28
Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008

Local Reverse Time Migration with Extrapolated VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb. 7, 2008

  • View
    229

  • Download
    5

Embed Size (px)

Citation preview

Local Reverse Time Migration with Extrapolated VSP Green’s

Function

Xiang Xiao

UTAM, Univ. of Utah

Feb. 7, 2008

2

Outline

Motivation Theory Numerical Tests

Sigsbee VSP data set GOM VSP data set

Conclusions

Motivation Theory Numerical Tests Conclusion

3

VSP Forward Modeling

s

x

g

Motivation

D(g|s)

VSP data

Theory Numerical Tests Conclusion

4

Reverse Time Migration

s

x

g

Motivation

D(g|s)

VSP data

Theory Numerical Tests Conclusion

5

Reverse Time Migration

s

x

G(x|g) g

G(x|s)

BackwardD(g|s)

Forwardsource

m(x) ~ s

~ ds G(x|s)

Forward source

G(x|g)* D(g|s)dg

Backward data

g

*

Motivation Theory Numerical Tests Conclusion

6

Reverse Time Migration

s

x

G(x|g) g

G(x|s)

BackwardD(g,s)

Forwardsource

Motivation Theory Numerical Tests Conclusion

Forward source:1) Need salt velocity model, hard to build.

2) Model-based, model not perfect.

3) Need to estimate the statics, anisotropy, etc.

7

s

g

g’

x

VSPSWP Interferometry

Migrate virtual source gather D(g|g’) Limitation:

1) s and x are at different side;2) Image near vertical structures;

Motivation Theory Numerical Tests Conclusion

8

Outline

Motivation Theory Numerical Tests Conclusions

Motivation Theory Numerical Tests

Sigsbee VSP data set GOM VSP data set

Conclusion

9

Local Reverse Time Migration, Key Idea

(a) VSP data: P(g|s)=T(g|s)+R(g|s)

Transmission T(g|s)

s

g

Reflection R(g|s)

x

TheoryMotivation Theory Numerical Tests Conclusions

10

Local Reverse Time Migration, Key Idea(a) VSP data: P(g|s)=T(g|s)+R(g|s)

T(g|s)

s

gR(g|s)

x

s

(b) Backward reflection

R(g|s)g

x

R(x|s)= G(x|g)*R(g|s)g

(c) Backward Transmission

T(g|s)

s

g

x

T(x|s)= G(x|g)*T(g|s)

g

(d) Crosscorrelation:

m(x)= R(x|s)*T(x|s)g

TheoryMotivation Theory Numerical Tests Conclusions

Local VSP Green’s function

R(g|s)g

x

11

m(x) ~ s

~ dsg’

G(x|g’)* D(g’|s) dg’

Backward D(g’|s)

G(x|g)* D(g|s)dg

Backward D(g|s)

g

*

x1(1)

(2)

x2

x3

(3)

s

g

g’

Illumination Zones

(1) specular zone, (2)diffraction zone, (3) unreliable zone,

TheoryMotivation Numerical Tests Conclusions

12

Benefits

• Target oriented!

Introduction Numerical Tests

– Only a local velocity model near the well is needed.

– Salt and overburden is avoided.

– Fast and easy to perform.

• Source statics are automatically accounted for.

• Immune to salt-related interbed cross-talk.

Theory Conclusions

13

Outline

Motivation Theory Numerical Tests Conclusions

• Motivation

• Theory

• Numerical Tests– Sigsbee VSP data set– GOM VSP data set

• Conclusion

14

Sigsbee P-wave Velocity Model0

Dep

th (

km)

9.2

4500

1500

m/s

-12.5 12.5Offset (km)

279 shots

150 receivers

Motivation Theory Numerical Tests Conclusions

15

Local Reverse Time Migration Results

4.6

9.2

Dep

th (

km)

-3 3Offset (km)

True modelMigration image

f = fault

f

d

d

(1)

(2)

(3)

(1) specular zone (2) diffraction zone(3) unreliable zone

d = diffractor

Motivation Theory Numerical Tests Conclusions

16

Outline

Introduction Theory Numerical Tests Conclusions

Motivation Theory Numerical Tests

Sigsbee VSP data set GOM VSP data set

Conclusion

17

Dep

th

(m)

Offset (m)4878

0 1829

0

GOM VSP Well and Source LocationSource @150 m offset

Introduction Theory Numerical Tests Conclusions

2800 m

3200 m

Salt

82 receivers

18

P-to-S ratio = 2.7

Velocity ProfileS WaveP Wave

Dep

th

(m)

0

45000 5000 0 5000

2800 m

3200 m

Salt

GOM Data

Incorrect velocity model

P-to-S ratio = 1.6

Introduction Theory Numerical Tests Conclusions

Velocity (m/s) Velocity (m/s)

19

Z-Component VSP DataD

epth

(m

)

Traveltime (s)

2652

3887

1.2 3.0

Salt

Direct P

Reflected P

Reverberations

Introduction Theory Numerical Tests Conclusions

20

X-Component VSP DataD

epth

(m

)

Traveltime (s)

2652

3887

1.2 3.0

Salt

Direct P

Reflected P

Reverberations Direct S

Introduction Theory Numerical Tests Conclusions

21

Local Reverse Time Migration Result

(1)

(2)

(3)

(1) specular zone, (2) diffraction zone, (3) unreliable zone

0D

epth

(km

)

9

0 25Offset (km)

Introduction Theory Numerical Tests Conclusions

22

Conclusions

• Target oriented!

Introduction Theory Numerical Tests Conclusions

– Only local well model is needed.

– Salt and overburden is avoided.

– Fast and easy to perform.

• Source statics are automatically accounted for.

• Immune to salt-related interbed cross-talk.

23

Thank you!

• Thank the sponsors of the 2007 UTAM consortium for their support.

24

VSP WEM0

Dep

th (

km)

90 25Offset (km)

SSP WEM 0

Dep

th (

km)

9

25

s

s

x

G2

s

(a) Approximate G2

x

G1 gForwardwavelet

(b) Compute G1

x

g’ G2

data D(g’|s)Backward

x

G1 g G2

(c) Migrate data D(g|s)

D(g|s)

s

Flow Chart

26

ss

(a) Approximate G2 x

G2

x

g’data D(g’|s)Backward

g = s’

(b) Approximate G1 x

g’

x

g’ G1 Forward

Data D(g’|s’)

G1

x

(c) Migrate data D(g|s)

G1 G2

D(g|s) sg

SSP+VSP Imaging

Theory

27

(b) Backproject reflections

R(x|s)= G(x|g)*R(g|s)g

R(g|s)g

x

28

Outline

Motivation Theory Numerical Tests Conclusions

Motivation Theory Numerical Tests

Sigsbee VSP data set GOM VSP data set

Conclusions