6
OPERATION LOAD CALCULATION ITEM : PROJECT NO. WEIGHTS Operating Wo = 10,000 kg --> 98,100 N G = 98,100 N EXTERNAL LOADS Wind Force Fw = 5,000 N TRANSPORTATION FORCES Horizontal Htfo = + 1.27G = 124,587 N Vertical Vtfo = + 0.6G = 58,860 N Wind Moment Mw = 12,500 Nmm Transportation Moment Mc = 18,582,586 Nmm 1250 (H/2) RESULTS SUMMARY FORCES ( Used in Tank Leg calc ) Maximum Shear Force Fsho = 124,587 N (X -direction) = 28.0 kips Maximum Tensile Force Ftso = 98,100 N (Y -direction) MAX of ( Wo / Vtfo ) = 22.1 kips MOMENTS Max Horizontal Moment Mxo = 18,582,586 N-mm (X -direction) = 13.7 ft-kips Max Vertical Moment MAX of ( Mw / Mc /My_lift) Myo = 128,000 N-mm (Y -direction) = 0.1 ft-kips Moment and Forces calc for Column Total number of Column in the Skid for analysis N-column = 8 Therefore, actual forces and moment act upon one column Shear Force Fcol-xo = Fsho / 8 = 3.50 kips Tensile Force Fcol-yo = Ftso / 8 = 2.76 kips Horizontal Moment Mcol-xo = Mxo / 8 = 1.71 ft-kips Vertical Moment Mcol-yo = Myo / 8 = 0.01 ft-kips ( FD x COG ) COG =

Load at Base Calc_sample

Embed Size (px)

Citation preview

Page 1: Load at Base Calc_sample

OPERATION LOAD CALCULATION

ITEM :PROJECT NO.

WEIGHTSOperating Wo = 10,000 kg --> 98,100 N

G = 98,100 N

EXTERNAL LOADSWind Force Fw = 5,000 N

TRANSPORTATION FORCESHorizontal Htfo = + 1.27G

= 124,587 N

Vertical Vtfo = + 0.6G= 58,860 N

Wind Moment Mw = 12,500 Nmm

Transportation Moment Mc = 18,582,586 Nmm 1250 mm

(H/2)RESULTS SUMMARY

FORCES ( Used in Tank Leg calc )

Maximum Shear Force Fsho = 124,587 N (X -direction)= 28.0 kips

Maximum Tensile Force Ftso = 98,100 N (Y -direction)MAX of ( Wo / Vtfo ) = 22.1 kips

MOMENTS

Max Horizontal Moment Mxo = 18,582,586 N-mm (X -direction)= 13.7 ft-kips

Max Vertical MomentMAX of ( Mw / Mc /My_lift) Myo = 128,000 N-mm (Y -direction)

= 0.1 ft-kips

Moment and Forces calc for Column

Total number of Column in the Skid for analysisN-column = 8

Therefore, actual forces and moment act upon one column

Shear Force Fcol-xo = Fsho / 8 = 3.50 kipsTensile Force Fcol-yo = Ftso / 8 = 2.76 kipsHorizontal Moment Mcol-xo = Mxo / 8 = 1.71 ft-kipsVertical Moment Mcol-yo = Myo / 8 = 0.01 ft-kips

( FD x COG ) COG =

Page 2: Load at Base Calc_sample

LOAD AT TANK'S BASE PLATE CALC (Operation Loading)

ITEM :PROJECT NO.

HOLD DOWN BOLTS for EACH TANK LEG

Bolt Material…………….……………….…………. = A 193 GR B7 Bolt Yield Stress……………… Sy = 207 MPaBolt UTS…….…..……………… Su = 507 MPaAllowable Tensile … Ft-all= (0.6 x Sy) = 124.2 MPaAllowable Shear… Fs-all = (0.4 x Sy) = 82.8 MPaAllowable Bearing… Fb-all = (1.5 x Sy) = 310.5 MPaBolt Number………………………… N = 2Bolt Size……………………………………...……… = M20Stud Nom Dia Dn = 20 mmThread Pitch p = 2.5 mm

Bolt Tensile Area = 244.8 mm² = pi() / 4(D-0.938194*p)²

Bolt Shear Area………………… = 489.6 = 2*At

Bolt Root area, Ab Ab = 217.05

From Operating Load CalculationMaximum Shear Force Fsho = 124,587 NMaximum Tensile(Axial) Force Fsto = 98,100 NNumber of Leg / tank N-leg = 12Shear Force acting on one leg F-shear_2 = 10,382 N = Fsh / N-legTensile Force acting on one leg F-tensile_2 = 8,175 N = F / N-leg

1 SHEAR STRESS IN BOLT

Shear / Bolt, fs = F-shear_2N x As

fs (Shear stress on bolt) = 10.60 MPa OKFs-all (Allow shear stress) = 82.8 MPa RATIO ( fs / Fs ) = 0.13

since fs < Fs-all , the Bolt Shear stress is OK

2 TENSILE STRESS IN BOLT

Tensile / Bolt, ft = F-tensile_2N x At

ft (Tensile stress on bolt) = 16.70 MPa OKFt-all (Allow tensile stress) = 124.20 MPa RATIO ( fs / Fs ) = 0.13

since fs < Ft-all, the Bolt Tensile stress is OK

3 BEARING STRESS IN BOLT

Bearing / Bolt, fb = F-shear_2N x Ab

fb (Bearing stress on bolt) = 23.92 MPa OKFb-all (Allow Bearing stress) = 310.50 MPa RATIO ( fs / Fs ) = 0.08

since fb < Fb-all, the Bolt Bearing stress is OK

AT

AS mm2

mm2

Page 3: Load at Base Calc_sample

LEG of TANK DESIGN CALCULATION (Operation)

ITEM :PROJECT NO.

TANK'S LEG DATA

Material……………...………………..= A 36

Yield Stress, Sy………….…………..= 248.2

Allowable Axial Stress, fall.…...……= 148.9

Allowable Bending Stress, fball.......= 165.5

LEG GEOMETRY :- I-BEAM 152 x 152 x 23 kg/m

A = 2920

Ixx = 12500000d = 76.2 mme = 76.2 mmL = 250 mmr = 9 mm

2. ( DUE TO OPERATION LOADING )

2.1 AXIAL STRESSF-tensile_2 = 8175 N

Axial Stress, fa = F-tensile / A = 2.8 N/mm2

2.2 BENDING STRESS

Bending Stress, F-tensile x L x e = 12.46 N/mm2Ixx

1.3 COMBINED STRESS

Combined Stress, f = (fa/fall + fb/fball) = 0.09Since Combined Stress is < 1.00 The Leg Design is OK!

N/mm2

N/mm2 ( 0.6 x Sy )

N/mm2 ( 2/3 x Sy )

mm2

mm4

e

d

X X

Page 4: Load at Base Calc_sample

TANK BASEPLATE DESIGN CALCULATION (operation)

ITEM :PROJECT NO.

Ref: Dennis R Moss Procedure 3-10

3 x Q x F Bw4 x A x Fb

N = No. of Support = 12 Bl

Maximum Load = Max of Horizontal / Vertical Transportation Force (from Transportation load calculation)

Horizontal force Fsho = 124587 NVertical force Ftso = 98100 N

Q = Maximum Load / Support = 10382 N

= 162 mm= 162 mm= 163.68 MPa ( 0.66 Fy )

tb = 6.90 mmBase plate used = 15 mm OK

Since Base plate used is more than min thk 'tb' required , OK

BASE PLATE WELD CHECKING

Maximum stress due to Q & F = max(Q, F)/Aw = 0.00

< 86.9 OK

Weld leg size, g = 6.0 mmLength of weld, l = 2*( 2*F + 2*A ) = 1296 mm

Area of weld, Aw = 0.5*g*l = 3888Joint efficiency for fillet weld, E = 0.6 -

Welding stress for steel, fw = 144.8

Allowable stress for weld, fw = E*fw = 86.9

Minimum Base plt thickness, tb =

Bw = Baseplate WidthBl = Baseplate LengthFb = Allowable Bending Stress

N/mm2

N/mm2

mm2

N/mm2

N/mm2