30
* I llATl(lffAL ANiSDfii’ E&k5,”~: FORAEW!AUIIE$ ‘ka!l m M.:!6- Id.d ,~m zm~x I ........ .... ... . ........... ...- M.- L- TECJ4NI’CALNOTES NATIONAL AEVISORY COM:ITTEE TOR JWRONA?JTICS No. 330 -- WIND ‘TUNNELPRESSURE DISTRIBUTION TESTS ON A SERIES 03’BIPLANE WING ZODELS PART 111. EFFECTS OF CHAEGES IN VARIOUS COMBINATIONS 03’STAGGER, GAP, SWZEP5AGK, MD DEOAL/LGE By Montgomery Ki~ight and Richard W, Xoyes Lmgley Menorid. Aeronautical Laboratory FILE (XXV Washington ~‘- Eecezker, 1929 ,. . ,. .- ..- . -- .. - --

llATl(lffALANiSDfii’E&k5,”~: L- FORAEW!AUIIE$ zm~x M.:!6- Id/67531/metadc54019/m2/1/high_res… · LanQlev ~e~!orialAeronautical Laboratory, ‘-- IritionalAdvisory Committee

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • *

    I

    llATl(lffALANiSDfii’E&k5,”~:FORAEW!AUIIE$

    ‘ka!lmM.:!6- Id.d

    ,~mzm~xI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .- M.-

    L-

    TECJ4NI’CALNOTES

    NATIONAL AEVISORY COM:ITTEE TOR JWRONA?JTICS

    No. 330

    --

    WIND ‘TUNNELPRESSURE DISTRIBUTION TESTS ON

    A SERIES 03’BIPLANE WING ZODELS ‘

    PART 111. EFFECTS OF CHAEGES IN VARIOUS COMBINATIONS

    03’STAGGER, GAP, SWZEP5AGK, MD DEOAL/LGE

    By Montgomery Ki~ight and Richard W, XoyesLmgley Menorid. Aeronautical Laboratory

    FILE (XXV

    Washington ~‘-Eecezker, 1929

    ,. .

    ,. .-

    ..- . -- ..- --

  • .

    , .—

    ERRATA

    NATIONAL ADVISoRy COMWTTEE FOR AERONAUTICS.

    TECHNICAL NOTE NO, 330.’

    ‘JTtNDTUNNEL PRESSURE DISTRIBUTION TESTS ON

    A SERIES OF BIPLANE WING EODEIJS.

    PART 111. EFFECTS OF CHtii!GESIN VARIOUS CONBINATIONS

    OF STAGGER, GAP, SWEEPEACK, AND DECALAGE.

    On Fisy-mes 12, 13, 14, 16, 17, 18 and 19, after the word

    ‘Iinonoclazne,f!insert IIwit’noutsweepback.f[

  • ,-

    ,

    NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

    TECHNICAL liOTENO. 330.

    WIND TUNNEL PRESSURE DISTRIBUT ION TESTS ON

    A SERIES OF BIPLANE WING MODELS.

    PART 111. EFFECTS OF CH~G~S IN VARIOUS COMBINATIONS

    OF STAGGER, GAP, SWTXPBACK, AND DECAIJAGE.

    By Montgomery Knight and Richard W. Noyes.

    Summary

    This preliminary report furnishes information on the ch~es .

    in the forces on each wirg of a biplane cellule for vazious com-

    binations of stagger and gap, stagger and sweepback, ~t%’ger ~d _

    decalage, and gap and decalage. The data were obtained from

    pressure distribution tests made in the.atmospheric wind tunnel

    of the Langley Mew.orial Aeronautic&l Laboratory. Since each

    test was carried up to 90° angle of attack, the re~fits maY be —

    used in the study of stalled flight and of spinning as well as

    in the structural design of biplane wings.

    This preliminary report presents the res~ts of wind t~nel ,

    pressure distribution tests which were made in order to determine

    the magnitude and disposition of the normsl air loads on two wing .

    models axranged in different biplane combinations. The effects

    of various combinations of stagger md gap, stager ~d sweeP-

    .

  • .

    .

    N.A.”C.A. Technical Note No. 330 2

    baok, stagger and decslage, and gap and decalage were investi-

    gateed. Two previous reports, Part I and Part 11 (See References),

    covered the effects of variations c$fdihedral, overhsng and each

    of the above factors taken separately. A more complete presen-

    tation of the results of the entire investigation and an ana3Y-

    sis from the standpoints of spinning, stalled flight, and struc-

    tural design-of biplane wings will be published at a later date.

    The tests were made in the atmospheric wind tunnel of the

    Langley Memorial Aeronautical Laboratory. A complete descrip-

    tion of the models, apparatus,

    in working up the test data is

    and will not be r~’peatedhere.

    each wing. Figure 1 shows the

    the pressure orifices.

    Te

    method of testing and procedure

    given in Pat I (Reference 1)

    The Clsxk Y profile was used on

    wing plan-form and location of

    Stls

    The biplane arrangements tested were divided into four

    groups as follows: .

    1. Variations in stagger &nd gap.

    (Decalsge = O, dihedral = O, meepback = 0, over-hang ‘- 0“)

    Gap/chord StWEer

    11

    .75 -o: :g +25 per cent chord

    +50 per cent chord: 1.25 0

    1.25 +25 per cent chord; 1.25 +5o per cent chord

    .

    .

  • 3H.A.C.A. Technical l?oteNo. 330

    2. Variations in st~qger and sweephack.

    (Gap/c~o;~ = ;: ~decalage = O, dihedral = O, over-=

    Note: Stagger is”aeasured at midspan. —

    Sweepback Stagger

    h)10~ upper wing +5o per cent chord

    : 5 upper wing +25 per cent chordo 0

    : * 5: lower wing -25 per cent chorde 10 lowe2 wing -50 per cent chord

    *Not run.

    3. Variations in stagqqerand decalage.

    (Gap/chord = ;, ~dihedral = O, sweepback = 0, over-hazi g=.

    ~ecalsge

    o+25 per cent chord+50 pcr cent chord

    o+25 per Gent chord+50 per cent chord

  • .

    .

    H.A.-C.A. Technic s,l.Eote No. 330 4

    4. Variations in ~ap mG decslage.

    ( Stagger = 0, dihedral =hang = O* )

    Decalage.

    O, sweepback

    Gap/chord

    .751.601.25

    ● 751.001.25

    O, over-

    Each test was made at angles of attack of -8°, -4°, 0°,

    +4°, 8°, 120, 140, ~60, ~80, 20°, 220, 25°, 3.0, 35°,

    40°, 50°, 60°, 700, 80°, and 90°. The dynamic pressure<

    q, indicated by the ‘IservicellPitot-static tube, was maintained

    at 4,09 lb. per sq.ft., corresponding to an average velocity of.

    very nesxly 40 m.p.h. and to a Reynolds Number of about 150,000.

    P.esults

    The results are presented in four ~roups of comparison

    curves from which may be determined the magnitude and point

    action of the semispan normal force on each wing for each com-—

    bination of stagger ~d gap, stagger and sweepback, stagger and

    decal-age, and gap and decalage tested. The angle of attack

    range covers most of the angles

    flight. Following is a list of

    which are plotted against angle

    likely to be encountered in

    the comparison curves, all of

    of attack. (The first, second,

  • .

    .

    N.A.C.A. Technical Note No. 330 5

    third, and fourth flogurenumbers zefer to the stagger-gap group,

    stagger- sweepback group, st~ger-dec~~e group, ~d gap–

    deca,lage group, respectively. )

    Fi=gures 3, 12, 21, 30: Normal force coefficient for‘ cellule.

    Yibgures 4, 13, 22, 31: Normal force coefficient forupper wing.

    Figures 5, 14, 23, 32: Ilormal force coefficient forlower wing.

    I’igures 6, 15, 24, 33: Ratio of load on each wing toload on cellule.

    Figures 7, 16, 25, 34: Longitudinal center of pres–sure for upper wing.

    Figures 8, 1~, 26, 35: Longitudinal center of pres-sure for lower wing.

    Figures 9, 18, 27, 36: Lateral center of pressure ofupper wing.

    Fiagnes 10, 19, 28, 37’: Lateral center of pressure oflower wing.

    In order to show the general nature of the interference ef- —

    fects on two biplane wings, each tigure, with the obvious ex-

    ception of Figures 6, 15, 24 and 33, has superimposed upon it

    the corresponding monoplane curve for the maximum span wing

    without dihedral, or sw,eepback.

    The accuracy of the results may ‘tieinferred from the fact

    that the aver~e deviation of the curve points on the figures

    from a mea value was-within 2 -per cent. This was determined

    .

    .

  • ?J,A.C.A, Technical Note ITo. 330 6

    fzom check tests, fairings, and integrations.

    In interyeting the results of this wind tuiinel investiga-

    tion, the low Reynolds Nmter of the tests [150,000) and the

    fact that the results have not beeq corrected for tunnel wsll

    effects, should be kept in mind. While the scale effect will

    doubtless change the absolute value of the coefficients, the

    relative changes produced by variations of each pair of factors

    will probably hold for Reynolds Numbers greater than that of the

    tests.

    LanQlev ~e~!orial Aeronautical Laboratory,‘-- Iritional Advisory Committee for Aer&autics,

    Langley. Fieid, Vs., November 8, 1929. -

    .

    ● Re f e re nc e s

    1.

    2.

    Knight, Montgomery Wind Tunnel Pressure Distributionand ** Tests on a Series of”Biplane

    Noyes, Richard W. Wing Models. Part I. Effectsof Changes in Stagger and Gap.H.A.C.A. Technical dote No. 310,1929.

    Kntght, Kontgornery lYind Tunnel Pressure Distributionand .. Tests on a Series of Biplane

    Noyes, Richard W. Wing Models. Part II. Effectsof Changes h Decalage, Di~e~ajSweepback, and Overhang. N.A.C.A.Technical i{oteNo. 325, 1929.

  • . ,, .

    E

    1

    14.4511 >J’ig,l wing Ehowing orifice loc~ti ns

    7 .,

    I

  • .

    .

    N.A.C.A. Technical

    + 50% +2$

    Note No.330

    O% Stagger

    Fig.2

    - —— —=—.—- .=_———_//-/ /y/(’\ ‘k\ -—————-—————

    ,

    .

    G/c = 1.25

    _—— ——-— _// / .——_- — — -,-/

    \\

    /

    (’ /‘\+--L.–————G/c = .75

    Fig.2 wing model arrangements used in tests on the effectof stagger and gap.

    .

    .

    .

  • ,

    ,

    .

    N.A.C.A. TechnicalNote No.330 Figs.3&4

    Fig.3

    c!?

    Fig.4

    1.4

    1.2-

    1.0- t

    .0 !/#I

    -6 /I1

    .4

    .2 .75u_w_ 25._.75. = 50., . .---- ------

    /‘125.—.— Ow– –“ — --—o-—-

    0 125.-=-25._ -.— -——-=——-125. . 50. s. ‘-- ‘-i+

    s

    ‘.2-l& o“ 10“ 20° 30” 40° 50= 60” 70° 80” 90”Angleof attack,d

    Effectof stagger and gap on cellulecoeff~cientofn-al force,1.4

    / “

    1.2— — — —

    Lo‘ ,

    , 1,.8 I( \\ ~- .-;

    w “.. , \‘,

    .6 \. \: \

    &\ [\ i.‘;

    .4 < \ \ \ ‘J

    Y’ 1,>.2 \,\

    ~), \\,

    \io- \

    #Y\t .4

    TN-.2

    Y_loO (-JO10° 20” 30” 40” 50” 60’ 70” 80” 90”

    Angle ofattack,dEffectofstaggerand gap on upper wingcoefficientofnormalforce.

  • s

    .

    .

    .

    .

    N.A.C.A. TechnicalNote No.330 Figs.5&6

    .

    1.6

    M)

    & L2/UK

    . /: Lo I

    jf

    ~ .8 iEas .6 Iho II

    2 -4w.+u I 757.gap 0% stagger @—- —.++ .2 75._w_ 25._ .._ .

    ——~— —+ ’75M ,* 50,. “Q1

    ----- -—--—.125.—s.— O t,—–“ — --—&—

    so 125,t_~_25._ _“_ .——-e —— -125. . 50 “ t, —-- —--+

    -.2 II I I II I-10o 00 10° 20° 30” 40° 50” 60” 70° 80” 60”Angle of attack,a

    Fig.5 Effeciof siagger and gap on lowerwing coefficientofnormal force.-.2a-

    0j

    3 $j 20 IE +.

    M s

    H 1se Loo

    —-:+ —--1

    1.201 I-10’ 0° 10° 20” 30° 40° 50” 60” 70” 80° 90’

    Angleof attack,dFig.6 Effectof staggerand gap on wing loadratio.

  • +

    *

    *

    .

    .

    N.A.C.A. Technical Noie No.330 Fig. 7

    1

    x

    Trail- “ing -1edge

    Leadingedge

    ‘-

    20‘

    *10- Monoplane ———

    757.gap O%stagger~75U 4’ Es. “ —— a

    -.~. .

    75” “ 501.-— -“–— -----125. . 0. ,,__ —-; I

    II25. . 25. . ——-=

    90 -125. . 50.-— ,--— —-- +

    I80

    70l!!

    60

    R50

    t30

    \,\ .

    20 \,‘.

    1 I \\, \ \

    >

    \ $10 \

    !

    ! \,)\I \

    +-0 \ ., 1! \) I

    1

    10 \ \I

    20 \ \1

    \I

    30 !I 1

    t . I

    40-10% 0° 10° 20” 30° 40° 50” 60° 70°, 80° 900

    Angle”ofatiack,dFig.7 Effectofstagger and gap on upper wing longitudinal

    centerofpres5ure.

  • .

    .

    .

    .

    .

    I

    .

    .

    .

    N.A.C.A. TechnicalNote No.330 Figs.8 810

    Traihng1 I t

    edge-loo .

    &‘1 .— —+--

    1:‘. 90 Monoplane —— —— —--~ I “

    I 7570gap O% stagger..

    II.- -

    ~ 80 1!75“ “ 25. * —— ——a75,1-–*”— 50# * ------ -------~II 125,~_,*._ou * -—-:—-— +

    % 1I 125“ “ 25. ,, ——-w——- ! -~ 70 \ 125.-—,#-‘ so“-–-‘, —--

    t!

    —-. — .

    uL

    c.+

    j 40m3

    -} .--—

    0~~

    ,—.- ...—.—..,-

    Lea:- 20--10° o“ 10” 2@ 30” 40° 5r 60° ’70” 80° 90”ingedgeat O Angle of attack,c1

    Fig.8 Effectof stagger and gap on lower wing longitudinalC.P.Tipat10fO

    $70

    d,

    /; 60I.A

    :L_-.---

    2

    Q)u~ 30 “ Monoplane — — — —Q 75% gap O% stagger u 1G

    1+

    75* . 251u lU —— ——1

    a‘; 20 75a.-–* -50.

    -1

    ------x------.

    u’ -125,.._U 0“ :: !— —“—125“ m 25M

    : ](-J

    .,! ,

    _J’- J ––,::-—-. ‘125.--*A”’50* ,~

    —--u t ~! :..-..-, ....-%

    t

    Ro~tflQIO* 0°

    I I10° m“ 30° 40° 50° 60”

    Angle of attack,d70” 80° 90”

    Fig.10 Effectof stagger and gap on lower wing lateralC.P.

  • *

    b

    N.A.C.A. TechnicalNote No.330 Fig.9

    140

    130 II;

    120 Monoplane —————75Z gap O% stagger ~75= II 25. . —— ——0

    — —i.

    110- 751.—”—50W- –“”— ------- ------—-&—-

    125. ——-u——-Tip 100 125,,—: —50. — –,*” —--+---

    ..- 6

    90.,

    & ‘! I i

    ~ 80f I 1’

    I1 !

    + /

    .: 70 //

    II 1 1H 1 ! ! !

    al f0 :

    .; 40 I

    c

    % 30

    b !

    10

    Root O 1

    ‘IO,

    -20

    +oe fJa 10” 20” 30° 40” 50” 80” 70” 80° 90°Angle ofattack,ci

    Fig.9 Effectof stagger and ga on upper wing lateralf!?centero pressure.

  • ..:

    .

    .

    ,

    N.A.C.A. Technical Note No. Fig.11.—— —— ————— —— ___ __

    //”/—-----P* ----/

    I

    ‘v-

    -. 1— -

    —------—-----\

    \ .-——.—— ——. — ———.-._.

    ‘-_ 1---- ,Upper 10o sweepback - -‘- -

    i_-_—_— — ————— ——_—_ .

    ,4 -— ——_

    ‘!-—__—___r

    ===---- - ——— — ~–

    -~

    t

    . —-–——— ‘~\ -~ ~\ --—_—————————-———__ ~––––––––—–––––’

    -—_Upper 50 sweepb;c; — — ~ +25$ stagger

    i>--— ————— ———— —————

    //

    I-~–

    \\

    \ _— _ —.— ——— —— [O% atagger

    < ‘O~s~eepb~ck

    i~fl-–---:::::-:::: --:J ------ ------’._—— —

    ‘+

    “(Not run)-a- -‘~: _ z~-

    \,~L~-

    1--=————— ———————— —-—— __

    ‘-—— _ ——_ [Lower 5° sweepback ~ -25$ stagger

    I~——— ——— ———— ———— —

    “/---- i//

    _—=

    ‘-

    II “J._--- \--- _-

    (7 --- -- -“- \-- _-- _-q

    ~_ - 1- - -\ —------ !

    \ I_-

    *-——— ————— ———— ——— —=-_---- 1

    - -_

    Lower 10° sw$ep~~~k- --- -_

    Fig .11 Wing model arrangements used inof stagger and sweepback.

    .

    tests

    stagger

    on the effect,

  • .

    .

    .

    .

    .

    *

    ,—

    N.A.C.A. TechnicaINote No.330 Figs.12&13

    1.4 .

    L2 ,

    J{

    i:

    ~- 1.0-

    %w /.8 d

    zIII

    .L. \ \\\

    G\

    &-.,

    2.6 /i I

    * J/

    0 .4 I;,+u.- .2 ———w+ 0% stagger-—0@8 0. ,10° “ ,* lower II

    ?!

    I I-.2 I f I I 1“1

    -1o” o“ 10° 20” 30” 40” 50” 60°. 70” 80” 90”Angle ofatiack,ci

    Fig.12Effectofstaggerandsweepbackon cellulecoefficien~of“normalforce.

    Fig

    ti02

    1

    1

    !.4 I k/ -.~/-.

    ..2 -, - / ‘

    // -

    ,.0 ~ t

    \

    .8 \ . ‘\\~. \

    \\

    .6M’

    \ \\ f

    \\ \ \

    .4\ 1. . \\ \\ \\

    ) \ \.2 J

    \

    /, \ : ?\\,

    \

    o \\ \

    /.1 ! \\

    # \ F72

    -10° 0° 10° 20° 30° 40° 50° 60° 70” 80° 90°

    .

    .13 Angle ofattack,aEffectofstaggerand sweepback on upper wing coefficientof normal force.

    —.—

  • .

    .

    .

    .

    N.A.C.A. TechnicalNote No.330 Figs. 14&15

    1,6

    L4

    k 1.2c?=.3 1.0~ I

    :

    z .8‘ “ 1: I

    2 [email protected]

    .-U

    ●4w .2–-lw— Monoplane’$;-—————— —

    @ OOsweepback 07.stagger Q—80 # upper wing +257@stagger-- A

    1:”—u : —+ som~ u— -------)i—— ..l&r- :_ .-50 “_ _@ -—-J=

    3-.2 4

    -1o” 0° 108 20” 30” 40° 50” 60” 70° 80” 90°Fig.14 Angle of attack,dEffectof stagger and sweepback on lower wing coefficientof normal force.

    -.20

    0 I

    J

    anb 5“ “ “ upper wing + 257.st~serz 1.00 lo*- * ~ w s’ ‘:50’9‘ “

    10” M . -50. ,, ———

    1.20-10 o“ 10” 20” 30° 40,0 50” 60° 70= 80° 60°

    Angle of aiiack,o!Fig.15 Effectofstaggerand sweepback on wing loadratio.

  • .

    .

    t.A.C.A.TechnicedNote No.330 Figs.16&19.

    Trail~100 mI

    1

    ingt

    I1

    edge 1-. I !

    ‘“l—m—tit1 I 1 1 1 I , ,

    I II ti I

    I“\.I● , ,

    ( I 1 1 \ \ ,7 \,

    t.5 20 \

    &

    ~\

    +\ \ i,

    “~ 10 \\

    \* t\ y

    2 \\1

    I I I

    (-0 t1

    Leading11 _.

    edge _lo‘, ,

    1 !I1

    ,. I

    — -Monoplane‘“’———— ~1

    0“sweepback-20 ~. . .

    O% stagger I I ~ \upper wing +257. stagger— -A;

    – -IoO—-“-— “* ;~; ‘m -----x’

    -~y~ 10’. “~oe “2O.l”yol‘——.

    70° tjo” 90°Fig,16

    ‘-1Angle of attack, d *

    Effectof~staggerand sweepback on upperwinglongitudinalC.P.

    .-

    u~+QJmm 40b-’110 fd I -10” 0° 10° 20° 30° 40° 50° 60” 70° 80” 90°~ R%otatO Angle ofattack,d

    .Fig.19Effectofstaggerandsweep backonlowerwinglateralC.P. ‘

  • b

    .

    .

    b

    .

    N.A.C.A. TechnicalNote No.330 Figs.17&18

    TI I I I

    Monodan~I I I I I I I I I

    II 0°s-;eepback 07.stagger —“o—

    5°––“ “~ upper wing + 25% stagger— -A-—,, “ ,< +50M ~ -------

    ;:: ,* ,*!

    Io;er . –50’” n, ——— ?

    1

    11

    Fig.17 Effeciof staggerand sweepback

    !

    1

    11t

    \

    b.9

    II

    wins lateral,C.,P. / I 1I/ 1I I

    J ! 1I

    ,0

  • . . . .

    .

    +50$ mtaggex +25$ stagger 0$ Etagger--- —. —._ --

  • .

    .

    n

    .

    N.A.C.A. TechnicalNote No.330 Figs.21&22

    1.4

    -.2

    Fig. 21E Hect

    \ _ _

    t 1/I ‘y+ 3° decalage, O% sta~~er 3

    II 3° u 50 u . —--—+ --—--,I I

    -109 0° 10° 20° 30° 40” 50° 60° 70° 80° 90°Angle of attack,d (Upperwing)

    of staggerand decalageon cellule coefficient of normal force.

    1.4-/ -- —

    /

    3

    1,2 / ‘0~

    :-1.0/ _. — .>_-/ / . >,; .6

    m\

    \ , \\.

    w [i . ;o

    ~. I‘,

    .4,

    $ v‘ \\,.+ \o .2

    vI

    $ \QJ \ Y\

    s o /[

    \k

    1-.2

    -10° 0° 10” zo” 30° 40° 50”3?ig.22

    60° 70° 80° 90°Angle of attack,o! (Upperwing)

    Effectofstagger and decalage on upper wing coefficient of normal force.

  • .

    !J.A.C.A.TechnicalNote No.330 Figs.23 & 24

    ti

    :4-(

    1.4/-,f

    1.2 /f w,

    1.0

    .8‘

    Fig.23 Effectofsfagger”and.6 decalageon lower wingr I

    /! toe. ff ic,ient of nOrrnal force.

    .4 ! ‘1 7

    II i, Monoplane —— —

    .2 I 1 3“ decalage O‘%stagger~{ /# 3° ~ a——

    3° * 50 m,0 I -3° s, -—-~-—-

    / ! –3°-3” :

    1//50 * ,, —.. —+--—--—

    -.2t

    # A?gle of att–.4

    :10 0° 10” 20” 30° 40° 50° 60” 70° 80° 90°~

    -.20;I

    ,/,

    .80 /f/y,,: nII

    .10 ‘d

    ,./

    1.20 =20

    -10°‘ 0“ 10” 20° 30° 40° 50° 60” 70° 80° 90°Angle ofattack,a (Upperwing)

    Fig,24 Effectof decalage and s~&ger ‘onwing 10ad ratio;

  • V.A.C.A.Technical Note No.330 Figs.25& 28

    Trail -ing+100 Aedge

    Qfl

    IIMonoplane ———

    &dl 3“decalage OZsiagger --0——

    Leading -edge

    JI 3° . 50 “

    “ ----------- \ Iil I I-3”- —. 0 m—--1 -—-G !

    !70

    -3” ,, 50 “ “ —--

    6011

    30 -.-Y\.\..

    \‘Y. ‘t

    20 /t!

    A\

    \,\, “ \\IIi;“,

    10\\, \Y ‘+

    +0\ \ { b

    -lo \ Fig. 25 Effect of decal ageI

    IIand stagger on upp er \

    -20 Iwing .Iongitudin+l C.P.. 1’

    4A;gle of att;ck!d

    ,(U~er wing)

    -3Q o. 10° zo” 30° 40” 50° 60° 70° 80” 90°

    60~u

    a

    “Qlb

    30RQot at,O

    –10° 0“ 10° 20° 30° 40° 50” 60° ’70° 80° 90°Angle of attack,d (Upperwing)

    Fig.28 Effeciof decalage and s+aggeron lowerwing lateralC.P.

    I

    Ill

    m

  • b

    iJ.A,C. A . Technical Note No. 330 Figs. 26& 27

    .

    xs

    It 100 f60

    II

    50 J~

    mu;$ 40 \

    g)m !~mL .L 30 -CUEQ* Fig.27 Effectofdecalageu) and staggeron upper t

    20

    10

    ITrail-ing-l00‘edge

    90 H i:

    II!

    80 3° “ 25” _ _“ —— ——n3° ,* 50 ,* ** --------- -------

    -3° 8* o.— – .* -—-G-—- --3° ,, 25. — – *, —— -~—— .-3” .

    .

    k\\+

    & 50 \1

    c . \\\..+

    ii ,M

    Lead-ing —edge =10” 0° 10° 20° 30° 40° 50° 600 70° 80° 90”

    Angle ofattack,d (Upperwing)

    Fig. 26 Effec+ of decalage and staggeron lower-winglongitudinalC.P.

  • *

    4

    N,A,C,A. Technioal Note N0,330

    G/c=lo25

    G/o =liOO

    G/c = ,?5

    ,

    /--————’-—- -__—— ——— —_— -—_. _ _./1’ /R- ---—.‘- ___x. ‘. -\+3~~ -1-—-— ____ _>—. ——-.— ———— —_ _—— — —\-30 - -––-–

    —————— — ——— —__ __

    Fig.29 Wing model arrangements used inof gap and decalage.

    1

    tests on the effect

    .—

    * .

  • N.A. C .A. Technical Note No. 330 Figs.30 & 31

    1.4-

    / \

    g 1.0bo

    .8zEkc .6 ,

    +

    : .4- [/

    /v3° decalage 100% gap

    2. .3”--.UI=”I=” .

    .—— a— —--- ------- ------- ----—- “1—L—-—IC7—— -— ___ ,,

    . 75*8 . _--—+ 7.. —1

    , 1 1 I

    -.2-10F 0° 10° 2(Y 30° 40° ‘ 50” 60= 70° 80° 9P

    Angle of attack, d (Upper wing)Fig. 30 Effect of decalage and gap on cellulecoefficientofnormalforce.

    1.4A / /“

    /

    ~ 1.2 //Uz

    ///“ -.

    g 1.0- /

    M $’~

    2 .8 t~ tE

    1 \ ...!*I

    /{,/ \l\

    k !’% k.

    ~ .6 \Y~’ .

    Ill‘\ \/ j--- -1%-I” %-=“N k \\

    o \\‘‘, ‘\. \, ‘ ~, /

    - :

    .4i

    z.-L

    QJ %: .:1

    -..71.-.. 1:

    ..+

    ; .2 /f@‘\ ,. ,

    .- \ I ;,,/

    al I I,.

    80 ‘xr\--- ---

    -..2_l@ 00 10” 20°Fig.31

    30” 40” 50° 60” 70° 80” so”Angle of attack,d (Upperwing)

    Effectof decalageand gap on upper wing coefficientof normal force.”

    I

    I,

    I

  • r !?.A.C. A. Technical Note No. 330 Figs. 32 A 33

    1.6

    1.4f\

    L2 fh iIu=w- 1.0 ,?~

    .8;~

    : .6 !

    I%

    0 .42.+ Monoplane ———-—-+

    0 ) It 1 3“ d8 0/#$ -3° .

    ]00.—.,— -—-—o--—-/ .–3a—–,*. 125.. .. ——-- —_-/[ -3° . 75““ “ - --,—T--—-—

    .2 —

    d

    O“ 10”‘ 20° 30° 40” 50” 60~ 70” 80” 90°Angle of attack,d (Upperwing)Fig.32

    Effecfof decalage and gap on lower wing.coefficientofnormal force.–.20‘

    b1J. -1

    II

    P?

    jj $>

    .60.; :

    y * =j

    d.0 .40 g ~:

    .80 “ .20 :!’ Ix

    o70° 80” 90°

    Angle ofattack,ci(Upperwing)Fig.33 Effect of decalage and gap on wing load ratio.

  • 9

    *

    N.A.C.A. Technical Note No.330 Figs.34&37

    120

    110

    Trail-ing=AOOedge

    90xc??

    80~-

    ~ To

    z

    ukQG ,.-&6 40

    %G.s 30d~“%C.20 “3 ,

    10{\ ‘,\

    1 \

    I-20 ‘i

    -1o” 0° 10” 20° 30” 40° 50°’ 60° 70° 80° 90°

    .:w$&o.ti+$ 50*c-Q)Qd~ms-l

    -10° 0° 10” 20° 30° 40° 50” 60° 70° 80° 90Angle ofaiiack,d (Upperwing)

    Fig.37 Effec+of decalage and gap on lowerwing lateralC.P.

    P

    -..

  • .

    ,C. A. Technical Note No.330 Figs.35 & 36

    Tip 100\ ~1

    ‘ Monoplane ‘—’—-, b

    90— ~~~:lage 100% gap

    .

    Rooi

    I ---

    Leaing

    ‘TM lUU“ “ -—-—u ;’

    0 75 ---,.

    60

    I m ,- —

    30 I

    I

    20I I1

    10‘:?

    I11

    I60 t-+

    L--’2O4

    I 1 1

    \

    20\

    ‘“l !I I Fhz. 35 Effect of decala.=e and =a~ onLI

    10wer wins longI 1 I I I I I I

    edgeI of attack,d (u

    1 1 1 I 1 1 t

    ,Jpp~rwink)-1OI II 1 I

    “ ,– 1 I t ,

    -10° ? 0°~!oo ‘ 20° 30° 40” 50° 60° 70° 80° 9()0