41
CARMEL B. SABADO CE-164 PROF.Allan BSCE-5 Timber Excel Program *note:the boxes in yellow should be inputed by the designer,while blue ones are c DESIGN OF PRATT TRUSS DATA: Type of wood: pahutan Bending and Tension(Fb) 13.80 MPa Shear(Fv) 1.34 MPa Compression(Fc) 8.14 MPa Modulus of Elasticity(E) 9100.00 MPa Relative Density(G) 0.55 Specific Gravity 5.40 LOADINGS: Wind Pressure 0.96 kPa Minimum Roof Live Load 0.80 kPa GI roofing 0.15 kPa Residential Live Load 2.00 kPa SPACING: Purlins 0.40 m Truss 2.75 m Floor Joi 0.40 m DESIGN OF PURLINS DATA: TRIAL DIMENSION: Span 12.00 m 150 x 200 mm Height 2.00 m I= 1.00E+08 9.46 LOADINGS: Live load 0.32 Kn/m Roofing 0.06 Kn/m Purlin weight 0.16 Kn/m 0.54 Kn/m Wn2 kN/m 3 WDL+LL mm 4 Theta, q; WDL+LL

Long Span Pratt

Embed Size (px)

DESCRIPTION

an excel program that will help the user in designing a long-span timber pratt truss..=)

Citation preview

Page 1: Long Span Pratt

CARMEL B. SABADO CE-164 PROF.Allan E. MilanoBSCE-5 Timber Excel Program*note:the boxes in yellow should be inputed by the designer,while blue ones are computed by the program.=)

DESIGN OF PRATT TRUSS

DATA:Type of wood: pahutanBending and Tension(Fb) 13.80 MPa

Shear(Fv) 1.34 MPa

Compression(Fc) 8.14 MPa

Modulus of Elasticity(E) 9100.00 MPa

Relative Density(G) 0.55Specific Gravity 5.40

LOADINGS:Wind Pressure 0.96 kPa

Minimum Roof Live Load 0.80 kPa

GI roofing 0.15 kPa

Residential Live Load 2.00 kPa

SPACING:Purlins 0.40 mTruss 2.75 mFloor Joist 0.40 m

DESIGN OF PURLINS

DATA: TRIAL DIMENSION:Span 12.00 m 150 x 200 mm

Height 2.00 m I= 1.00E+08

9.46

LOADINGS:Live load 0.32 Kn/mRoofing 0.06 Kn/mPurlin weight 0.16 Kn/m

0.54 Kn/m

Wn2 Wnt

kN/m3 WDL+LL

mm4

Theta, q;

WDL+LL

Page 2: Long Span Pratt

Load Combinations:Condition 1: DL + LL

= 0.53 kN/m governs!!Condition 2: DL + LL + WL

= 0.23 kN/m LOAD COMBINATION:Windward:

Pn = 1.3(sinq - 0.5)P -0.27

Leeward:

MOMENTS: Pn = -0.5P -0.48

9.6211285 Kn-m(WW) -0.11

0.178169 Kn-m (LW) -0.192

0.53

0.09

SHEAR:0.42

3.2070428 Kn 0.09

0.089084523 Kn

CHECK FOR BENDING:

= = 9.86 Kn-m < 13.80it is safe!=)

CHECK FOR SHEAR;

= = 0.16 Kn < 1.34it is safe!=)

CHECK FOR DEFLECTION:

= 0.44 mm

= 7.64 mm

it is safe!=) Therefore use

DESIGN OF TRUSS

WDL+LL

WDL+LL+WL

Mn = Mx = 1/8(WnLx2)

Wn1 = Pn(Spacing) Mt = My = 1/12(WnLy2) Wn1 = Pn(Spacing)

Wn2 = WDL+LL(cosq) Wnt = WDL+LL(sinq)

WN = Wn1 + Wn2

Vx = (1/2)WnLx Wt = Wnt

Vy = (1/2)WnLy

To be safe, Fb > Fact

To be safe, Fv > Fvact

****To be safe, Yall > Yact

Yact = (5/384)(WLn4/EI)Yallow = L/360

6Mx

bh2+6My

b2h

3Vx2bh

+3Vy2bh

Page 3: Long Span Pratt

TRIAL DIMENSION:75 x 200 mm

I= 5.00E+07 1.512

LOAD CARRIED BY THE TRUSS: 9.194q

Loadings:GI roofing = 5.0182791 Kn 9.069

Wt. of Purlins = 0.44517 KnMin. Roof LL = 26.764155 Kntotal = 32.227604 Kn

15.84

Weight of truss:Overall Length of Truss = 67.99 m q 16.05849

Weight of Truss = 5.5031106 KnTOTAL 37.73071 Kn

Windwardwind load = -9.19449308 Kn/mfx = 0.30231307 Knfy = 1.81387842 Kn

Leewardwind load = -16.0584931 Kn/mfx = 0.528 Knfy = 3.168 Kn

Load carried by the ceiling:Ceiling Load = 0.012 Kn/m

18.865 KN

Forces Due to DL + LL9.433 Kn 9.43268 Kn

mm4

M

C101
*: including length of its member
B119
*: Assuming 5mm thk. Plywood, with a density of only 10% of the density of the main lumber used
Page 4: Long Span Pratt

9.433 Kn

9.433 Kn

9.433 Kn

ceiling load

3.0 3.0 3.0 m 3 m 3.000 m 3.0000

24 m

1.3541 KN

Forces Due to Wind Load 0.83 KN1.814 Kn 3.168 Kn

0.3023 KN 0.528

1.814 KN

0.3023 KN

1.814 Kn0.3023 KN

1.814 Kn0.3023 KN

A B C D FE

N

M

L

K

J

A B C D FE

N

M

L

K

J

Page 5: Long Span Pratt

3.0 3.0 3.0 m 3 m 3.000 m 3.0000

24 m

NOTE: the reactions and axial bar forces are solved using the GRASP SOFTWARE. The calculations and the drawings are not shown here.instead, a summary in table form is provided.

Summary of Bar Forces:

Top Chords Length DL + LL WL DL + LL + WLAJ 3.04 56.90 11.00 67.90JK 3.04 56.90 10.70 67.60KL 3.04 -57.30 -8.800 -66.10LM 3.04 -76.40 -11.70 -88.10MN 3.04 -76.40 -13.70 -90.10NO 3.04 -57.30 -10.30 -67.6OP 3.04 56.90 19.80 76.7

PI 3.04 56.90 19.30 76.20Bottom ChordS

AB 3.00 -56.20 -11.2 -44.30BC 3.00 56.60 11.90 71.10CD 3.00 75.40 14.50 88.40DE 3.00 70.70 13.00 83.70EF 3.00 70.70 13.00 83.70FG 3.00 75.40 15.60 91.00GH 3.00 56.60 11.7 68.30

HI 3.00 -56.20 -18.50 -74.70Verticals

BJ 0.50 -9.30 -1.900 -11.200KC 1.00 9.40 1.300 10.700LD 1.50 -3.10 -1.0 -4.10ME 2.00 0.002 0.000 0.002NF 1.50 -3.10 -1.800 -4.900OG 1.00 9.40 2.000 11.400HP 0.50 -9.30 -3.100 -12.400

DiagonalsBK 3.16 -118.80 -19.90 -138.70CL 3.35 -21.10 -2.900 -24.00DM 3.61 5.60 1.800 7.40MF 3.61 5.60 3.200 8.80NG 3.35 -21.10 -4.400 -25.50

Page 6: Long Span Pratt

OH 3.16 -118.80 -31.80 -150.60

Design of Truss MembersStresses Length

Top Chord -88.110 3.041

Bottom chord 91.000 / -74.700 3.000

Vertical 11.400 / -12.400 0.500

Diagonal 8.800 / -150.600 3.160

DESIGN OF Top Chord

TRIAL DIMENSION:150 x 200 mm

I= 1.00E+08

P= -88.110 KnL= 3041.38 mm

L/d = 20.275875

= 21.4413806 since L/d<K and L/d>11 it is short column

To be safe:Fc >= fc

Fc = 6.07

fc = P/A = 2.94 < 6.07 it is safe!=)

Therefore use 150 x 200 mm for BOTTOM CHORD

DESIGN OF Bottom Chord

TRIAL DIMENSION:

mm4

K=( π2 )( E6 fc ). 5

Fc= π2E

36( Ld )2

D226
INPUT
D227
INPUT
D228
INPUT
F228
INPUT
D229
INPUT
F229
INPUT
Page 7: Long Span Pratt

100 x 200 mm

I= 6.67E+07

P= 91.000 KnL= 3000.00 mm

L/d = 30

= 21.4413806 since L/d>K and L/d>11 it is long column

To be safe:Fc >= fc

Fc = 8.14

fc = P/A = 4.55 < 8 it is safe!=)

Therefore use 100 x 200 mm for BOTTOM CHORD

Check for Stress Reversals: To be safe:

>=

= 13.80 MPa

= 6.23 < 13.80 it is safe!=)

Since Fb > Ft, Use 100 x 200 mm for VERTICALS

DESIGN OF Verticals

TRIAL DIMENSION:75 x 200 mm

I= 5.00E+07

mm4

Fb ft

Fb

mm4

K=( π2 )( E6 fc ). 5

Fc= π2E

36( Ld )2

f t=P

(3 /5 ) Ag

Page 8: Long Span Pratt

P= 11.400 / -12.400 KnL= 2000.00 mm

L/d = 26.666667

= 21.4413806 since L/d>K and L/d>11 it is long column

To be safe:Fc >= fc

Fc = 3.51

fc = P/A = 0.76 < 3.51 it is safe!=)

Therefore use 75 x 200 mm for BOTTOM CHORD

Check for Stress Reversals: To be safe:

>=

= 13.80 MPa

= 1.38 < 13.80 it is safe!=)

Since Fb > Ft, Use 75 x 200 mm for VERTICALS

DESIGN OF Diagonals

TRIAL DIMENSION:150 x 200 mm

I= 1.00E+08

P= 8.800 / -150.600 KnL= 3160.00 mm

L/d = 21.066667

Fb ft

Fb

mm4

Fc= π2E

36( Ld )2

f t=P

(3 /5 ) Ag

K=( π2 )( E6 fc ). 5

B307
INPUT
D307
INPUT
B347
INPUT
D347
INPUT
Page 9: Long Span Pratt

= 21.4413806 since L/d<K and L/d>11 it is short column

To be safe:Fc >= fc

Fc = 5.62E+00

fc = P/A = 0.29 < 5.62.E+00 it is safe!=)

Therefore use 150 x 200 mm for BOTTOM CHORD

Check for Stress Reversals: To be safe:

>=

= 13.80 MPa

= 8.37 < 13.80 it is safe!=)

Since Fb > Ft, Use 150 x 200 mm for VERTICALS

Fb ft

Fb

K=( π2 )( E6 fc ). 5

Fc= π2E

36( Ld )2

f t=P

(3 /5 ) Ag

Page 10: Long Span Pratt

12.17

2.00 m

12.00 m

Page 11: Long Span Pratt

-0.27 kN/m (+) Windward (-) Leeward

-0.48 kN/m

-0.11 kN/m

-0.192

0.53 kN/m

0.09 kN/m

0.42 kN/m

0.09 kN/m

13.80 Mpa

1.34 Mpa

150 X 200 mm thick purlins

Page 12: Long Span Pratt

16.05849

2.64

Kn

Page 13: Long Span Pratt

9.433 Kn

9.43 kn

9.43 kn

3.0000 m 3.0000 3.0000

Kn

0.528 KN3.17 Kn

0.528 KN

3.17 kn

0.528 KN

3.17 kn

0.528 KN

G H

I

P

O

G H I

P

O

Page 14: Long Span Pratt

3.0000 m 3.0000 3.0000

NOTE: the reactions and axial bar forces are solved using the GRASP SOFTWARE. The calculations and the drawings are not shown here.

Page 15: Long Span Pratt

it is short column

Page 16: Long Span Pratt

it is long column

Page 17: Long Span Pratt

it is long column

Page 18: Long Span Pratt

it is short column

Page 19: Long Span Pratt

CARMEL B. SABADO CE-164 PROF.Allan E. MilanoBSCE-5 PROJECT 2 OCT. 19, 2009

EXCEL SOLUTIONS

1.) Design the vertical member using steel bar and its square/rectangular washer if Fs=100 MPa for steel (assume hole diameter = bolt diameter ).

a.) Use steel bar Given: Fs 100 MPa

P = 11.4 kN

Solution :

Fs = P As = P = 11400 N = 114 mm2

As Fs 100 MPa

= = 12.0478 mm ø4 π

= 16

b.) Design WasherGiven: Fs = 100 MPa Fq = 2.07 MPa

Fb = 13.8 MPa Fv = 1.1 MPa

Fp = 8.14 MPa E = 9100 MPa

STEEL :

Fb = 100 MPa

Solution :

Assume hole diameter = steel diameter

16 mm ø P = 11.4 kN

0.00026 100 = 20.10619 kN

4

T = P + P = 11.4 + 20.1062 = 15.7531 kN

2 2

Design washer : Assume it to be square

Fq = T ; Aw = T = 15.7531

Aw Fq 2.07

Aw = 7610.19 ( Net Area )

Find b of washer :

Aw = Anet =

4

7610.19 = 256

As = π dr2 dr 120 mm2 ( 4 )

Therefore, use dr mm ø steel rod.

dh =

Ps = As Fs = π

mm2

b2 - π ( dh )2

b2 - π

Page 20: Long Span Pratt

4

b = 88.38 mm

75 mm2

Revise as rectangular washer:

Aw = Anet =

4

7610.19 = 256

4

L = 104.15 mm

SAY L = 110 mm

WASHER : 75 mm x 110 mm

Find thickness, t :

t = 6M ; Fb = Fs

M = T ( b - dn ) ; = 1.5(16) +3

8 dn = 27 mm

M = 15.7531 0.11 - 0.027

8

M = 163.438 N.mm

t = 6 163.438 ; t = 9.44 mm

0.11 100 SAY t = 10 mm

Therefore, use rectangular washer dimension:

110 x 75 x 10 mm

2.) Design the wooden splicing at member 6, using wooden side plates .

( both sides ) and 16 mm diameter boltsGiven : P = 91 kN at member 2 Group 2 Apitong

Member 6: 100 mm x 200 mm From Table : ( Double Shear )

L = 200 mm 4.359

d = 16 mm 3.069

100 mm

Since b > Lchord = 75 mm, use b =

bL - π ( dh )2

75 L - π

bFb

dn = 1.5 dh + 3

P// =

QL =

Page 21: Long Span Pratt

Solution :P/2

l P

P/2

a.) Find number of bolts :

= P/2

n = 91 2

4.359

n = 10.44 bolts = 12 bolts in 2 rows

b. ) Find thickness of wooden side plate :

100 mm

P

L

Check from Tension :

b.1 ) Fb = P/2

3/5 Ag

13.8 = 45.5

3/5 Ag

Ag = 5495.17 = L t ; L = 100

t = 5495.17

100

t = 54.95 mm

Say t = 55 mm

b.2 ) Fb = P/2

Anet

Anet = 45.5

13.8

Anet = 3297.10

Anet = ; = 2 ( cross-section )

; =

= 16 +

= 19 mm

3297.10 = 100 - 2 19 t

t = 53.18 mm

Say t = 55 mm

Use the larger value for thickness. Therefore, t = 55 mm

IF t = 55 mm

P// ( n )

mm2

mm2

( L - # holes [ øh ] ) t #holes

øh øb + 3

øh

øh

H137
Input the larger value for thickness
Page 22: Long Span Pratt

Anet = 100 - 2 19 55

Anet = 3410

= 45.5

3410

= 13.34 MPa < Fb = 13.8 MPa

DETAILS OF WOODEN SIDE PLATE :grain

edge s s From minimum requirements :

Use : g = 2.5 d if l/d = 2

s = 4 d g =

s = 4 16 l/d = 200 16 =

s = 64 mm o. c. g = 5 d

g = 5 16

g = 80 mm o. c.

Edge : e = 1.5 d ( // to grain )

e = 1.5 16

e = 24 mm ( edge )

End : e = 5 d ( tension ; hardwood )

e = 5 16

e = 80 mm ( end )

3.) Design the notching at joint A :Given : P = 67.9 kN ( C )

Fp = 8.14 MPa

Fq = 2.07 MPa

Solution :

θ = 6

θ = 9.46

mm2

fb

fb

s ≥ 4 d ( // to grain )

5 d if l/d ≥ 6

tan-1 2.4

Page 23: Long Span Pratt

θPy

P = 67.9 kN

Px

θ/2 = 4.73

Py = = 67.9 sin 4.73 = 5.60

Px = = 67.9 cos 4.73 = 67.67

For section BC :

= 4.73

= pq

= 8.14 2.07

8.14 4.73 + 2.07

= 7.98 MPa

Px = 7.98

= 67.67

75 7.98

Psin θ/2

Pcos θ/2

αBC

rBC

psin2αBC + qcos2αBC

sin2 cos2

rBC

Equate δBC = rBC

75 BCrequired

BCrequired

75

75

BC

AC

αBC

αAC

B A

C

Page 24: Long Span Pratt

= 113.05 mm

For section AC :

= 90 - 4.73 = 85.27

= pq

= 8.14 2.07

8.14 85.27 + 2.07

= 2.08 MPa

Py = 2.08

= 5.60

75 2.08

= 35.89 mm

Use the larger one :

Use BCrequired = 113.05 mm

Try from BC :

= 113.05 cos 4.73

= 112.67 mm

Try from AC :

= 35.89 cos 85.27

= 2.96 mm

Therefore, use = 70.48 mm

SAY = 113 mm

BCrequired

αAC 90 - θ/2 =

rAC

psin2αAC + qcos2αAC

sin2 cos2

rAC

Equate δAC = rAC

75 ACrequired

ACrequired

ACrequired

hrequired :

hrequired

hrequired

hrequired

hrequired

hrequired

hrequired

Page 25: Long Span Pratt

PROF.Allan E. Milano

OCT. 19, 2009

1.) Design the vertical member using steel bar and its square/rectangular washer

Page 26: Long Span Pratt

From Table : ( Double Shear )

kN/bolt

kN/bolt

Page 27: Long Span Pratt

mm

( cross-section )

3

Page 28: Long Span Pratt

OK!

end

g

P/2

end

12.5

Page 29: Long Span Pratt

0.5

3

kN

kN

4.73

Page 30: Long Span Pratt

85.27

Page 31: Long Span Pratt

DESIGN OF PEAK JOINT

Data needed for the design of peak joint

= -90.10 kN

= -24.000 kN

Top Chord member = 150mm x 200mm

Diagonal Chord member = 150mm x 200mm

Compression Parallel to Grain, p = 8.14 MPa

Compression Perpendicular to grain, q = 2.07 MPa

Sloving for diagonal stress, r:

= 21.8 ˚

= 40.23 ˚

= = (-90.1)(cos 21.8)

= = (-90.1)(sin 21.8)

= = (-24)(cos 30.96)

= = (-24)(sin 30.96)

P1

P2

θ1

θ2

P1x P cos θ1

P1y P sin θ1

P2x P cos θ2

P2y P sin θ2

3" x 8"

-90.1kN

-24.0kN

Page 32: Long Span Pratt

= AB / 200 AB

= BC /200 BC

= DE /200 DE

= EF / 200 EF

using Hankinson's formula, we have:

=

= 5.796 MPa

=

= 3.661 MPa

= = 2.135 MPa

At plane BC and EF:(actual stress)

Bearing Area:

= 141.29(200 - 28) = 24302.0598

= 121.03(200 - 28) = 20817.7143

A = 45119.77403

= = 101.98 kn

= = 1.130 Kpa

2.135 MPa ok!

= = 68.2

= = 49.77

sin θ1

cos θ1

sin θ2

cos θ2

rBC (8.14 x 2.07) / (8.14(sin2 21.8) + 2.07(cos2 21.8))

rEF p q / (p sin2θ + q cos2θ) = (8.14 x 2.07) / (8.14(sin2 30.96) + 2.07(cos2 30.96))

rBF rBC - rBF

Af

Af

mm2

Px P1x + P2x

factual Px / A

Since factual <

β1 90˚ - 11.31˚

β1 90˚ - 30.96˚

Page 33: Long Span Pratt

=

= 2.307 MPa

=

= 3.005 MPa

= = 5.312 MPa

At plane AB and DE:(actual stress)

Bearing Area:

= = 4884.24784

= = 4884.24784

A = 9768.49568

= = 48.961 kN

= = 5.012 kN

5.312 MPa ok!

DESIGN OF SIDE PLATE & NO. OF BOLTS

Dressed Dimension:

For bolt shear:

from NSCP table: P/bolt = 12.01 kN/bolt

using metal side plates:

= 1.25(12.01) = 15.0125

rAB p q / (p sin2θ + q cos2θ) = (8.14 x 2.07) / (8.14(sin2 78.69) + 2.07(cos2 78.69))

rDE p q / (p sin2θ + q cos2θ) = (8.14 x 2.07) / (8.14(sin2 78.69) + 2.07(cos2 78.69))

rAE rAB + rDE

A1 50*110 - (π/4)(282)

A2 50*110 - (π/4)(282)

mm2

Py P1y + P2y

factual Py / A

Since factual = 12.992 >

3 5/8" x 7 1/2"

Psp

PP

Page 34: Long Span Pratt

no. of bolts, n

n = = 97.249 / 15.0125

= 6.82325 say 7 bolts

Check for bending:

= =

= 1403.223

P = = (25.90)(1403.2)

= 20487.0558 kN

Since P > 105.0875 kN ok!

Thickness of Side Plate:

for each plate:

P / 2 = 105.088 / 2 = 52.5437 kN

σ = P / A 124

124 MPa =

t = 3.07058 mm say 3

P / Psp

Ab (3 5/8" x 7 1/2") - 2 (3/4" x 3 5/8")

mm2

Fb Ab

allowable σ =

52.57 x 103 / (138 x t)

7 1/2

3 5/8

Page 35: Long Span Pratt

= 83.657 kN

= 33.460 kN

= 18.323 kN

= 15.501 kN

75mm x 110mm 4mm washer

16 mm Φ-90.1kN

-24.0kN

3" x 8"

3" x 8" 3" x 8"

Page 36: Long Span Pratt

= 50.367 mm

= 141.29 mm

= 88.606 mm

= 121.03 mm

˚

˚

21.8) + 2.07(cos2 21.8))

(8.14 x 2.07) / (8.14(sin2 30.96) + 2.07(cos2 30.96))

mm2

mm2

Page 37: Long Span Pratt

kN/bolt

(8.14 x 2.07) / (8.14(sin2 78.69) + 2.07(cos2 78.69))

(8.14 x 2.07) / (8.14(sin2 78.69) + 2.07(cos2 78.69))

mm2

mm2

Page 38: Long Span Pratt

21.75

MPa

mm

in2