master Constraint correctly implemented

ii. If M(A0,E0) = 0 obtain approx. phys. states

< ψA0,E0 ,bM ψA0,E0 >≈< ψA0,E0 ,

bM2ψA0,E0 >≈ 0

Thomas Thiemann Elements of Loop Quantum Gravity

Page 104: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Master Constraint: Semiclassical Limit

Semiclass. Limit of Q. Dynamics testable only with kinemat. coh. states

Theorem [Giesel & T.T. 06] For any (A0,E0)

1. Exp. Value < ψA0,E0 ,bMψA0,E0 >= M(A0,E0) + O(~)

2. Fluctuation< ψA0,E0 ,bM2ψA0,E0 > − < ψA0,E0 ,

bMψA0,E0 >2= O(~)

Corollary

i. Quantum Master Constraint correctly implemented

ii. If M(A0,E0) = 0 obtain approx. phys. states

< ψA0,E0 ,bM ψA0,E0 >≈< ψA0,E0 ,

bM2ψA0,E0 >≈ 0

Thomas Thiemann Elements of Loop Quantum Gravity

Page 105: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Master Constraint: Semiclassical Limit

Semiclass. Limit of Q. Dynamics testable only with kinemat. coh. states

Theorem [Giesel & T.T. 06] For any (A0,E0)

1. Exp. Value < ψA0,E0 ,bMψA0,E0 >= M(A0,E0) + O(~)

2. Fluctuation< ψA0,E0 ,bM2ψA0,E0 > − < ψA0,E0 ,

bMψA0,E0 >2= O(~)

Corollary

i. Quantum Master Constraint correctly implemented

ii. If M(A0,E0) = 0 obtain approx. phys. states

< ψA0,E0 ,bM ψA0,E0 >≈< ψA0,E0 ,

bM2ψA0,E0 >≈ 0

Thomas Thiemann Elements of Loop Quantum Gravity

Page 106: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

What if 0 6∈ spec(M)? Anomalies in Ham. Constr.?

How to fix q’ion ambiguities in definition of M?

So far only existence of Hphys if 0 ∈ spec(M). Can we get more controlfor explicit calculations or a systematic approximation scheme?

Connection BI QFT with QFT on CST [Brunetti, Fredenhagen, Verch 02]?

Gravitons, Feynman graphs [Varadarajan 01, Rovelli 06]

Renormalisation group [Markopoulou 02], [Oeckl 04], [Manrique, Oeckl, Weber, Zapata 07]

and effective theories [Niedermaier, Reuter et al 03-]?

So far only classical Dirac observables. Q’ion on Hphys [Sahlmann 06], [T.T. 04]?What are good clocks [Kuchar 90’s-]?

Infinitesimal quantum dynamics wrt M sufficient but how about physicalHamiltonian? Physical coherent states (preserved by H evolution)[Bojowald, Skirzewski 06]?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 107: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

What if 0 6∈ spec(M)? Anomalies in Ham. Constr.?

How to fix q’ion ambiguities in definition of M?

So far only existence of Hphys if 0 ∈ spec(M). Can we get more controlfor explicit calculations or a systematic approximation scheme?

Connection BI QFT with QFT on CST [Brunetti, Fredenhagen, Verch 02]?

Gravitons, Feynman graphs [Varadarajan 01, Rovelli 06]

Renormalisation group [Markopoulou 02], [Oeckl 04], [Manrique, Oeckl, Weber, Zapata 07]

and effective theories [Niedermaier, Reuter et al 03-]?

So far only classical Dirac observables. Q’ion on Hphys [Sahlmann 06], [T.T. 04]?What are good clocks [Kuchar 90’s-]?

Infinitesimal quantum dynamics wrt M sufficient but how about physicalHamiltonian? Physical coherent states (preserved by H evolution)[Bojowald, Skirzewski 06]?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 108: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

What if 0 6∈ spec(M)? Anomalies in Ham. Constr.?

How to fix q’ion ambiguities in definition of M?

So far only existence of Hphys if 0 ∈ spec(M). Can we get more controlfor explicit calculations or a systematic approximation scheme?

Connection BI QFT with QFT on CST [Brunetti, Fredenhagen, Verch 02]?

Gravitons, Feynman graphs [Varadarajan 01, Rovelli 06]

Renormalisation group [Markopoulou 02], [Oeckl 04], [Manrique, Oeckl, Weber, Zapata 07]

and effective theories [Niedermaier, Reuter et al 03-]?

So far only classical Dirac observables. Q’ion on Hphys [Sahlmann 06], [T.T. 04]?What are good clocks [Kuchar 90’s-]?

Infinitesimal quantum dynamics wrt M sufficient but how about physicalHamiltonian? Physical coherent states (preserved by H evolution)[Bojowald, Skirzewski 06]?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 109: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

What if 0 6∈ spec(M)? Anomalies in Ham. Constr.?

How to fix q’ion ambiguities in definition of M?

So far only existence of Hphys if 0 ∈ spec(M). Can we get more controlfor explicit calculations or a systematic approximation scheme?

Connection BI QFT with QFT on CST [Brunetti, Fredenhagen, Verch 02]?

Gravitons, Feynman graphs [Varadarajan 01, Rovelli 06]

Renormalisation group [Markopoulou 02], [Oeckl 04], [Manrique, Oeckl, Weber, Zapata 07]

and effective theories [Niedermaier, Reuter et al 03-]?

So far only classical Dirac observables. Q’ion on Hphys [Sahlmann 06], [T.T. 04]?What are good clocks [Kuchar 90’s-]?

Infinitesimal quantum dynamics wrt M sufficient but how about physicalHamiltonian? Physical coherent states (preserved by H evolution)[Bojowald, Skirzewski 06]?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 110: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

What if 0 6∈ spec(M)? Anomalies in Ham. Constr.?

How to fix q’ion ambiguities in definition of M?

So far only existence of Hphys if 0 ∈ spec(M). Can we get more controlfor explicit calculations or a systematic approximation scheme?

Connection BI QFT with QFT on CST [Brunetti, Fredenhagen, Verch 02]?

Gravitons, Feynman graphs [Varadarajan 01, Rovelli 06]

Renormalisation group [Markopoulou 02], [Oeckl 04], [Manrique, Oeckl, Weber, Zapata 07]

and effective theories [Niedermaier, Reuter et al 03-]?

So far only classical Dirac observables. Q’ion on Hphys [Sahlmann 06], [T.T. 04]?What are good clocks [Kuchar 90’s-]?

Infinitesimal quantum dynamics wrt M sufficient but how about physicalHamiltonian? Physical coherent states (preserved by H evolution)[Bojowald, Skirzewski 06]?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 111: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

What if 0 6∈ spec(M)? Anomalies in Ham. Constr.?

How to fix q’ion ambiguities in definition of M?

So far only existence of Hphys if 0 ∈ spec(M). Can we get more controlfor explicit calculations or a systematic approximation scheme?

Connection BI QFT with QFT on CST [Brunetti, Fredenhagen, Verch 02]?

Gravitons, Feynman graphs [Varadarajan 01, Rovelli 06]

Renormalisation group [Markopoulou 02], [Oeckl 04], [Manrique, Oeckl, Weber, Zapata 07]

and effective theories [Niedermaier, Reuter et al 03-]?

So far only classical Dirac observables. Q’ion on Hphys [Sahlmann 06], [T.T. 04]?What are good clocks [Kuchar 90’s-]?

Infinitesimal quantum dynamics wrt M sufficient but how about physicalHamiltonian? Physical coherent states (preserved by H evolution)[Bojowald, Skirzewski 06]?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 112: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

What if 0 6∈ spec(M)? Anomalies in Ham. Constr.?

How to fix q’ion ambiguities in definition of M?

So far only existence of Hphys if 0 ∈ spec(M). Can we get more controlfor explicit calculations or a systematic approximation scheme?

Connection BI QFT with QFT on CST [Brunetti, Fredenhagen, Verch 02]?

Gravitons, Feynman graphs [Varadarajan 01, Rovelli 06]

Renormalisation group [Markopoulou 02], [Oeckl 04], [Manrique, Oeckl, Weber, Zapata 07]

and effective theories [Niedermaier, Reuter et al 03-]?

So far only classical Dirac observables. Q’ion on Hphys [Sahlmann 06], [T.T. 04]?What are good clocks [Kuchar 90’s-]?

Infinitesimal quantum dynamics wrt M sufficient but how about physicalHamiltonian? Physical coherent states (preserved by H evolution)[Bojowald, Skirzewski 06]?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 113: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

What if 0 6∈ spec(M)? Anomalies in Ham. Constr.?

How to fix q’ion ambiguities in definition of M?

So far only existence of Hphys if 0 ∈ spec(M). Can we get more controlfor explicit calculations or a systematic approximation scheme?

Connection BI QFT with QFT on CST [Brunetti, Fredenhagen, Verch 02]?

Gravitons, Feynman graphs [Varadarajan 01, Rovelli 06]

Renormalisation group [Markopoulou 02], [Oeckl 04], [Manrique, Oeckl, Weber, Zapata 07]

and effective theories [Niedermaier, Reuter et al 03-]?

So far only classical Dirac observables. Q’ion on Hphys [Sahlmann 06], [T.T. 04]?What are good clocks [Kuchar 90’s-]?

Infinitesimal quantum dynamics wrt M sufficient but how about physicalHamiltonian? Physical coherent states (preserved by H evolution)[Bojowald, Skirzewski 06]?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 114: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Spin Foam Models

Heuristic starting point [Reisenberger & Rovelli 96]

Instead of using single M use ∞ number of Ham. Constraints C(x)

Formal solutions Ψ= δ[C] ψ :=Q

x δ(C(x)) ψ

Formal physical inner product (functional integral)

< Ψ,Ψ′> phys =< ψ, δ[C] ψ′

>=

Z[dN] < ψ, exp(iC(N)) ψ′

>kin

Explicit action of C(N) [T.T. 96-98] suggests spin foam picture

Thomas Thiemann Elements of Loop Quantum Gravity

Page 115: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Spin Foam Models

Heuristic starting point [Reisenberger & Rovelli 96]

Instead of using single M use ∞ number of Ham. Constraints C(x)

Formal solutions Ψ= δ[C] ψ :=Q

x δ(C(x)) ψ

Formal physical inner product (functional integral)

< Ψ,Ψ′> phys =< ψ, δ[C] ψ′

>=

Z[dN] < ψ, exp(iC(N)) ψ′

>kin

Explicit action of C(N) [T.T. 96-98] suggests spin foam picture

Thomas Thiemann Elements of Loop Quantum Gravity

Page 116: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Spin Foam Models

Heuristic starting point [Reisenberger & Rovelli 96]

Instead of using single M use ∞ number of Ham. Constraints C(x)

Formal solutions Ψ= δ[C] ψ :=Q

x δ(C(x)) ψ

Formal physical inner product (functional integral)

< Ψ,Ψ′> phys =< ψ, δ[C] ψ′

>=

Z[dN] < ψ, exp(iC(N)) ψ′

>kin

Explicit action of C(N) [T.T. 96-98] suggests spin foam picture

Thomas Thiemann Elements of Loop Quantum Gravity

Page 117: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Spin Foam Models

Heuristic starting point [Reisenberger & Rovelli 96]

Instead of using single M use ∞ number of Ham. Constraints C(x)

Formal solutions Ψ= δ[C] ψ :=Q

x δ(C(x)) ψ

Formal physical inner product (functional integral)

< Ψ,Ψ′> phys =< ψ, δ[C] ψ′

>=

Z[dN] < ψ, exp(iC(N)) ψ′

>kin

Explicit action of C(N) [T.T. 96-98] suggests spin foam picture

Thomas Thiemann Elements of Loop Quantum Gravity

Page 118: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

PSfrag replacementse1

e1

e2

e2

e3

e3

Σt

Σt+δt

Thomas Thiemann Elements of Loop Quantum Gravity

Page 119: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Spin Foam Models

Heuristic starting point [Reisenberger & Rovelli 96]

Instead of using single M use ∞ number of Ham. Constraints C(x)

Formal solutions Ψ= δ[C] ψ :=Q

x δ(C(x)) ψ

Formal physical inner product (functional integral)

< Ψ,Ψ′> phys =< ψ, δ[C] ψ′

>=

Z[dN] < ψ, exp(iC(N)) ψ′

>kin

Explicit action of C(N) [T.T. 96-98] suggests spin foam picture

Problem: The C(x) are mutually not commuting, henceC(x0)

Qx δ(C(x)) 6= 0. Moreover, C(x) not s.a.

Ways out?: MCP and completely independent approach to spin foams

Thomas Thiemann Elements of Loop Quantum Gravity

Page 120: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Spin Foam Models

Heuristic starting point [Reisenberger & Rovelli 96]

Instead of using single M use ∞ number of Ham. Constraints C(x)

Formal solutions Ψ= δ[C] ψ :=Q

x δ(C(x)) ψ

Formal physical inner product (functional integral)

< Ψ,Ψ′> phys =< ψ, δ[C] ψ′

>=

Z[dN] < ψ, exp(iC(N)) ψ′

>kin

Explicit action of C(N) [T.T. 96-98] suggests spin foam picture

Problem: The C(x) are mutually not commuting, henceC(x0)

Qx δ(C(x)) 6= 0. Moreover, C(x) not s.a.

Ways out?: MCP and completely independent approach to spin foams

Thomas Thiemann Elements of Loop Quantum Gravity

Page 121: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Idea: [Baez, Barrett, Bouffenoir, Crane, Freidel, Girelli, Henneaux, Krasnov, Livine, Noui, Oeckl, Oriti, Perez,

Pfeiffer, Reisenberger, Roche, Rovelli, Starodubtsev, Speziale,.., Zapata 96 – ]

Palatini:R

F ∧ ∗(e ∧ e) = BF:R

B ∧ F

plus simplicity constr.: C(B) = 0 ⇒ B = ±e ∧ e, ± ∗ (e ∧ e)

Palatini PI = perturbation theory of BF – TQFT

Z =

Z[dω de] eiSPalatini =

Z[dω dB dΦ] ei[SBF+

R

Φ C(B)]

Regularisation of PI: Triangulation τ 7→ Zτ

Triangles ∆ ∈ τ ↔ B∆, Edges e ∈ τ∗ ↔ g(e)

Integrate out Φ, B; use Peter & WeylR

G dµH(g) ↔P

π

Z :=Στ wτ Zτ : Group Field Theory [Boulatov,Ooguri 90’s]

Z[dµH(g)] ei[S0[g]+λS1 [g]] =

∞X

n=0

λn

X

n=|π1(τ)|

Proposal [Freidel 05]: Physical inner product: n=0 contribution

All of this works beautifully in 3D, since TQFT

Thomas Thiemann Elements of Loop Quantum Gravity

Page 122: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Idea: [Baez, Barrett, Bouffenoir, Crane, Freidel, Girelli, Henneaux, Krasnov, Livine, Noui, Oeckl, Oriti, Perez,

Pfeiffer, Reisenberger, Roche, Rovelli, Starodubtsev, Speziale,.., Zapata 96 – ]

Palatini:R

F ∧ ∗(e ∧ e) = BF:R

B ∧ F

plus simplicity constr.: C(B) = 0 ⇒ B = ±e ∧ e, ± ∗ (e ∧ e)

Palatini PI = perturbation theory of BF – TQFT

Z =

Z[dω de] eiSPalatini =

Z[dω dB dΦ] ei[SBF+

R

Φ C(B)]

Regularisation of PI: Triangulation τ 7→ Zτ

Triangles ∆ ∈ τ ↔ B∆, Edges e ∈ τ∗ ↔ g(e)

Integrate out Φ, B; use Peter & WeylR

G dµH(g) ↔P

π

Z :=Στ wτ Zτ : Group Field Theory [Boulatov,Ooguri 90’s]

Z[dµH(g)] ei[S0[g]+λS1 [g]] =

∞X

n=0

λn

X

n=|π1(τ)|

Proposal [Freidel 05]: Physical inner product: n=0 contribution

All of this works beautifully in 3D, since TQFT

Thomas Thiemann Elements of Loop Quantum Gravity

Page 123: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Idea: [Baez, Barrett, Bouffenoir, Crane, Freidel, Girelli, Henneaux, Krasnov, Livine, Noui, Oeckl, Oriti, Perez,

Pfeiffer, Reisenberger, Roche, Rovelli, Starodubtsev, Speziale,.., Zapata 96 – ]

Palatini:R

F ∧ ∗(e ∧ e) = BF:R

B ∧ F

plus simplicity constr.: C(B) = 0 ⇒ B = ±e ∧ e, ± ∗ (e ∧ e)

Palatini PI = perturbation theory of BF – TQFT

Z =

Z[dω de] eiSPalatini =

Z[dω dB dΦ] ei[SBF+

R

Φ C(B)]

Regularisation of PI: Triangulation τ 7→ Zτ

Triangles ∆ ∈ τ ↔ B∆, Edges e ∈ τ∗ ↔ g(e)

Integrate out Φ, B; use Peter & WeylR

G dµH(g) ↔P

π

Z :=Στ wτ Zτ : Group Field Theory [Boulatov,Ooguri 90’s]

Z[dµH(g)] ei[S0[g]+λS1 [g]] =

∞X

n=0

λn

X

n=|π1(τ)|

Proposal [Freidel 05]: Physical inner product: n=0 contribution

All of this works beautifully in 3D, since TQFT

Thomas Thiemann Elements of Loop Quantum Gravity

Page 124: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Idea: [Baez, Barrett, Bouffenoir, Crane, Freidel, Girelli, Henneaux, Krasnov, Livine, Noui, Oeckl, Oriti, Perez,

Pfeiffer, Reisenberger, Roche, Rovelli, Starodubtsev, Speziale,.., Zapata 96 – ]

Palatini:R

F ∧ ∗(e ∧ e) = BF:R

B ∧ F

plus simplicity constr.: C(B) = 0 ⇒ B = ±e ∧ e, ± ∗ (e ∧ e)

Palatini PI = perturbation theory of BF – TQFT

Z =

Z[dω de] eiSPalatini =

Z[dω dB dΦ] ei[SBF+

R

Φ C(B)]

Regularisation of PI: Triangulation τ 7→ Zτ

Triangles ∆ ∈ τ ↔ B∆, Edges e ∈ τ∗ ↔ g(e)

Integrate out Φ, B; use Peter & WeylR

G dµH(g) ↔P

π

Z :=Στ wτ Zτ : Group Field Theory [Boulatov,Ooguri 90’s]

Z[dµH(g)] ei[S0[g]+λS1 [g]] =

∞X

n=0

λn

X

n=|π1(τ)|

Proposal [Freidel 05]: Physical inner product: n=0 contribution

All of this works beautifully in 3D, since TQFT

Thomas Thiemann Elements of Loop Quantum Gravity

Page 125: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Idea: [Baez, Barrett, Bouffenoir, Crane, Freidel, Girelli, Henneaux, Krasnov, Livine, Noui, Oeckl, Oriti, Perez,

Pfeiffer, Reisenberger, Roche, Rovelli, Starodubtsev, Speziale,.., Zapata 96 – ]

Palatini:R

F ∧ ∗(e ∧ e) = BF:R

B ∧ F

plus simplicity constr.: C(B) = 0 ⇒ B = ±e ∧ e, ± ∗ (e ∧ e)

Palatini PI = perturbation theory of BF – TQFT

Z =

Z[dω de] eiSPalatini =

Z[dω dB dΦ] ei[SBF+

R

Φ C(B)]

Regularisation of PI: Triangulation τ 7→ Zτ

Triangles ∆ ∈ τ ↔ B∆, Edges e ∈ τ∗ ↔ g(e)

Integrate out Φ, B; use Peter & WeylR

G dµH(g) ↔P

π

Z :=Στ wτ Zτ : Group Field Theory [Boulatov,Ooguri 90’s]

Z[dµH(g)] ei[S0[g]+λS1 [g]] =

∞X

n=0

λn

X

n=|π1(τ)|

Proposal [Freidel 05]: Physical inner product: n=0 contribution

All of this works beautifully in 3D, since TQFT

Thomas Thiemann Elements of Loop Quantum Gravity

Page 126: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Idea: [Baez, Barrett, Bouffenoir, Crane, Freidel, Girelli, Henneaux, Krasnov, Livine, Noui, Oeckl, Oriti, Perez,

Pfeiffer, Reisenberger, Roche, Rovelli, Starodubtsev, Speziale,.., Zapata 96 – ]

Palatini:R

F ∧ ∗(e ∧ e) = BF:R

B ∧ F

plus simplicity constr.: C(B) = 0 ⇒ B = ±e ∧ e, ± ∗ (e ∧ e)

Palatini PI = perturbation theory of BF – TQFT

Z =

Z[dω de] eiSPalatini =

Z[dω dB dΦ] ei[SBF+

R

Φ C(B)]

Regularisation of PI: Triangulation τ 7→ Zτ

Triangles ∆ ∈ τ ↔ B∆, Edges e ∈ τ∗ ↔ g(e)

Integrate out Φ, B; use Peter & WeylR

G dµH(g) ↔P

π

Z :=Στ wτ Zτ : Group Field Theory [Boulatov,Ooguri 90’s]

Z[dµH(g)] ei[S0[g]+λS1 [g]] =

∞X

n=0

λn

X

n=|π1(τ)|

Proposal [Freidel 05]: Physical inner product: n=0 contribution

All of this works beautifully in 3D, since TQFT

Thomas Thiemann Elements of Loop Quantum Gravity

Page 127: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Idea: [Baez, Barrett, Bouffenoir, Crane, Freidel, Girelli, Henneaux, Krasnov, Livine, Noui, Oeckl, Oriti, Perez,

Pfeiffer, Reisenberger, Roche, Rovelli, Starodubtsev, Speziale,.., Zapata 96 – ]

Palatini:R

F ∧ ∗(e ∧ e) = BF:R

B ∧ F

plus simplicity constr.: C(B) = 0 ⇒ B = ±e ∧ e, ± ∗ (e ∧ e)

Palatini PI = perturbation theory of BF – TQFT

Z =

Z[dω de] eiSPalatini =

Z[dω dB dΦ] ei[SBF+

R

Φ C(B)]

Regularisation of PI: Triangulation τ 7→ Zτ

Triangles ∆ ∈ τ ↔ B∆, Edges e ∈ τ∗ ↔ g(e)

Integrate out Φ, B; use Peter & WeylR

G dµH(g) ↔P

π

Z :=Στ wτ Zτ : Group Field Theory [Boulatov,Ooguri 90’s]

Z[dµH(g)] ei[S0[g]+λS1 [g]] =

∞X

n=0

λn

X

n=|π1(τ)|

Proposal [Freidel 05]: Physical inner product: n=0 contribution

All of this works beautifully in 3D, since TQFT

Thomas Thiemann Elements of Loop Quantum Gravity

Page 128: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Idea: [Baez, Barrett, Bouffenoir, Crane, Freidel, Girelli, Henneaux, Krasnov, Livine, Noui, Oeckl, Oriti, Perez,

Pfeiffer, Reisenberger, Roche, Rovelli, Starodubtsev, Speziale,.., Zapata 96 – ]

Palatini:R

F ∧ ∗(e ∧ e) = BF:R

B ∧ F

plus simplicity constr.: C(B) = 0 ⇒ B = ±e ∧ e, ± ∗ (e ∧ e)

Palatini PI = perturbation theory of BF – TQFT

Z =

Z[dω de] eiSPalatini =

Z[dω dB dΦ] ei[SBF+

R

Φ C(B)]

Regularisation of PI: Triangulation τ 7→ Zτ

Triangles ∆ ∈ τ ↔ B∆, Edges e ∈ τ∗ ↔ g(e)

Integrate out Φ, B; use Peter & WeylR

G dµH(g) ↔P

π

Z :=Στ wτ Zτ : Group Field Theory [Boulatov,Ooguri 90’s]

Z[dµH(g)] ei[S0[g]+λS1 [g]] =

∞X

n=0

λn

X

n=|π1(τ)|

Proposal [Freidel 05]: Physical inner product: n=0 contribution

All of this works beautifully in 3D, since TQFT

Thomas Thiemann Elements of Loop Quantum Gravity

Page 129: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS in 4D:

Current (Barrett – Crane) models peaked on degenerate histories [Baez,

Christensen, Willis 03-07]

2nd class simplicity constraints not correctly implemented into measure[Bouffeneoir, Henneaux, Noui, Roche 04]

quantum version of simplicity constraints anomalous[Engle, Pereira, Rovelli 07], [Livine, Speziale 07]

physical significance of the four sectors?

Convergence of GFT perturbation series?

Posivity of GFT scalar product (tree diagrammes) [Pfeiffer 06]?

what is the precise connection between canonical (MCP) and covariant(spin foam) formulation of LQG anyway?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 130: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS in 4D:

Current (Barrett – Crane) models peaked on degenerate histories [Baez,

Christensen, Willis 03-07]

2nd class simplicity constraints not correctly implemented into measure[Bouffeneoir, Henneaux, Noui, Roche 04]

quantum version of simplicity constraints anomalous[Engle, Pereira, Rovelli 07], [Livine, Speziale 07]

physical significance of the four sectors?

Convergence of GFT perturbation series?

Posivity of GFT scalar product (tree diagrammes) [Pfeiffer 06]?

what is the precise connection between canonical (MCP) and covariant(spin foam) formulation of LQG anyway?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 131: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS in 4D:

Current (Barrett – Crane) models peaked on degenerate histories [Baez,

Christensen, Willis 03-07]

2nd class simplicity constraints not correctly implemented into measure[Bouffeneoir, Henneaux, Noui, Roche 04]

quantum version of simplicity constraints anomalous[Engle, Pereira, Rovelli 07], [Livine, Speziale 07]

physical significance of the four sectors?

Convergence of GFT perturbation series?

Posivity of GFT scalar product (tree diagrammes) [Pfeiffer 06]?

what is the precise connection between canonical (MCP) and covariant(spin foam) formulation of LQG anyway?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 132: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS in 4D:

Current (Barrett – Crane) models peaked on degenerate histories [Baez,

Christensen, Willis 03-07]

2nd class simplicity constraints not correctly implemented into measure[Bouffeneoir, Henneaux, Noui, Roche 04]

quantum version of simplicity constraints anomalous[Engle, Pereira, Rovelli 07], [Livine, Speziale 07]

physical significance of the four sectors?

Convergence of GFT perturbation series?

Posivity of GFT scalar product (tree diagrammes) [Pfeiffer 06]?

what is the precise connection between canonical (MCP) and covariant(spin foam) formulation of LQG anyway?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 133: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS in 4D:

Current (Barrett – Crane) models peaked on degenerate histories [Baez,

Christensen, Willis 03-07]

2nd class simplicity constraints not correctly implemented into measure[Bouffeneoir, Henneaux, Noui, Roche 04]

quantum version of simplicity constraints anomalous[Engle, Pereira, Rovelli 07], [Livine, Speziale 07]

physical significance of the four sectors?

Convergence of GFT perturbation series?

Posivity of GFT scalar product (tree diagrammes) [Pfeiffer 06]?

what is the precise connection between canonical (MCP) and covariant(spin foam) formulation of LQG anyway?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 134: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS in 4D:

Current (Barrett – Crane) models peaked on degenerate histories [Baez,

Christensen, Willis 03-07]

2nd class simplicity constraints not correctly implemented into measure[Bouffeneoir, Henneaux, Noui, Roche 04]

quantum version of simplicity constraints anomalous[Engle, Pereira, Rovelli 07], [Livine, Speziale 07]

physical significance of the four sectors?

Convergence of GFT perturbation series?

Posivity of GFT scalar product (tree diagrammes) [Pfeiffer 06]?

what is the precise connection between canonical (MCP) and covariant(spin foam) formulation of LQG anyway?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 135: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS in 4D:

Current (Barrett – Crane) models peaked on degenerate histories [Baez,

Christensen, Willis 03-07]

2nd class simplicity constraints not correctly implemented into measure[Bouffeneoir, Henneaux, Noui, Roche 04]

quantum version of simplicity constraints anomalous[Engle, Pereira, Rovelli 07], [Livine, Speziale 07]

physical significance of the four sectors?

Convergence of GFT perturbation series?

Posivity of GFT scalar product (tree diagrammes) [Pfeiffer 06]?

what is the precise connection between canonical (MCP) and covariant(spin foam) formulation of LQG anyway?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 136: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Quantum Black Hole Physics

Careful analysis: isolated horizons[Ashtekar,Baez,Corichi,Dreyer,Engle,Fairhurst,Krasnov, Krishnan,Lewandowski,Pawlowski,Willis 97–]

Isolated horizon = local generalisation of event horizon

Precise definition leads to σ with interior H∼= S2 boundary andmodifications of classical canonical analysis

Most important consequences for us:

i. Interior bdry conditions make Ar(H) a Dirac observableii. The gauge invariant surface information consists of ordered

N – tuples of intersection points (p1, .., pN), N = 0, 1, 2, ....up to diffeomorphisms together with the degeneracies ofcorresponding (total) spin configurations (j1, .., jN) onintersecting edges

Thomas Thiemann Elements of Loop Quantum Gravity

Page 137: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Quantum Black Hole Physics

Careful analysis: isolated horizons[Ashtekar,Baez,Corichi,Dreyer,Engle,Fairhurst,Krasnov, Krishnan,Lewandowski,Pawlowski,Willis 97–]

Isolated horizon = local generalisation of event horizon

Precise definition leads to σ with interior H∼= S2 boundary andmodifications of classical canonical analysis

Most important consequences for us:

i. Interior bdry conditions make Ar(H) a Dirac observableii. The gauge invariant surface information consists of ordered

N – tuples of intersection points (p1, .., pN), N = 0, 1, 2, ....up to diffeomorphisms together with the degeneracies ofcorresponding (total) spin configurations (j1, .., jN) onintersecting edges

Thomas Thiemann Elements of Loop Quantum Gravity

Page 138: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Quantum Black Hole Physics

Careful analysis: isolated horizons[Ashtekar,Baez,Corichi,Dreyer,Engle,Fairhurst,Krasnov, Krishnan,Lewandowski,Pawlowski,Willis 97–]

Isolated horizon = local generalisation of event horizon

Precise definition leads to σ with interior H∼= S2 boundary andmodifications of classical canonical analysis

Most important consequences for us:

i. Interior bdry conditions make Ar(H) a Dirac observableii. The gauge invariant surface information consists of ordered

N – tuples of intersection points (p1, .., pN), N = 0, 1, 2, ....up to diffeomorphisms together with the degeneracies ofcorresponding (total) spin configurations (j1, .., jN) onintersecting edges

Thomas Thiemann Elements of Loop Quantum Gravity

Page 139: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Quantum Black Hole Physics

Careful analysis: isolated horizons[Ashtekar,Baez,Corichi,Dreyer,Engle,Fairhurst,Krasnov, Krishnan,Lewandowski,Pawlowski,Willis 97–]

Isolated horizon = local generalisation of event horizon

Precise definition leads to σ with interior H∼= S2 boundary andmodifications of classical canonical analysis

Most important consequences for us:

i. Interior bdry conditions make Ar(H) a Dirac observableii. The gauge invariant surface information consists of ordered

N – tuples of intersection points (p1, .., pN), N = 0, 1, 2, ....up to diffeomorphisms together with the degeneracies ofcorresponding (total) spin configurations (j1, .., jN) onintersecting edges

Thomas Thiemann Elements of Loop Quantum Gravity

Page 140: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Quantum Black Hole Physics

Careful analysis: isolated horizons[Ashtekar,Baez,Corichi,Dreyer,Engle,Fairhurst,Krasnov, Krishnan,Lewandowski,Pawlowski,Willis 97–]

Isolated horizon = local generalisation of event horizon

Precise definition leads to σ with interior H∼= S2 boundary andmodifications of classical canonical analysis

Most important consequences for us:

i. Interior bdry conditions make Ar(H) a Dirac observableii. The gauge invariant surface information consists of ordered

N – tuples of intersection points (p1, .., pN), N = 0, 1, 2, ....up to diffeomorphisms together with the degeneracies ofcorresponding (total) spin configurations (j1, .., jN) onintersecting edges

Thomas Thiemann Elements of Loop Quantum Gravity

Page 141: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

PSfrag replacementsp1

p2

pN

j1

j2

jN

Thomas Thiemann Elements of Loop Quantum Gravity

Page 142: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Entropy – Calculation[Krasnov 95], [Ashtekar,Baez,Krasnov 97], [Meissner 04], [Domagala,Lewandowski 04], [Ghosh,Mitra 06]

Given Ar0, count number N(Ar(H)) of SNW Eigenstates Tλ of Ar(H)with EV λ ∈ [Ar0 − `2

P,Ar0 + `2P].

spec( bAr(H)) = β`2P

PNk=1

pjk(jk + 1)

In microcanon. ensemble we find

S(Ar0) = ln(N(Ar0)) =Ar0

4~G+ O(ln(

Ar0

`2P

))

provided that Immirzi β = β0

Microscopical explanation: polymer – like excitations of geometry definesurface.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 143: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Entropy – Calculation[Krasnov 95], [Ashtekar,Baez,Krasnov 97], [Meissner 04], [Domagala,Lewandowski 04], [Ghosh,Mitra 06]

Given Ar0, count number N(Ar(H)) of SNW Eigenstates Tλ of Ar(H)with EV λ ∈ [Ar0 − `2

P,Ar0 + `2P].

spec( bAr(H)) = β`2P

PNk=1

pjk(jk + 1)

In microcanon. ensemble we find

S(Ar0) = ln(N(Ar0)) =Ar0

4~G+ O(ln(

Ar0

`2P

))

provided that Immirzi β = β0

Microscopical explanation: polymer – like excitations of geometry definesurface.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 144: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Entropy – Calculation[Krasnov 95], [Ashtekar,Baez,Krasnov 97], [Meissner 04], [Domagala,Lewandowski 04], [Ghosh,Mitra 06]

Given Ar0, count number N(Ar(H)) of SNW Eigenstates Tλ of Ar(H)with EV λ ∈ [Ar0 − `2

P,Ar0 + `2P].

spec( bAr(H)) = β`2P

PNk=1

pjk(jk + 1)

In microcanon. ensemble we find

S(Ar0) = ln(N(Ar0)) =Ar0

4~G+ O(ln(

Ar0

`2P

))

provided that Immirzi β = β0

Microscopical explanation: polymer – like excitations of geometry definesurface.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 145: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Entropy – Calculation[Krasnov 95], [Ashtekar,Baez,Krasnov 97], [Meissner 04], [Domagala,Lewandowski 04], [Ghosh,Mitra 06]

Given Ar0, count number N(Ar(H)) of SNW Eigenstates Tλ of Ar(H)with EV λ ∈ [Ar0 − `2

P,Ar0 + `2P].

spec( bAr(H)) = β`2P

PNk=1

pjk(jk + 1)

In microcanon. ensemble we find

S(Ar0) = ln(N(Ar0)) =Ar0

4~G+ O(ln(

Ar0

`2P

))

provided that Immirzi β = β0

Microscopical explanation: polymer – like excitations of geometry definesurface.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 146: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Entropy – Calculation[Krasnov 95], [Ashtekar,Baez,Krasnov 97], [Meissner 04], [Domagala,Lewandowski 04], [Ghosh,Mitra 06]

Given Ar0, count number N(Ar(H)) of SNW Eigenstates Tλ of Ar(H)with EV λ ∈ [Ar0 − `2

P,Ar0 + `2P].

spec( bAr(H)) = β`2P

PNk=1

pjk(jk + 1)

In microcanon. ensemble we find

S(Ar0) = ln(N(Ar0)) =Ar0

4~G+ O(ln(

Ar0

`2P

))

provided that Immirzi β = β0

Microscopical explanation: polymer – like excitations of geometry definesurface.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 147: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Warning: All spins contribute, no bit picture!

Thomas Thiemann Elements of Loop Quantum Gravity

Page 148: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

Secret assumption: For each boundary configuration ∃ at leastone matching bulk solution of M=0. Otherwise S decreases andchanges β0! Can one check this?

Analysis has significant classical input (semiclassical quantumblack hole). Can one define purely quantum trapping conditions[Dasgupta 05], [Husain,Winkler 05]?

Hawking effect from first principles? Geometry transmutationsgenerate matter QFT modes [Krasnov 00]?

Is there renormalisation of G in LQG and can this be absorbedinto β [Jacobson 04]?

Quasinormal mode puzzle [Dreyer 02]

Entropy range q’ion for specific [Ar0 − δ`2P,Ar0 + δ`2

P] [Corichi et al 06]

Thomas Thiemann Elements of Loop Quantum Gravity

Page 149: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

Secret assumption: For each boundary configuration ∃ at leastone matching bulk solution of M=0. Otherwise S decreases andchanges β0! Can one check this?

Analysis has significant classical input (semiclassical quantumblack hole). Can one define purely quantum trapping conditions[Dasgupta 05], [Husain,Winkler 05]?

Hawking effect from first principles? Geometry transmutationsgenerate matter QFT modes [Krasnov 00]?

Is there renormalisation of G in LQG and can this be absorbedinto β [Jacobson 04]?

Quasinormal mode puzzle [Dreyer 02]

Entropy range q’ion for specific [Ar0 − δ`2P,Ar0 + δ`2

P] [Corichi et al 06]

Thomas Thiemann Elements of Loop Quantum Gravity

Page 150: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

Secret assumption: For each boundary configuration ∃ at leastone matching bulk solution of M=0. Otherwise S decreases andchanges β0! Can one check this?

Analysis has significant classical input (semiclassical quantumblack hole). Can one define purely quantum trapping conditions[Dasgupta 05], [Husain,Winkler 05]?

Hawking effect from first principles? Geometry transmutationsgenerate matter QFT modes [Krasnov 00]?

Is there renormalisation of G in LQG and can this be absorbedinto β [Jacobson 04]?

Quasinormal mode puzzle [Dreyer 02]

Entropy range q’ion for specific [Ar0 − δ`2P,Ar0 + δ`2

P] [Corichi et al 06]

Thomas Thiemann Elements of Loop Quantum Gravity

Page 151: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

Secret assumption: For each boundary configuration ∃ at leastone matching bulk solution of M=0. Otherwise S decreases andchanges β0! Can one check this?

Analysis has significant classical input (semiclassical quantumblack hole). Can one define purely quantum trapping conditions[Dasgupta 05], [Husain,Winkler 05]?

Hawking effect from first principles? Geometry transmutationsgenerate matter QFT modes [Krasnov 00]?

Is there renormalisation of G in LQG and can this be absorbedinto β [Jacobson 04]?

Quasinormal mode puzzle [Dreyer 02]

Entropy range q’ion for specific [Ar0 − δ`2P,Ar0 + δ`2

P] [Corichi et al 06]

Thomas Thiemann Elements of Loop Quantum Gravity

Page 152: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

Secret assumption: For each boundary configuration ∃ at leastone matching bulk solution of M=0. Otherwise S decreases andchanges β0! Can one check this?

Analysis has significant classical input (semiclassical quantumblack hole). Can one define purely quantum trapping conditions[Dasgupta 05], [Husain,Winkler 05]?

Hawking effect from first principles? Geometry transmutationsgenerate matter QFT modes [Krasnov 00]?

Is there renormalisation of G in LQG and can this be absorbedinto β [Jacobson 04]?

Quasinormal mode puzzle [Dreyer 02]

Entropy range q’ion for specific [Ar0 − δ`2P,Ar0 + δ`2

P] [Corichi et al 06]

Thomas Thiemann Elements of Loop Quantum Gravity

Page 153: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

Secret assumption: For each boundary configuration ∃ at leastone matching bulk solution of M=0. Otherwise S decreases andchanges β0! Can one check this?

Analysis has significant classical input (semiclassical quantumblack hole). Can one define purely quantum trapping conditions[Dasgupta 05], [Husain,Winkler 05]?

Hawking effect from first principles? Geometry transmutationsgenerate matter QFT modes [Krasnov 00]?

Is there renormalisation of G in LQG and can this be absorbedinto β [Jacobson 04]?

Quasinormal mode puzzle [Dreyer 02]

Entropy range q’ion for specific [Ar0 − δ`2P,Ar0 + δ`2

P] [Corichi et al 06]

Thomas Thiemann Elements of Loop Quantum Gravity

Page 154: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Singularity avoidance

Singularities: Divergence of Riemann Tensor R(4)µνρσ

Thomas Thiemann Elements of Loop Quantum Gravity

Page 155: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Idea:

Gauss – Codacci∫

Md4X

√| det(g)| R(4) =

Rdt

σ

d3x NTr

(FabEaEb

)√| det(E)|

=:

Rdt R(N)

Consider coh. st. on H concentrated on class. sing. trajectoryt 7→ (A0(t),E0(t)).

Calculate< ψA0(t),E0(t), R(N) ψA0(t),E0(t) >

Result [Brunnemann, T.T. 05]:

1. Curvature operator not bounded2. However: Expectation value finite for bh and cosmological

singularities of order of . `−2P ≈ 1066cm−2.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 156: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Idea:

Gauss – Codacci∫

Md4X

√| det(g)| R(4) =

Rdt

σ

d3x NTr

(FabEaEb

)√| det(E)|

=:

Rdt R(N)

Consider coh. st. on H concentrated on class. sing. trajectoryt 7→ (A0(t),E0(t)).

Calculate< ψA0(t),E0(t), R(N) ψA0(t),E0(t) >

Result [Brunnemann, T.T. 05]:

1. Curvature operator not bounded2. However: Expectation value finite for bh and cosmological

singularities of order of . `−2P ≈ 1066cm−2.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 157: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Idea:

Gauss – Codacci∫

Md4X

√| det(g)| R(4) =

Rdt

σ

d3x NTr

(FabEaEb

)√| det(E)|

=:

Rdt R(N)

Consider coh. st. on H concentrated on class. sing. trajectoryt 7→ (A0(t),E0(t)).

Calculate< ψA0(t),E0(t), R(N) ψA0(t),E0(t) >

Result [Brunnemann, T.T. 05]:

1. Curvature operator not bounded2. However: Expectation value finite for bh and cosmological

singularities of order of . `−2P ≈ 1066cm−2.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 158: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Idea:

Gauss – Codacci∫

Md4X

√| det(g)| R(4) =

Rdt

σ

d3x NTr

(FabEaEb

)√| det(E)|

=:

Rdt R(N)

Consider coh. st. on H concentrated on class. sing. trajectoryt 7→ (A0(t),E0(t)).

Calculate< ψA0(t),E0(t), R(N) ψA0(t),E0(t) >

Result [Brunnemann, T.T. 05]:

1. Curvature operator not bounded2. However: Expectation value finite for bh and cosmological

singularities of order of . `−2P ≈ 1066cm−2.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 159: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

Idea:

Gauss – Codacci∫

Md4X

√| det(g)| R(4) =

Rdt

σ

d3x NTr

(FabEaEb

)√| det(E)|

=:

Rdt R(N)

Consider coh. st. on H concentrated on class. sing. trajectoryt 7→ (A0(t),E0(t)).

Calculate< ψA0(t),E0(t), R(N) ψA0(t),E0(t) >

Result [Brunnemann, T.T. 05]:

1. Curvature operator not bounded2. However: Expectation value finite for bh and cosmological

singularities of order of . `−2P ≈ 1066cm−2.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 160: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

However, what one really should be doing:

Compute physical HS and physical coherent states Ψ

Choose physical clock and physical Hamiltonian H

Monitor expectation value of Dirac observables

τ 7→ < Ψ,Of(τ)Ψ > phys = < Ψ,eiτH Of(0) e−iτHΨ > phys

for classically singular spatially diffeo inv. f

All this is possible in certain truncated models of LQG[Bojowald 00 -, Bojowald et al 01-], [Ashtekar, Pawlowski, Singh 06-]

LQC = (cosmological) mini/midisuperspace models q’isedwith LQG methods

Spectacular results, e.g. physical propagation throughsingularity, pre – big bang!

Thomas Thiemann Elements of Loop Quantum Gravity

Page 161: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

However, what one really should be doing:

Compute physical HS and physical coherent states Ψ

Choose physical clock and physical Hamiltonian H

Monitor expectation value of Dirac observables

τ 7→ < Ψ,Of(τ)Ψ > phys = < Ψ,eiτH Of(0) e−iτHΨ > phys

for classically singular spatially diffeo inv. f

All this is possible in certain truncated models of LQG[Bojowald 00 -, Bojowald et al 01-], [Ashtekar, Pawlowski, Singh 06-]

LQC = (cosmological) mini/midisuperspace models q’isedwith LQG methods

Spectacular results, e.g. physical propagation throughsingularity, pre – big bang!

Thomas Thiemann Elements of Loop Quantum Gravity

Page 162: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

However, what one really should be doing:

Compute physical HS and physical coherent states Ψ

Choose physical clock and physical Hamiltonian H

Monitor expectation value of Dirac observables

τ 7→ < Ψ,Of(τ)Ψ > phys = < Ψ,eiτH Of(0) e−iτHΨ > phys

for classically singular spatially diffeo inv. f

All this is possible in certain truncated models of LQG[Bojowald 00 -, Bojowald et al 01-], [Ashtekar, Pawlowski, Singh 06-]

LQC = (cosmological) mini/midisuperspace models q’isedwith LQG methods

Spectacular results, e.g. physical propagation throughsingularity, pre – big bang!

Thomas Thiemann Elements of Loop Quantum Gravity

Page 163: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

However, what one really should be doing:

Compute physical HS and physical coherent states Ψ

Choose physical clock and physical Hamiltonian H

Monitor expectation value of Dirac observables

τ 7→ < Ψ,Of(τ)Ψ > phys = < Ψ,eiτH Of(0) e−iτHΨ > phys

for classically singular spatially diffeo inv. f

All this is possible in certain truncated models of LQG[Bojowald 00 -, Bojowald et al 01-], [Ashtekar, Pawlowski, Singh 06-]

LQC = (cosmological) mini/midisuperspace models q’isedwith LQG methods

Spectacular results, e.g. physical propagation throughsingularity, pre – big bang!

Thomas Thiemann Elements of Loop Quantum Gravity

Page 164: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

However, what one really should be doing:

Compute physical HS and physical coherent states Ψ

Choose physical clock and physical Hamiltonian H

Monitor expectation value of Dirac observables

τ 7→ < Ψ,Of(τ)Ψ > phys = < Ψ,eiτH Of(0) e−iτHΨ > phys

for classically singular spatially diffeo inv. f

All this is possible in certain truncated models of LQG[Bojowald 00 -, Bojowald et al 01-], [Ashtekar, Pawlowski, Singh 06-]

LQC = (cosmological) mini/midisuperspace models q’isedwith LQG methods

Spectacular results, e.g. physical propagation throughsingularity, pre – big bang!

Thomas Thiemann Elements of Loop Quantum Gravity

Page 165: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

However, what one really should be doing:

Compute physical HS and physical coherent states Ψ

Choose physical clock and physical Hamiltonian H

Monitor expectation value of Dirac observables

τ 7→ < Ψ,Of(τ)Ψ > phys = < Ψ,eiτH Of(0) e−iτHΨ > phys

for classically singular spatially diffeo inv. f

All this is possible in certain truncated models of LQG[Bojowald 00 -, Bojowald et al 01-], [Ashtekar, Pawlowski, Singh 06-]

LQC = (cosmological) mini/midisuperspace models q’isedwith LQG methods

Spectacular results, e.g. physical propagation throughsingularity, pre – big bang!

Thomas Thiemann Elements of Loop Quantum Gravity

Page 166: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

Can we repeat this in the full theory?

Are kinematical calculations good approximations to calculationsin the physical HS [Ashtekar,Bombelli,Corichi 06]?

What are appropriate clocks and physical Hamiltonians?[Dittrich, Tambornino 07]

How to obtain gauge invariant (physical) coherent states?[Bahr, T.T. 07]

Can we embed LQC as a sector (invariant subspace) into thephysical LQG Hilbert space [Bojowald 00], [Engle 06]?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 167: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

Can we repeat this in the full theory?

Are kinematical calculations good approximations to calculationsin the physical HS [Ashtekar,Bombelli,Corichi 06]?

What are appropriate clocks and physical Hamiltonians?[Dittrich, Tambornino 07]

How to obtain gauge invariant (physical) coherent states?[Bahr, T.T. 07]

Can we embed LQC as a sector (invariant subspace) into thephysical LQG Hilbert space [Bojowald 00], [Engle 06]?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 168: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

Can we repeat this in the full theory?

Are kinematical calculations good approximations to calculationsin the physical HS [Ashtekar,Bombelli,Corichi 06]?

What are appropriate clocks and physical Hamiltonians?[Dittrich, Tambornino 07]

How to obtain gauge invariant (physical) coherent states?[Bahr, T.T. 07]

Can we embed LQC as a sector (invariant subspace) into thephysical LQG Hilbert space [Bojowald 00], [Engle 06]?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 169: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

Can we repeat this in the full theory?

Are kinematical calculations good approximations to calculationsin the physical HS [Ashtekar,Bombelli,Corichi 06]?

What are appropriate clocks and physical Hamiltonians?[Dittrich, Tambornino 07]

How to obtain gauge invariant (physical) coherent states?[Bahr, T.T. 07]

Can we embed LQC as a sector (invariant subspace) into thephysical LQG Hilbert space [Bojowald 00], [Engle 06]?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 170: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Master Constraint ProgrammeSpin Foam ModelsQuantum Black Hole PhysicsSingularity avoidance

OPEN PROBLEMS:

Can we repeat this in the full theory?

Are kinematical calculations good approximations to calculationsin the physical HS [Ashtekar,Bombelli,Corichi 06]?

What are appropriate clocks and physical Hamiltonians?[Dittrich, Tambornino 07]

How to obtain gauge invariant (physical) coherent states?[Bahr, T.T. 07]

Can we embed LQC as a sector (invariant subspace) into thephysical LQG Hilbert space [Bojowald 00], [Engle 06]?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 171: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Miscellaneous Open QuestionsSummary

Miscellaneous Open Questions

Explanation of the tiny Λ through quantum geometry [Sahlmann, T.T. 02]?(Dynamical) cosmological constant operator?

Connection with experiment? QG Phenomenology [Morales-Tecotl 03-]? E.g.quantum cosmological perturbation theory [Brandenberger, Feldmann, Mukhanov 92]

(important for WMAP, PLANCK) from first principles [Hofmann, Winkler 04],

[Dittrich,Tambornino 06]?DSR type of non comm. matter QFT from integrating out geometry dof[Baratin, Freidel 06] in 3D also in 4D quantum gravity [Hossenfelder 04-]?

Does LQG allow for a background independendent formulation of stringtheory [Baez, Perez 06], [Fairbairn, Perez 07]?

How does LQG relate to other formulations: causal sets [Dowker, Sorkin 90’s -]

or CDT [Ambjorn, Jurkiewicz, Loll 00-] or consistently discretised QG[Gambini, Pullin 03-]?

AIL Rep. highly discontinuous (e.g. infinitesimal diffeos 6 ∃). Are theredifferent A leading to reps. with increased continuity properties, hencedecreased q’ion ambiguities?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 172: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Miscellaneous Open QuestionsSummary

Miscellaneous Open Questions

Explanation of the tiny Λ through quantum geometry [Sahlmann, T.T. 02]?(Dynamical) cosmological constant operator?

Connection with experiment? QG Phenomenology [Morales-Tecotl 03-]? E.g.quantum cosmological perturbation theory [Brandenberger, Feldmann, Mukhanov 92]

(important for WMAP, PLANCK) from first principles [Hofmann, Winkler 04],

[Dittrich,Tambornino 06]?DSR type of non comm. matter QFT from integrating out geometry dof[Baratin, Freidel 06] in 3D also in 4D quantum gravity [Hossenfelder 04-]?

Does LQG allow for a background independendent formulation of stringtheory [Baez, Perez 06], [Fairbairn, Perez 07]?

How does LQG relate to other formulations: causal sets [Dowker, Sorkin 90’s -]

or CDT [Ambjorn, Jurkiewicz, Loll 00-] or consistently discretised QG[Gambini, Pullin 03-]?

AIL Rep. highly discontinuous (e.g. infinitesimal diffeos 6 ∃). Are theredifferent A leading to reps. with increased continuity properties, hencedecreased q’ion ambiguities?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 173: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Miscellaneous Open QuestionsSummary

Miscellaneous Open Questions

Explanation of the tiny Λ through quantum geometry [Sahlmann, T.T. 02]?(Dynamical) cosmological constant operator?

Connection with experiment? QG Phenomenology [Morales-Tecotl 03-]? E.g.quantum cosmological perturbation theory [Brandenberger, Feldmann, Mukhanov 92]

(important for WMAP, PLANCK) from first principles [Hofmann, Winkler 04],

[Dittrich,Tambornino 06]?DSR type of non comm. matter QFT from integrating out geometry dof[Baratin, Freidel 06] in 3D also in 4D quantum gravity [Hossenfelder 04-]?

Does LQG allow for a background independendent formulation of stringtheory [Baez, Perez 06], [Fairbairn, Perez 07]?

How does LQG relate to other formulations: causal sets [Dowker, Sorkin 90’s -]

or CDT [Ambjorn, Jurkiewicz, Loll 00-] or consistently discretised QG[Gambini, Pullin 03-]?

AIL Rep. highly discontinuous (e.g. infinitesimal diffeos 6 ∃). Are theredifferent A leading to reps. with increased continuity properties, hencedecreased q’ion ambiguities?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 174: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Miscellaneous Open QuestionsSummary

Miscellaneous Open Questions

Explanation of the tiny Λ through quantum geometry [Sahlmann, T.T. 02]?(Dynamical) cosmological constant operator?

Connection with experiment? QG Phenomenology [Morales-Tecotl 03-]? E.g.quantum cosmological perturbation theory [Brandenberger, Feldmann, Mukhanov 92]

(important for WMAP, PLANCK) from first principles [Hofmann, Winkler 04],

[Dittrich,Tambornino 06]?DSR type of non comm. matter QFT from integrating out geometry dof[Baratin, Freidel 06] in 3D also in 4D quantum gravity [Hossenfelder 04-]?

Does LQG allow for a background independendent formulation of stringtheory [Baez, Perez 06], [Fairbairn, Perez 07]?

How does LQG relate to other formulations: causal sets [Dowker, Sorkin 90’s -]

or CDT [Ambjorn, Jurkiewicz, Loll 00-] or consistently discretised QG[Gambini, Pullin 03-]?

AIL Rep. highly discontinuous (e.g. infinitesimal diffeos 6 ∃). Are theredifferent A leading to reps. with increased continuity properties, hencedecreased q’ion ambiguities?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 175: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Miscellaneous Open QuestionsSummary

Miscellaneous Open Questions

Explanation of the tiny Λ through quantum geometry [Sahlmann, T.T. 02]?(Dynamical) cosmological constant operator?

Connection with experiment? QG Phenomenology [Morales-Tecotl 03-]? E.g.quantum cosmological perturbation theory [Brandenberger, Feldmann, Mukhanov 92]

(important for WMAP, PLANCK) from first principles [Hofmann, Winkler 04],

[Dittrich,Tambornino 06]?DSR type of non comm. matter QFT from integrating out geometry dof[Baratin, Freidel 06] in 3D also in 4D quantum gravity [Hossenfelder 04-]?

Does LQG allow for a background independendent formulation of stringtheory [Baez, Perez 06], [Fairbairn, Perez 07]?

How does LQG relate to other formulations: causal sets [Dowker, Sorkin 90’s -]

or CDT [Ambjorn, Jurkiewicz, Loll 00-] or consistently discretised QG[Gambini, Pullin 03-]?

AIL Rep. highly discontinuous (e.g. infinitesimal diffeos 6 ∃). Are theredifferent A leading to reps. with increased continuity properties, hencedecreased q’ion ambiguities?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 176: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Miscellaneous Open QuestionsSummary

Miscellaneous Open Questions

Explanation of the tiny Λ through quantum geometry [Sahlmann, T.T. 02]?(Dynamical) cosmological constant operator?

Connection with experiment? QG Phenomenology [Morales-Tecotl 03-]? E.g.quantum cosmological perturbation theory [Brandenberger, Feldmann, Mukhanov 92]

(important for WMAP, PLANCK) from first principles [Hofmann, Winkler 04],

[Dittrich,Tambornino 06]?DSR type of non comm. matter QFT from integrating out geometry dof[Baratin, Freidel 06] in 3D also in 4D quantum gravity [Hossenfelder 04-]?

Does LQG allow for a background independendent formulation of stringtheory [Baez, Perez 06], [Fairbairn, Perez 07]?

How does LQG relate to other formulations: causal sets [Dowker, Sorkin 90’s -]

or CDT [Ambjorn, Jurkiewicz, Loll 00-] or consistently discretised QG[Gambini, Pullin 03-]?

AIL Rep. highly discontinuous (e.g. infinitesimal diffeos 6 ∃). Are theredifferent A leading to reps. with increased continuity properties, hencedecreased q’ion ambiguities?

Thomas Thiemann Elements of Loop Quantum Gravity

Page 177: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Miscellaneous Open QuestionsSummary

Summary

LQG = candidate f. quantum gravity.

Mathematically rigorous formulation.

Clear, simple conceptual setup, minimalistic.

Promising, but much must and can be done to makecontact with low energy physics.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 178: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Miscellaneous Open QuestionsSummary

Summary

LQG = candidate f. quantum gravity.

Mathematically rigorous formulation.

Clear, simple conceptual setup, minimalistic.

Promising, but much must and can be done to makecontact with low energy physics.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 179: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Miscellaneous Open QuestionsSummary

Summary

LQG = candidate f. quantum gravity.

Mathematically rigorous formulation.

Clear, simple conceptual setup, minimalistic.

Promising, but much must and can be done to makecontact with low energy physics.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 180: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Miscellaneous Open QuestionsSummary

Summary

LQG = candidate f. quantum gravity.

Mathematically rigorous formulation.

Clear, simple conceptual setup, minimalistic.

Promising, but much must and can be done to makecontact with low energy physics.

Thomas Thiemann Elements of Loop Quantum Gravity

Page 181: Loop Quantum Gravity (LQG) · Naive: Quantum gravity Cut – off at k‘ Pˇ 1 where ‘2 = ~G ?  = ~ 2 Z R3 d3x ‘ 4 P Comparison with cosmological term

MotivationThe Challenge of Quantum Gravitaty

Secured LandUnknown Territory

Open Questions and Summary

Miscellaneous Open QuestionsSummary

All details can be found in (scheduled Sep. 30th 2007):

Thomas Thiemann Elements of Loop Quantum Gravity