18
Liverpool VELO Workshop 1 Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000 Long Cables Test Upgrade of SCTA test setup Moved hardware to VELOLAB Added soft reset to TTC chip in the RB2 One clock from SEQSI drives all boards 40 MHz Read-out VME BUS TTCvi TTCrx Seqsi RB2 Hybrid Repeater Board trigger Ck trigger trigger Ck trigger data Ck

Long Cables Test

  • Upload
    shaw

  • View
    26

  • Download
    0

Embed Size (px)

DESCRIPTION

Long Cables Test. Upgrade of SCTA test setup Moved hardware to VELOLAB Added soft reset to TTC chip in the RB2 One clock from SEQSI drives all boards 40 MHz Read-out. VME BUS. trigger. Ck. Ck. Seqsi. TTCvi TTCrx. RB2. trigger. trigger. Ck. trigger. Hybrid Repeater Board. data. - PowerPoint PPT Presentation

Citation preview

Page 1: Long Cables Test

Liverpool VELO Workshop

1Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

Long Cables TestLong Cables Test

Upgrade of SCTA test setupMoved hardware to VELOLAB

Added soft reset to TTC chip in the RB2

One clock from SEQSI drives all boards

40 MHz Read-out

VME BUS

TTCviTTCrx

Seqsi RB2

Hybrid Repeater Board

trigger

Ck

triggertrigger

Ck trigger

data

Ck

Page 2: Long Cables Test

Liverpool VELO Workshop

2Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA data read-out Short cable

SCTA data read-out Short cable

2 chip daisy chain read hybrid “short cable” readout without the Line Equalizer Probing the signal before the ADC

RepeaterBoard

Flat cable Patch box

~50 cm

Bipolar LemoFADC + RB2

No Line Equalizer

~30 cm

Page 3: Long Cables Test

Liverpool VELO Workshop

3Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA data read-out Short cable

SCTA data read-out Short cable

Deformed header @ 40 MHz 1 MIP injected

Page 4: Long Cables Test

Liverpool VELO Workshop

4Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA data read-out Long cable no

equalizer

SCTA data read-out Long cable no

equalizer 60 m cable (see Raymond talk) between the

Repeater Board and the ADC No attempt to recover the signal

Page 5: Long Cables Test

Liverpool VELO Workshop

5Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA data read-out Long cable

SCTA data read-out Long cable

60 m cable Line equalizer Standalone FADC outside of the RB2

RepeaterBoard

Pair of Lemo Patch Panel

~50 cm

Bipolar LemoStandalone FADC

Line Equalizer

~30 cmPatch Panel

60 m

Page 6: Long Cables Test

Liverpool VELO Workshop

6Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA data read-out Long cable

SCTA data read-out Long cable

Deformed Header - Repeater Board drivers are too weak

RC behavior after the header (line mismatch?)

Page 7: Long Cables Test

Liverpool VELO Workshop

7Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA data read-out Long cable

SCTA data read-out Long cable

Added a buffer stage before the cable Same drivers used in the Raymond tests Header fully recovered - Amplifier chain gain ~ 0.5

RepeaterBoard

Pair of Lemo Patch Panel

~50 cm

Bipolar LemoStandalone FADC

Line Equalizer

~30 cmPatch Panel

60 m

Line Drivers

Page 8: Long Cables Test

Liverpool VELO Workshop

8Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA data read-out Long cable + RB2

SCTA data read-out Long cable + RB2

Inserted the FADC into the RB2 Pick up of noise when inserted into RB2

Pair of Lemo Patch Panel

~50 cm

Bipolar LemoFADC + RB2

Line Equalizer

~30 cmPatch Panel

60 m

Line Drivers

RepeaterBoard

Line Drivers

FADC Input

Page 9: Long Cables Test

Liverpool VELO Workshop

9Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA data read-out Long cable + RB2

SCTA data read-out Long cable + RB2

Data seen in the Oscilloscope

Line Drivers

FADC Input

FADC Input

Averaged FADC Input

Page 10: Long Cables Test

Liverpool VELO Workshop

10Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA read-outRB2

SCTA read-outRB2

Pedestal Check the effect of high frequency noise

Delay scan The RB2 has one 5 bit PDU with 1 ns time resolution Not all the delay settings are allowed

Delay between the RB2 FPGA input register and the FADC

Writing to FIFO a non stable FADC value

Injected charge scan Up to 1 MIP injected charge

Signal to noise ratio, linearity and significance The signal to noise ratio is (<signal> - pedestal) / noise Significance is defined as signal / sigma(signal) and gives an hint of how stable

are the signals

Page 11: Long Cables Test

Liverpool VELO Workshop

11Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA read-outRB2

SCTA read-outRB2

Pedestal plots are sensible The pedestal sigma is greater

The noise is as usual

Chip 1 Pedestal

0

5

10

15

20

25

30

35

40

45

50

180 184 188 192 196 200 204 208 212 216 220

ADC counts

Fre

qu

en

cy

Mean 196.96Sigma 16.58

Chip 1 Noise

0

5

10

15

20

25

30

35

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8

ADC counts

Fre

qu

en

cy

Mean .92Sigma .43

Page 12: Long Cables Test

Liverpool VELO Workshop

12Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA read-outRB2 - Short cable

SCTA read-outRB2 - Short cable

ADC value vs. PDU delay for half a Mip and 1 Mip injected for one “typical” channel

FADC data instability?

Injected charge 4 time scan

185

190

195

200

205

210

215

220

225

230

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

PDU delay (ns)

Injected charge 2 time scan

190

195

200

205

210

215

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

PDU delay (ns)

Page 13: Long Cables Test

Liverpool VELO Workshop

13Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA read-out RB2 - Short cable

SCTA read-out RB2 - Short cable

Signal linearity is good once you selected the proper time slot

ADC vs Charge plateau

190

200

210

220

230

240

250

1 2 3 4 5 6 7 8 9

injected charge

adc

cou

nts

ADC vs Charge edge plateau

190

195

200

205

210

215

220

1 2 3 4 5 6 7 8 9

injected charge

adc

cou

nts

Page 14: Long Cables Test

Liverpool VELO Workshop

14Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA read-out RB2 - Short cable

SCTA read-out RB2 - Short cable

Signal to noise ratio

The signal significance

is greater than 10

over more than 10 ns

1 MIP Signal to noise

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

pdu value

1 MIP Signal significancy

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19

pdu delay

sig

nal

/ s

igm

a(s

ign

al)

Page 15: Long Cables Test

Liverpool VELO Workshop

15Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA read-outRB2 - long cableSCTA read-out

RB2 - long cable ADC value vs. PDU delay for (about) half a Mip and

1 Mip injected

Injected charge 4 time scan

194

196

198

200

202

204

206

208

210

212

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

PDU delay (ns)

Injected charge 8 time scan

190

195

200

205

210

215

220

225

230

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

PDU delay (ns)

Page 16: Long Cables Test

Liverpool VELO Workshop

16Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA read-out RB2 - Long cable

SCTA read-out RB2 - Long cable

Signal linearity is like expected from SCTA

Cross check that data are sensible

ADC vs Charge plateau

200

205

210

215

220

225

230

235

1 2 3 4 5 6 7 8 9

injected charge

adc

cou

nts

Page 17: Long Cables Test

Liverpool VELO Workshop

17Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

SCTA read-out RB2 - Long cable

SCTA read-out RB2 - Long cable

The signal to noise ratio is 10% less than the one measured with the short cable

gain uncertainty - linearity

The signal significance

is good over ~ 15 ns

The signal slope is

significant

1 MIP Signal significancy

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19

pdu delay

sig

nal

/ s

igm

a(s

ign

al)

1 MIP Signal to noise

-5

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

pdu value

Page 18: Long Cables Test

Liverpool VELO Workshop

18Guido Gagliardi IPHE Lausanne Liverpool dec.. 2000

ConclusionsConclusions

First measurements of SCTA at 40 MHz highlighted some limits of the system

Weak line driver in the repeater board

Pick up noise into the RB2

RC behavior

Reduced PDU delay range

The showed results are “typical”… Some problems with many channels, PDU delays, timing of the system indeed.

Some check still to do

Data are there, however It is possible to read data with long cables

The chosen cable is not the best on the market...

The line equalizer can be even better optimized

End of exerciseCross talk

Signal to noise for a particle (laser)

Resolution (difficult to do without a beam…)