3
Lithospheric Behaviour in Global Mantle Convection Models and its Influence on Mantle Structure and Evolution in Terrestrial Planets P. J. Tackley , H. van Heck, F. Crameri, T. Nakagawa, M. Armann, T. Keller, T. V. Gerya, B. J. P. Kaus Institute of Geophysics, Department of Earth Sciences, ETH Zürich, Switzerland Understanding plate tectonics remains one of the major challenges in solid Earth geoscience. Mantle convection models with strongly temperature‐dependent viscosity develop a stagnant lid, which is realistic for Venus and Mars but not for Earth. In such models, plate motion has often been imposed by hand. However, it has been found that including plastic failure using constant or depth‐dependent yield stress self‐consistently breaks the stagnant lid, giving a first‐order approximation of plate tectonics at low yield stress, episodic plate tectonics at intermediate yield stress, and a stagnant lid at high yield stress (e.g., [Tackley, 2000; van Heck and Tackley, 2008]). In this approach, the yield stress is a gross parameterisation of small‐scale processes that are not resolved, and this leads to some unrealistic features such as double‐sided subduction and a value of the effective yield strength of ~100 MPa that is much lower than laboratory experiments would suggest. Nevertheless this has proven to be an useful approach, and we here present a systematic numerical study of convection with strongly temperature‐ dependent, visco‐plastic rheology and mixed heating (internal + basal), from which are derived systematic scaling laws that allow prediction of tectonic mode as a function of governing parameters Ra, yield stress and internal heating rate, which can be used in modelling the evolution of planets. All such models to date use a free‐slip top boundary condition, in which the shear stress is zero but the surface is forced to be flat, which is unrealistic for subduction zones. Recent models with a free surface display dramatically different and more Earth‐like behaviour, with single‐sided rather than double‐sided subduction, and more time‐ dependent behaviour. Another dynamically important feature is a weak crustal layer, which can decouple the subducting slab from the overlying plate [Gerya et al., 2008]. We present numerical experiments that characterise the tectonic behaviour of the system as a function of various governing parameters. Figure 1. Comparison of convection with self‐consistent plate tectonics with (left) a free slip upper boundary, with which double‐sided subduction develops, and (right) a free surface, with single‐sided subduction. This approach to lithospheric deformation is being used in global mantle convection models of the evolution of Earth, Venus and Mars. These models include melting that leads to crustal production, the major phase transitions in the olivine and pyroxene‐

Lithospheric Behaviour in Global Mantle Convection Models ...geomod2010.fc.ul.pt/abstracts/Tackley et al.pdf · constrains the value of mantle viscosity. Hence, lithospheric tectonics

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lithospheric Behaviour in Global Mantle Convection Models ...geomod2010.fc.ul.pt/abstracts/Tackley et al.pdf · constrains the value of mantle viscosity. Hence, lithospheric tectonics

Lithospheric Behaviour in Global Mantle Convection Models and its Influence on Mantle Structure and Evolution in Terrestrial Planets 

P. J. Tackley, H. van Heck, F. Crameri, T. Nakagawa, M. Armann, T. Keller, T. V. Gerya, B. J. P. Kaus Institute of Geophysics, Department of Earth Sciences, ETH Zürich, Switzerland 

Understanding  plate  tectonics  remains  one  of  the  major  challenges  in  solid  Earth geoscience. Mantle  convection models with  strongly  temperature‐dependent  viscosity develop a stagnant  lid, which is realistic  for Venus and Mars but not for Earth.  In such models, plate motion has often been imposed by hand. However, it has been found that including plastic failure using constant or depth‐dependent yield stress self‐consistently breaks the stagnant lid, giving a first‐order approximation of plate tectonics at low yield stress,  episodic  plate  tectonics  at  intermediate  yield  stress,  and  a  stagnant  lid  at  high yield  stress  (e.g.,  [Tackley,  2000;  van Heck  and  Tackley,  2008]).  In  this  approach,  the yield  stress  is a gross parameterisation of  small‐scale processes  that are not  resolved, and this leads to some unrealistic features such as double‐sided subduction and a value of  the  effective  yield  strength  of  ~100  MPa  that  is  much  lower  than  laboratory experiments would suggest. Nevertheless this has proven to be an useful approach, and we here present a systematic numerical study of convection with strongly temperature‐dependent, visco‐plastic rheology and mixed heating (internal + basal), from which are derived systematic scaling laws that allow prediction of tectonic mode as a function of governing parameters Ra,  yield  stress  and  internal heating  rate, which  can be used  in modelling the evolution of planets.  

All such models to date use a free‐slip top boundary condition, in which the shear stress is  zero  but  the  surface  is  forced  to  be  flat,  which  is  unrealistic  for  subduction  zones. Recent models with  a  free  surface  display  dramatically  different  and more  Earth‐like behaviour,  with  single‐sided  rather  than  double‐sided  subduction,  and  more  time‐dependent  behaviour.  Another  dynamically  important  feature  is  a weak  crustal  layer, which can decouple the subducting slab from the overlying plate [Gerya et al., 2008]. We present numerical experiments that characterise the tectonic behaviour of the system as a function of various governing parameters.  

 Figure 1. Comparison of convection with self‐consistent plate tectonics with (left) a  free  slip  upper  boundary,  with  which  double‐sided  subduction  develops,  and (right) a free surface, with single‐sided subduction.  

 This  approach  to  lithospheric  deformation  is  being  used  in  global  mantle  convection models  of  the  evolution  of  Earth,  Venus  and Mars.  These models  include melting  that leads  to  crustal  production,  the major  phase  transitions  in  the  olivine  and  pyroxene‐

Page 2: Lithospheric Behaviour in Global Mantle Convection Models ...geomod2010.fc.ul.pt/abstracts/Tackley et al.pdf · constrains the value of mantle viscosity. Hence, lithospheric tectonics

garnet  systems,  and  a  core  that  cools  time  according  to  a  parameterised  model.  Our Earth  models  (with  plate  tectonics)  show  the  importance  of  crustal  recycling  in generating  mantle  heterogeneity,  including  dynamically‐induced  layering  around  660 km  depth  and  above  the  CMB,  which  strongly  influences  the  evolution  of  the  core [Nakagawa  et  al.,  2009;  Nakagawa  and  Tackley,  2005].  Our  Mars  models  (with  a stagnant  lid)  develop  a  crustal  dichotomy  in  a  few  100  million  years  due  to  a  long wavelength  ‘one ridge’ upwelling, demonstrating that  internal processes could account for this first‐order feature [Keller and Tackley, 2009]. Our Venus models with a stagnant lid indicate magmatism as the dominant heat transport mechanism, which unfortunately does not match observations of a uniform ~500 Ma surface age on Venus, while similar models  with  episodic  plate  tectonics  can  match  this  observation.  Matching  the  geoid constrains the value of mantle viscosity. Hence, lithospheric tectonics plays a dominant role in determining the evolution of a planet’s interior.   

 Figure 2. Thermo‐chemical evolution models for Mercury (temperature isosurface and  cross‐section),  Venus  (top:composition  and  bottom:temperature),  Earth (top:temperature  isosurfaces  with  cold  slabs  in  blue  and  hot  plumes  in  red; bottom:the location of subducted crust) and Mars (top: temperature, showing one ridge convection and bottom: crustal thickness).  

 

References 

Gerya, T.V., Connolly, J.A.D., Yuen, D.A. (2008) Why is terrestrial subduction one‐sided? Geology, 36(1), 43‐46. 

Hernlund,  J. W.  and  P.  J.  Tackley  (2008) Modeling mantle  convection  in  the  spherical annulus, Phys. Earth Planet. Inter., 171 (1‐4), 48‐54. doi: 10.1016/j.pepi.2008.07.037 

Keller,  T.  and  P.  J.  Tackley  (2009)  Towards  self‐consistent  modelling  of  the  Martian dichotomy:  The  influence  of  low‐degree  convection  on  crustal  thickness  distribution, Icarus 202 (2), 429‐443  

Page 3: Lithospheric Behaviour in Global Mantle Convection Models ...geomod2010.fc.ul.pt/abstracts/Tackley et al.pdf · constrains the value of mantle viscosity. Hence, lithospheric tectonics

Nakagawa, T., P. J. Tackley, F. Deschamps and J. A. D. Connoll (2009) Incorporating self‐consistently  calculate  mineral  physics  into  thermo‐chemical  mantle  convection simulations  in  a  3D  spherical  shell  and  its  influence  on  seismic  anomalies  in  Earth's mantle, Geochem. Geophys. Geosys., 10, Q03004, doi:10.1029/2008GC002280  

Nakagawa, T., and P. J. Tackley (2005) Deep mantle heat flow and thermal evolution of the  Earth's  core  based  on  thermo‐chemical  multiphase  mantle  convection,  Geophys. Geochem. Geosys, 6, Q08003, doi:10.1029/2005JB003751 

Tackley,  P.J.  (2000)  Self‐consistent  generation  of  tectonic  plates  in  time‐dependent, three‐dimensional  mantle  convection  simulations,  part  1:  Pseudoplastic  yielding, Geochemistry, Geophysics, Geosystems, Volume 1.  

Tackley,  P.  J.,  (2008)  Modellng  compressible  mantle  convection  with  large  viscosity contrasts  in  a  three‐dimensional  spherical  shell  using  the  yin‐yang  grid,  Phys.  Earth Planet. Inter, 171 (1‐4), 7‐18, doi: 10.1016/j.pepi.2008.08.005 

van  Heck,  H.  and  P.  J.  Tackley  (2008)  Planforms  of  self‐consistently  generated  plate tectonics  in  3‐D  spherical  geometry,  Geophys.  Res.  Lett.  35,  L19312, doi:10.1029/2008GL035190