22
Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton? Liang Ma a , Shao-Yong Jiang a,b,c,, Albrecht W. Hofmann d,e , Bao-Zhang Dai a , Ming-Lan Hou f , Kui-Dong Zhao b,c , Li-Hui Chen a , Jian-Wei Li b,c , Yao-Hui Jiang a a State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China b State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, Hubei, China c Faculty of Earth Resources and Collaborative Innovation Center for Scarce and Strategic Mineral Resources, China University of Geosciences, Wuhan 430074, Hubei, China d Max-Planck-Institut fu ¨ r Chemie, Postfach 3060, D-55020 Mainz, Germany e Lamont-Doherty Earth Observatory of Columbia University, P.O. Box 1000, Palisades, NY 10964, USA f Shandong Bureau of China Metallurgical Geology Bureau, Jinan 250014, China Received 24 November 2012; accepted in revised form 25 September 2013; available online 10 October 2013 Abstract Lithospheric thinning and destruction of the North China Craton have been topics of active discussion throughout the last two decades, but the specific processes associated with lithospheric thinning remains controversial. Here we report co- occurrence of low-Ti (TiO 2 < 1.1 wt.%, Ti/Y < 270) and high-Ti (TiO 2 > 2 wt.%, Ti/Y > 370) types of lamprophyres in the Jiaodong Peninsula, eastern North China Craton in order to address this issue. Low-Ti lamprophyres are depleted in HFSE and enriched in Pb, both typical subduction signatures. We suggest they were derived from partial melting of an ancient and enriched lithospheric mantle, which was previously modified by slab-derived hydrous fluids. In contrast, the high-Ti lamp- rophyre has trace element patterns similar to many oceanic basalts with depletion of Pb but little or no HFSE depletion. We infer that they originated from partial melting of a convective asthenospheric mantle. Zircon U–Pb dating shows that both types of lamprophyres intruded the eastern North China Craton about 121 Myr ago. Their indistinguishable ages thus appear to record a rapid transition from lithospheric to asthenospheric mantle source, suggesting further that the lithosphere beneath the eastern North China Craton was removed, potentially delaminated ca. 121 Myr ago beneath Jiaodong Peninsula. The detachment of cratonic lithosphere is likely related to continental arc-rifting which resulted from Palaeo-Pacific plate subduc- tion in the Mesozoic. Ó 2013 Elsevier Ltd. All rights reserved. 1. INTRODUCTION Cratons are the oldest and most stable parts of Earth’s continental lithosphere having survived numerous cycles of continental growth and collision since the Precambrian. However, the North China Craton (NCC) underwent a dra- matic change in lithospheric architecture in Mesozoic times, when more than 100 km of the thickness of ancient refrac- tory lithospheric mantle beneath eastern NCC was removed and replaced by young and fertile mantle materials (Men- zies et al., 1993; Menzies and Xu, 1998; Griffin et al., 1998; Fan et al., 2000; Gao et al., 2002). The specific deep-level processes associated with the thinning of the 0016-7037/$ - see front matter Ó 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.gca.2013.09.035 Corresponding author at: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosci- ences, Wuhan 430074, Hubei, China. Tel.: +86 13952003223. E-mail address: [email protected] (S.-Y. Jiang). www.elsevier.com/locate/gca Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 124 (2014) 250–271

Lithospheric and asthenospheric sources of lamprophyres in ...8478389.s21d-8.faiusrd.com/61/ABUIABA9GAAgsu_26QUomIrQPQ.pdftypes of lamprophyres intruded the eastern North China Craton

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Available online at www.sciencedirect.com

    www.elsevier.com/locate/gca

    ScienceDirect

    Geochimica et Cosmochimica Acta 124 (2014) 250–271

    Lithospheric and asthenospheric sources of lamprophyresin the Jiaodong Peninsula: A consequence of rapid

    lithospheric thinning beneath the North China Craton?

    Liang Ma a, Shao-Yong Jiang a,b,c,⇑, Albrecht W. Hofmann d,e, Bao-Zhang Dai a,Ming-Lan Hou f, Kui-Dong Zhao b,c, Li-Hui Chen a, Jian-Wei Li b,c, Yao-Hui Jiang a

    a State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, Chinab State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, Hubei, China

    c Faculty of Earth Resources and Collaborative Innovation Center for Scarce and Strategic Mineral Resources, China University of Geosciences,

    Wuhan 430074, Hubei, Chinad Max-Planck-Institut für Chemie, Postfach 3060, D-55020 Mainz, Germany

    e Lamont-Doherty Earth Observatory of Columbia University, P.O. Box 1000, Palisades, NY 10964, USAf Shandong Bureau of China Metallurgical Geology Bureau, Jinan 250014, China

    Received 24 November 2012; accepted in revised form 25 September 2013; available online 10 October 2013

    Abstract

    Lithospheric thinning and destruction of the North China Craton have been topics of active discussion throughout the lasttwo decades, but the specific processes associated with lithospheric thinning remains controversial. Here we report co-occurrence of low-Ti (TiO2 < 1.1 wt.%, Ti/Y < 270) and high-Ti (TiO2 > 2 wt.%, Ti/Y > 370) types of lamprophyres in theJiaodong Peninsula, eastern North China Craton in order to address this issue. Low-Ti lamprophyres are depleted in HFSEand enriched in Pb, both typical subduction signatures. We suggest they were derived from partial melting of an ancient andenriched lithospheric mantle, which was previously modified by slab-derived hydrous fluids. In contrast, the high-Ti lamp-rophyre has trace element patterns similar to many oceanic basalts with depletion of Pb but little or no HFSE depletion.We infer that they originated from partial melting of a convective asthenospheric mantle. Zircon U–Pb dating shows that bothtypes of lamprophyres intruded the eastern North China Craton about 121 Myr ago. Their indistinguishable ages thus appearto record a rapid transition from lithospheric to asthenospheric mantle source, suggesting further that the lithosphere beneaththe eastern North China Craton was removed, potentially delaminated ca. 121 Myr ago beneath Jiaodong Peninsula. Thedetachment of cratonic lithosphere is likely related to continental arc-rifting which resulted from Palaeo-Pacific plate subduc-tion in the Mesozoic.� 2013 Elsevier Ltd. All rights reserved.

    1. INTRODUCTION

    Cratons are the oldest and most stable parts of Earth’scontinental lithosphere having survived numerous cycles

    0016-7037/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.http://dx.doi.org/10.1016/j.gca.2013.09.035

    ⇑ Corresponding author at: State Key Laboratory of GeologicalProcesses and Mineral Resources, China University of Geosci-ences, Wuhan 430074, Hubei, China. Tel.: +86 13952003223.

    E-mail address: [email protected] (S.-Y. Jiang).

    of continental growth and collision since the Precambrian.However, the North China Craton (NCC) underwent a dra-matic change in lithospheric architecture in Mesozoic times,when more than 100 km of the thickness of ancient refrac-tory lithospheric mantle beneath eastern NCC was removedand replaced by young and fertile mantle materials (Men-zies et al., 1993; Menzies and Xu, 1998; Griffin et al.,1998; Fan et al., 2000; Gao et al., 2002). The specificdeep-level processes associated with the thinning of the

    http://dx.doi.org/10.1016/j.gca.2013.09.035mailto:[email protected]://dx.doi.org/10.1016/j.gca.2013.09.035

  • L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271 251

    lithosphere are still being actively debated. Two majorhypotheses, thermo-mechanical–chemical erosion (Menzieset al., 1993; Griffin et al., 1998; Menzies and Xu, 1998; Xu,2001; Xu et al., 2004; Zheng et al., 2006, 2007) and rapidlithospheric delamination (Wu et al., 2003, 2005; Yanget al., 2003; Gao et al., 2004; Jiang et al., 2010), have beensuggested for the mode of lithospheric thinning. The formerimplies that the lowermost lithosphere is gradually erodedby upwelling asthenosphere, which represents a slow pro-cess lasting at least 100 Myr. The latter assumes that thethick lithosphere suddenly foundered into the underlyingconvecting mantle, and this marks a short event lastingabout 10 Myr (Menzies et al., 2007).

    Mesozoic magmatism may be used as a “window” to helpresolve the above questions of timing and mechanism oflithospheric thinning. The lithospheric removal should in-duce decompressional melting of upwelling asthenosphericmantle and partial melting of lithospheric mantle to generateasthenospheric and lithospheric mantle-derived magmas.Underplating of these mafic magmas would result in meltingof crustal materials to form extensive felsic magmas (Yangand Wu, 2009). During continental extension, the source ofmagmas can shift from the lithosphere (i.e., enriched mantle)to the asthenosphere. Because the fusible components inlithospheric mantle cannot be replenished immediately, oncethe lithospheric melts have been extracted, the magma sourcewould be replaced by asthenosphere. Thus, the transitionfrom lithospheric mantle to asthenospheric mantle sourceis irreversible. Normally, the asthenosphere cannot melt untilthe lithosphere has been thinned to less than 65–80 km(McKenzie and Bickle, 1988). Therefore, such a change inmagma source and the occurrence of asthenosphere-derivedmagmas can be considered as an indicator of lithosphericthinning (Xu, 2006; Wu et al., 2008; Xu et al., 2009).

    In order to better understand the mechanism of litho-spheric thinning beneath the NCC, this study addresses thefollowing two key questions: (1) When did the magma sourcetransfer from lithospheric to asthenospheric mantle sources;(2) Was this transition a relatively “slow”, or a “rapid” pro-cess. This study reports for the first time, the occurrence oftwo coeval, but distinct, types of lamprophyres in the Jia-odong Peninsula which can be used to provide unique in-sights into the evolution of the mantle lithosphere beneaththe NCC? Detailed zircon U–Pb geochronology coupledwith an extensive geochemical investigation (major and traceelements and Sr–Nd–Pb–Hf isotopes), is used to assess lamp-rophyre petrogenesis and evaluate the evolution of the litho-spheric mantle beneath the NCC during the Mesozoic.

    2. GEOLOGICAL SETTING

    The NCC is one of the world’s oldest Archean cratonswith ages of crustal rocks as old as 3.8 Ga (Liu et al.,1992; Zhai and Santosh, 2011). It can be geologically di-vided into Eastern and Western Blocks, separated by the�1.8 Ga Paleoproterozoic Trans-North China Orogen,based on lithological, geochemical, geochronological, struc-tural and metamorphic P-T path studies of the basementrocks (Zhao et al., 2001) (Fig. 1a). It is bounded to thenorth by the southern margin of the late Paleozoic Central

    Asian Orogenic Belt and to the southeast by the TriassicDabie–Sulu UHP orogenic belt. The Pacific plate startedto subduct beneath Eurasian continent during Jurassic time(Maruyama et al., 1997; Zhou and Li, 2000; Li and Li,2007), and this controlled the major geological events ineastern China during the Cretaceous (Sun et al., 2007).

    Our study area, the Jiaodong Peninsula, located in thesoutheastern margin of the NCC, comprises two differentterrains, the southeastern Sulu orogenic belt and the north-western Jiaobei terrain, bounded by the Wulian–Mishanfault (Zhai et al., 2001) (Fig. 1b). The Sulu orogenic beltwas a result from continental collision between the YangtzeCraton and the NCC in the Triassic (Li et al., 1993; Jahnet al., 1996; Zheng et al., 2003). The occurrence of ultra-high-pressure coesite- and diamond-bearing eclogites dem-onstrates that the Yangtze Craton was once subductednorthward below the NCC to depths greater than 200 km(Xu et al., 1992; Li et al., 1999; Ye et al., 2000). The Pre-cambrian basement of the Jiaobei terrain is mainly com-posed of the Neoarchaean Jiaodong Group, includingtonalite–throndhjemite–granodiorite (TTG) gneiss,amphibolite and mafic granulite. Zircon U–Pb dating indi-cates that the protolith ages for TTG gneiss, amphiboliteand mafic granulite are �2.9 to �2.7 Ga, �2.5 Ga, and�2.4 Ga, respectively; and the regional metamorphism tookplace extensively at �1.85 to �1.76 Ga (Zhang et al., 2003a;Tang et al., 2007; Jahn et al., 2008).

    During late Mesozoic times, extensive igneous rockswidely intruded in the Jiaobei terrain, including a series ofgranitoids and mafic dikes. The granitoids have been di-vided into two major suites: the Linglong granite (160–147 Ma), with zircon ages during a narrow range of 160–157 Ma (Ma et al., 2013a) and the Guojialing granodiorite(133–111 Ma), based on their petrography, geochemistryand isotopic compositions (Wang et al., 1998; Qiu et al.,2002; Zhang et al., 2003a, 2010). Mafic dikes, such as lamp-rophyre and dolerite-porphyry, intruded the Linglong,Guojialing suites and basement metamorphic rocks. Avail-able whole rock and single mineral K–Ar, Ar–Ar andzircon U–Pb ages for these mafic dikes range from 132–113 Ma, with a age peak at �120 Ma (Zhang et al.,2003c; Yang et al., 2004; Guo et al., 2004, 2005; Huet al., 2007; Tan et al., 2008; Li et al., 2010).

    3. SAMPLING AND PETROLOGY

    Samples for this study were collected from the drill coresand underground shaft of the Jiaojia gold deposit, which islocated in the NNE- to NE-trending Jiaojia-Xincheng faultzone in northwestern of the Jiaobei terrain (Fig. 1c). Thegold lode is located along the contact between the Archeanamphibolite (hanging wall) and the Linglong granite (foot-wall) (Fig. 1d). The lamprophyre dikes, with NE- andNNE-strike orientations, intruded the Jurassic Linglonggranite (Fig. 2a and b). In order to avoid the effects of laterhydrothermal activity, we collected lamprophyre dikes faraway from the gold lodes as much as possible. In addition,each sample was collected from the center of the given dikein order to minimize the effects of interaction with hostrocks.

  • Fig. 1. (a) Simplified geological map showing the major tectonic units of the North China Craton (modified after Zhao et al., 2001). TLFZstands for Tan-Lu Fault Zone. (b) Sketch map of the geology of the Jiaodong Peninsula (modified after Tang et al., 2006). (c) Geological mapof the Jiaojia-Xincheng gold camp (modified after Wang et al., 1998). (d) Geological map of the Jiaojia gold deposit (modified after Ma et al.,2013a), with location of lamprophyre dikes from the drill cores used in this study.

    252 L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271

    All of the Jiaojia lamprophyre samples are melanocraticand holocrystalline rocks with porphyritic texture. Twomain types of lamprophyres are identified, kersantite andspessartite, according to the classification scheme of Wool-ley et al. (1996). The phenocrysts of the kersantite consistdominantly of olivine (�10%; by volume) and clinopyrox-ene (�15%), which are generally altered to talc, serpentineand carbonate. Their groundmass consists of biotite(�30%), plagioclase (�25%), alkali feldspar (�5%), amphi-bole (�5%) and carbonate (2–10%) (Fig. 2c). The pheno-crysts of spessartite contain mainly olivine (�5%),clinopyroxene (�15%) and orthopyroxene (�5%), whichare generally fresh, the groundmass consists of amphibole(�35%), plagioclase (�30%), carbonate (�5%) and quartz(0–5%) (Fig. 2d). Accessory minerals in the groundmassof kersantite and spessartite include magnetite, zircon andapatite. After petrographic examination, the freshest seven-teen samples (seven kersantites and ten spessartites) were

    selected for elemental and Sr–Nd–Pb isotopic analyses.On three of these samples we conducted zircon U–Pb dat-ing and in-situ Lu–Hf isotopic analyses.

    4. ANALYTICAL METHODS

    4.1. Major and trace elements analyses

    Whole-rock major and trace element abundances weredetermined at the State Key Laboratory for MineralDeposits Research, Nanjing University. Major elementswere analyzed by ICP-AES after alkaline fusion digestion,with analytical uncertainties better than 0.5% for all majorelements. Trace elements were analyzed on a Finnigan Ele-ment II ICP-MS. About 50 mg of powdered sample wasdissolved in high-pressure Teflon bombs using aHF + HNO3 mixture. Rh was used as an internal standardto monitor signal drift during ICP-MS measurement. The

  • Fig. 2. (a) and (b) Photograph of the lamprophyre dikes intruded into the Mesozoic granite in underground shaft of the Jiaojia gold district;(c) Kersantite, mainly composed of olivine, clinopyroxene, plagioclase and biotite; olivine and clinopyroxenes phenocrysts are generallyaltered to carbonate and talc (d) Spessartite with a typical lamprophyric texture, mainly composed of olivine, clinopyroxene, plagioclase andamphibole. Ol – olivine; Cpx – clinopyroxenes; Pl – plagioclase; Am – amphibole; Bt – biotite; Mt – magnetite.

    L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271 253

    USGS rock standards GSP-1 and AGV-2 were chosen forcalibrating element concentrations of the measured sam-ples. Analytical uncertainties were lower than 10%. De-tailed analytical procedures for trace elements aredescribed by Gao et al. (2003).

    4.2. Sr–Nd–Pb isotope analyses

    Whole-rock Sr–Nd–Pb isotopic compositions were mea-sured using a Finnigan Triton TI TIMS at the State KeyLaboratory for Mineral Deposits Research, Nanjing Uni-versity. For Sr–Nd isotope determination, about 100 mgpowder of each sample was dissolved in Teflon beakers withHF + HNO3 mixture acid. Complete separation of Sr wasachieved by a combination of cation-exchange chromatog-raphy in H+ form and pyridinium form with the DCTAcomplex. Nd was then separated from the REE fractionsby cation-exchange resin using HIBA as eluent. Details ofthe chemical separation procedures and analytical runningconditions are described in Pu et al. (2004, 2005). The sep-arated Sr sample was dissolved in 1 ll of 1 N HCl and thenloaded with TaF5 solution onto W filament. The separated

    Nd sample was dissolved in 1 ll of 1 N HCl and thenloaded with H3PO4 solution onto Re doublefilament. Themass fractionation corrections for 87Sr/86Sr and143Nd/144Nd ratios were based on 86Sr/88Sr = 0.1194 and146Nd/144Nd = 0.7219, respectively. Repeated analysis ofthe La Jolla standard during the analyses yielded143Nd/144Nd = 0.511842 ± 4 (2r, n = 5), and standardNBS-987 yielded 87Sr/86Sr = 0.710260 ± 10 (2r, n = 30).Total analytical blanks were 5 � 10�11 g for Sm, Nd and(2–5) � 10�10 g for Rb and Sr. For Pb isotope determina-tion, about 50 mg the feldspar phenocrysts were completelydissolved in ultrapure HNO3 + HCl. After drying, the res-idue was redissolved in HBr + HNO3 and then loaded intoa column with 50 Am of AG 1-X8 anionic resin. The ex-tracted Pb was then purified in a second column. About100 ng Pb was loaded onto single rhenium filaments usingthe silica-gel technique (Gerstenberger and Haase, 1997).Analytical reproducibility of 0.01% (2r) for 206Pb/204Pb,0.01% for 207Pb/204Pb and 0.02% for 208Pb/204Pb was at-tained in this study. Mass fractionation corrections havebeen made from runs of the NBS-981 standard basing onthe value of Todt et al. (1996), and the error on the mass

  • 254 L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271

    fractionation corrections is 0.04%. Measured values for theNBS-981 Pb isotope standard were 16.893 for 206Pb/204Pb,15.432 for 207Pb/204Pb, and 36.511 for 208Pb/204Pb,respectively.

    4.3. Zircon U–Pb dating

    Zircon LA-ICP-MS U–Pb analyses were carried out atthe State Key Laboratory for Mineral Deposits Researchusing an Agilent 7500a ICP-MS equipped with a New WaveResearch 213 nm laser ablation system at Nanjing Univer-sity. The ablated material was transported in a He carriergas through 3 mm i.d. PVC tubing and then combined withAr in a 30 cm3 mixing chamber prior to entering the ICP-MS for isotopic measurement. Mass discrimination of themass spectrometer and residual elemental fractionationwere corrected by calibration against a homogeneous zirconstandard, GEMOC/GJ-1 (608 Ma). Samples are analyzedin ‘runs’ of ca. 15 analyses, which include 10–12 unknowns,bracketed by two to four analyses of the standard. The un-knowns include one analysis of well-characterized zircongrains (Mud Tank, 735 Ma) that were analyzed frequentlyas an independent control on reproducibility andinstrument stability. Analyses were carried out with a beamdiameter of 20–30 lm, 5 Hz repetition rate, and energy of10–20 J/cm2. Data acquisition for each analysis took 100 s(40 s on background, 60 s on signal). Raw count rates for206Pb, 207Pb, 208Pb, 232Th and 238U were collected for agedetermination. Detailed analytical procedures are similarto those described by Jackson et al. (2004). The raw ICP-MS data were exported in ASCII format and processedusing GLITTER. Common Pb contents were evaluatedusing the method described by Andersen (2002). The agecalculations and plotting of Concordia diagrams were madeusing Isoplot v. 3.23 (Ludwig, 2003).

    4.4. Zircon Hf isotope analyses

    Zircon Hf isotope analysis was carried out in-situ usinga Newwave UP213 laser-ablation microprobe, attached to aNeptune multi-collector ICP-MS at Institute of MineralResources, Chinese Academy of Geological Sciences, Bei-jing. Instrumental conditions and data acquisition werecomprehensively described by Hou et al. (2007) and Wuet al. (2006). A stationary spot was used for the presentanalyses, with a beam diameter of either 40 or 55 lmdepending on the size of ablated domains. Helium was usedas carrier gas to transport the ablated sample from the la-ser-ablation cell to the ICP-MS torch via a mixing chambermixed with Argon. In order to correct the isobaric interfer-ences of 176Lu and 176Yb on 176Hf, 176Lu/175Lu = 0.02658and 176Yb/173Yb = 0.796218 ratios were determined Chuet al. (2002). For instrumental mass bias correction Yb iso-tope ratios were normalized to 172Yb/173Yb of 1.35274(Chu et al., 2002) and Hf isotope ratios to 179Hf/177Hf of0.7325 using an exponential law. The mass bias behaviorof Lu was assumed to follow that of Yb, mass bias correc-tion protocols details was described as Wu et al. (2006) andHou et al. (2007). Zircon GJ1 was used as the referencestandard, with a weighted mean 176Hf/177Hf ratio of

    0.282013 ± 0.00008 (2r, n = 10) or 0.282013 ± 0.000024(2r, n = 10) during our routine analyses. It is not distin-guishable from a weighted mean 176Hf/177Hf ratio of0.282013 ± 19 (2r) from in-situ analysis by Elhlou et al.(2006).

    5. RESULTS

    5.1. Major and trace elements

    The results of major and trace element analyses for theJiaojia lamprophyres are listed in Table 1. Major elementcontents are normalized to 100% on LOI (loss on igni-tion)-free basis in all diagrams. Our petrographical andgeochemical data indicate that the Jiaojia lamprophyrescan be divided into two types, i.e., a low-Ti lamprophyre(TiO2 < 1.1 wt.%, Ti/Y < 270) and a high-Ti lamprophyre(TiO2 > 2 wt.%, Ti/Y > 370). Ti/Y ratios, rather thanTiO2 content, are used as a discriminator of rock types, be-cause TiO2 contents generally increase but Ti/Y ratios doesnot vary much during fractional crystallization (Peate et al.,1992; Xu et al., 2001). In terms of petrography, the low-Tilamprophyre is mainly composed of kersantite, whereas thehigh-Ti lamprophyre is dominated by spessartite.

    5.1.1. Low-Ti lamprophyre

    The low-Ti lamprophyre has SiO2 contents of 49.5–53.9 wt.% (volatile-free), and total alkalis (Na2O + K2O)contents of 4.2–5.4 wt.%, classified as basalts to basalticandesites (Middlemost, 1994) (Fig. 3a). They have K2Ocontents of 3.2–3.8 wt.%, thus belong to calc-alkalinelamprophyres (Rock, 1987) (Fig. 3b). They are furthercharacterized by low TiO2 (0.66–1.01 wt.%), total Fe2O3(8.3–11.1 wt.%) and Al2O3 (12.5–15 wt.%), but high MgO(9.5–13.8 wt.%), Mg# (63–74) and compatible elementcontents (e.g., Cr = 392–786 ppm; Ni = 92–246 ppm).Systematic correlations between MgO and major oxidesand trace elements can be observed: SiO2, Al2O3 andP2O5 correlate negatively with MgO, whereas total Fe2O3,CaO/Al2O3, Cr and Ni correlate positively with MgO(Fig. 4). In chondrite-normalized REE patterns (Fig. 5a),the low-Ti lamprophyres are characterized by enrichmentin light rare-earth elements (LREE) [(La/Yb)N = 21–30]and lack of Eu anomalies (Eu/Eu* = 0.89–1.05). In theprimitive mantle-normalized spidergram (Fig. 5b), thelow-Ti rocks show enrichment in fluid mobile large-ionlithophile elements (LILE) e.g., Ba, Pb and Sr, and strongdepletion in high-field strength elements (HFSE) e.g., Nb,Ta and Ti. These features are distinct from MORB andOIB (Fig. 5b), but similar to arc-related volcanic rocksand subduction zone magmatism where HFSE are retainedin slab phases e.g. rutile (Foley et al., 2000).

    5.1.2. High-Ti lamprophyre

    The high-Ti lamprophyres have lower SiO2 (46.9–49.2 wt.%) but higher total alkalis (5.5–7.2 wt.%) contentsthan the low-Ti rocks, classified as tephrite to trachybasalt(Middlemost, 1994) (Fig. 3a). They have K2O contents of2.6–3.4 wt.%, belong to alkaline to calc-alkaline lampro-phyres (Rock, 1987) (Fig. 3b). Compared to the low-Ti

  • Table 1Major (wt%) and trace element (ppm) compositions of the low-Ti and high-Ti lamprophyres in the Jiaodong Peninsula.

    Jiaojia low-Ti Jiaojia high-Ti

    Sample JJLT-01 JJLT-02 JJLT-03 JJLT-04 JJLT-05 JJLT-06 JJLT-07 JJHT-01 JJHT-02 JJHT-03 JJHT-04 JJHT-05 JJHT-06 JJHT-07 JJHT-08 JJHT-09 JJHT-10

    SiO2 51.17 49.96 50.84 47.56 47.87 48.61 48.95 46.57 46.36 45.98 47.06 46.43 45.91 46.97 46.03 45.22 45.41TiO2 0.79 0.82 0.62 0.97 0.71 0.77 0.82 2.10 2.16 2.22 2.07 2.26 2.32 1.97 2.35 2.23 2.19AL2O3 12.40 13.13 13.21 14.41 11.80 13.04 13.03 16.48 14.29 14.07 15.84 15.96 15.18 14.95 15.40 15.19 14.74TFe2O3 8.47 8.05 7.84 10.68 9.14 8.93 8.34 9.80 11.81 12.13 10.60 11.25 12.05 10.55 11.62 11.05 11.01FeO 4.43 4.60 4.56 5.67 4.84 4.77 4.23 5.33 6.66 6.45 5.27 6.28 5.84 5.33 6.75 6.55 7.20Fe2O3 3.56 2.94 2.77 4.38 3.76 3.63 3.64 3.88 4.41 4.96 4.74 4.27 5.56 4.63 4.12 3.77 3.01MnO 0.14 0.15 0.16 0.30 0.15 0.16 0.16 0.14 0.20 0.21 0.15 0.20 0.21 0.18 0.20 0.19 0.19MgO 11.59 10.45 8.98 9.26 13.10 11.11 10.70 5.33 6.65 6.59 6.03 6.65 6.25 5.94 7.53 6.22 7.58CaO 7.35 7.89 7.70 8.34 8.15 8.29 7.73 8.17 7.11 7.07 8.04 8.33 7.82 9.25 8.16 7.68 8.10Na2O 1.57 1.68 1.51 1.65 1.00 1.09 1.67 4.03 3.79 3.55 3.19 3.74 3.48 2.40 4.04 4.03 3.76K2O 3.23 3.09 3.55 3.13 3.01 3.09 3.10 2.85 2.84 3.10 2.89 2.84 3.29 2.89 2.75 2.69 2.52P2O5 0.41 0.45 0.37 0.36 0.30 0.32 0.39 0.96 0.84 0.91 1.00 0.89 1.02 0.95 0.72 1.12 0.85LOI 3.13 4.57 5.54 3.87 5.17 4.92 5.58 3.83 4.58 4.78 3.61 2.19 3.10 4.65 2.16 4.93 4.11Total 99.78 99.72 99.71 99.89 99.86 99.80 99.99 99.67 99.89 99.89 99.90 100.03 99.99 100.11 100.21 99.82 99.66

    Mg# 73 72 70 63 74 71 72 52 53 52 53 54 51 53 56 53 58La 47.79 60.05 43.85 65.81 48.57 48.37 56.15 55.26 62.01 62.41 59.99 60.46 68.61 60.26 57.97 57.20 60.14Ce 123 116 112 121 101 108 115 144 154 153 120 119 135 114 117 145 106Pr 11.73 13.41 14.79 14.78 11.51 11.55 13.31 12.15 13.33 13.47 13.65 12.81 13.84 12.50 13.08 12.64 11.78Nd 44.99 45.47 51.40 50.74 39.82 45.29 50.29 47.61 53.04 53.57 50.56 49.14 54.37 48.89 52.41 51.58 44.01Sm 7.06 7.79 8.93 8.66 6.85 7.39 8.06 8.50 9.02 9.40 9.26 9.29 9.86 9.23 9.81 9.05 8.67Eu 1.89 2.38 2.87 2.74 2.04 2.29 2.20 2.82 2.88 2.89 2.93 2.89 3.33 2.85 3.14 3.03 2.76Gd 5.47 6.07 7.68 7.60 5.39 5.52 6.18 7.48 8.73 8.53 8.03 7.99 9.45 7.98 8.64 8.37 7.92Tb 0.65 0.67 0.78 0.77 0.59 0.62 0.69 1.08 1.22 1.25 1.05 1.02 1.23 0.97 1.10 1.18 1.05Dy 3.68 3.34 3.74 3.79 3.07 3.25 3.47 6.49 6.88 6.72 5.95 6.04 6.80 5.39 6.42 6.56 5.56Ho 0.57 0.62 0.56 0.69 0.60 0.65 0.68 1.11 1.16 1.13 1.17 1.14 1.30 1.01 1.15 1.17 1.06Er 1.66 1.77 1.59 1.72 1.60 1.66 1.65 3.05 3.31 3.26 2.93 2.97 3.31 2.54 3.08 3.17 2.76Tm 0.25 0.23 0.22 0.24 0.21 0.22 0.23 0.45 0.48 0.43 0.40 0.40 0.44 0.36 0.40 0.46 0.38Yb 1.40 1.57 1.40 1.49 1.38 1.45 1.45 2.52 2.75 2.59 2.48 2.52 2.84 2.26 2.52 2.64 2.53Lu 0.22 0.22 0.21 0.22 0.21 0.23 0.22 0.38 0.39 0.41 0.38 0.38 0.41 0.35 0.38 0.38 0.34Rb 102 54 105 126 73 75 78 75 98 114 75 75 91 78 85 90 73Ba 1851 2395 2476 1522 2835 4090 2064 905 1002 1083 893 1004 982 907 964 929 959Th 6.05 8.08 8.62 11.78 7.24 8.07 6.60 7.53 8.76 8.65 8.07 8.36 10.25 8.02 9.42 8.57 9.70U 1.98 1.35 2.75 3.20 1.92 2.13 1.59 3.29 4.04 3.80 2.55 2.77 3.25 2.65 2.05 3.53 2.11Nb 11.19 6.80 6.92 11.45 4.28 8.92 5.66 173 190 207 101 102 118 98 91 182 110Ta 0.29 0.40 0.42 0.56 0.28 0.73 0.38 5.26 5.64 5.72 6.78 6.81 8.16 6.62 6.75 5.86 5.43K 24,728 24,147 37,755 33,523 22,736 23,400 23,898 23,151 23,318 25,453 23,236 22,579 26,192 22,497 21,840 22,086 20,911Pb 24.71 71.49 28.14 15.90 20.32 36.86 30.97 4.04 3.99 4.58 4.11 4.71 3.59 4.27 5.71 4.38 5.62Sr 1004 1481 952 958 1217 3162 934 1453 1451 1708 1449 1648 2076 1175 2652 1502 2605P 1659 1834 1615 1511 1179 1266 1572 4104 3668 3973 4279 3755 4323 3930 3056 4890 3711Zr 132 134 156 187 100 101 144 298 316 352 314 309 340 290 317 331 275Hf 3.03 3.03 3.65 3.39 2.26 2.49 3.01 6.22 6.53 6.43 5.70 5.36 6.42 5.22 5.60 6.63 5.66

    (continued on next page)

    L.

    Ma

    etal./

    Geo

    chim

    icaet

    Co

    smo

    chim

    icaA

    cta124

    (2014)250–271

    255

  • Fig. 3. (a) (K2O + Na2O) vs. SiO2 classification diagram (Middle-most, 1994). (b) K2O vs. SiO2 diagram for classification of the low-Ti and high-Ti lamprophyres in the Jiaodong Peninsula (Peccerilloand Taylor, 1976; Rock, 1987).

    Tab

    le1

    (co

    nti

    nu

    ed)

    Jiao

    jia

    low

    -Ti

    Jiao

    jia

    hig

    h-T

    i

    Sam

    ple

    JJL

    T-0

    1JJ

    LT

    -02

    JJL

    T-0

    3JJ

    LT

    -04

    JJL

    T-0

    5JJ

    LT

    -06

    JJL

    T-0

    7JJ

    HT

    -01

    JJH

    T-0

    2JJ

    HT

    -03

    JJH

    T-0

    4JJ

    HT

    -05

    JJH

    T-0

    6JJ

    HT

    -07

    JJH

    T-0

    8JJ

    HT

    -09

    JJH

    T-1

    0

    Ti

    4380

    4620

    3720

    5640

    3900

    4200

    4560

    12,3

    6012

    ,960

    13,3

    2012

    ,180

    13,1

    4013

    ,500

    11,2

    2013

    ,620

    13,3

    8013

    ,140

    Y16

    .34

    17.6

    415

    .94

    23.5

    716

    .89

    17.3

    919

    .31

    30.1

    032

    .00

    32.3

    731

    .87

    32.5

    233

    .26

    29.8

    332

    .77

    32.4

    130

    .18

    V14

    013

    319

    113

    316

    417

    014

    415

    616

    915

    315

    317

    415

    013

    317

    415

    816

    9C

    r49

    947

    044

    339

    278

    662

    355

    411

    596

    7611

    097

    7895

    111

    8911

    1C

    o32

    .42

    33.6

    530

    .43

    10.5

    042

    .85

    35.5

    235

    .31

    33.2

    635

    .90

    33.0

    433

    .35

    36.0

    033

    .07

    30.9

    338

    .45

    32.4

    436

    .10

    Ni

    165

    163

    9219

    024

    617

    319

    710

    473

    6911

    511

    172

    109

    126

    6911

    3E

    u/E

    u*

    0.89

    1.02

    1.02

    0.99

    0.99

    1.05

    0.91

    1.04

    0.95

    0.95

    1.00

    0.98

    1.01

    0.97

    1.00

    1.02

    0.98

    (La/

    Yb

    ) N23

    2621

    3024

    2226

    1515

    1616

    1616

    1816

    1516

    PR

    EE

    251

    259

    250

    281

    223

    237

    260

    293

    319

    319

    279

    276

    311

    269

    277

    303

    255

    Mg#

    =10

    0�

    mo

    lar

    Mg/

    (Mg

    +F

    e)

    256 L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271

    rocks, the high-Ti lamprophyres have higher TiO2 (2–2.4 wt.%), total Fe2O3 (10.2–12.8 wt.%) and Al2O3 (14.8–17.2 wt.%), but lower MgO (5.6–7.9 wt.%), Mg# (51–58)and compatible element contents (e.g., Cr = 76–115 ppm;Ni = 69–126 ppm). They also show enrichment in LREEand LILE as well as negligible Eu anomalies (Eu/Eu* = 0.95–1.04) (Fig. 5c). However, several trace elementfeatures of the high-Ti lamprophyres are different fromthose of the low-Ti rocks. High-Ti samples exhibit some-what higher total REE contents (

    PREE = 255–319 ppm)

    and lower LREE/HREE ratios: (La/Yb)N = 15–18. Mostimportant, they do not show the characteristic Nb–Tadepletion of arc related rocks (and the low-Ti samples),and they also lack LILE enrichment (e.g. Ba and Pb), againas observed in low-Ti samples. Instead, the high-Ti lampro-phyres exhibit geochemical signatures characteristic of typ-ical OIB-type alkali basalt (Fig. 5d).

    5.2. Sr–Nd–Pb isotopes

    The Sr, Nd and Pb isotopic compositions of the Jiaojialamprophyres are listed in Table 2.

  • Fig. 4. MgO vs. selected major and trace elements for the low-Ti and high-Ti lamprophyres in the Jiaodong Peninsula.

    L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271 257

    5.2.1. Low-Ti lamprophyre

    As shown in the 87Sr/86Sr(t) vs. eNd(t) diagram (Fig. 6),the low-Ti lamprophyres have uniform initial 87Sr/86Srisotope ratios of 0.709034 to 0.709685 and eNd(t) values

    of –13.9 to –15.5. Their single-stage model ages range from1.72 to 1.93 Ga. These samples exhibit Pb isotope ratios of(206Pb/204Pb)i = 17.218–17.852, (

    207Pb/204Pb)i = 15.456–15.610 and (208Pb/204Pb)i = 37.910–38.436, which plot

  • Fig. 5. Chondrite-normalized REE patterns (a and c) and primitive mantle-normalized spidergrams (b and d) for the low-Ti and high-Tilamprophyres in the Jiaodong Peninsula. Data sources: Chondrites (Boynton, 1984), primitive mantle (McDonough and Sun, 1995), orange-shaded field: 132–120 Ma lithospheric mantle-derived mafic dikes (Guo et al., 2004; Yang et al., 2004; Ma et al., 2013b); purple-shaded field:107–78 Ma asthenospheric mantle-derived mafic rocks (Zhang et al., 2003b, 2008); green-shaded field: Linglong host granite (Ma et al.,2013a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

    258 L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271

    above the North Hemisphere Reference Line (NHRL) inplots of (206Pb/204Pb)i vs. (

    208Pb/204Pb)i and (207Pb/204Pb)i

    (Fig. 7). The Sr–Nd–Pb isotopic compositions of the low-Ti rocks are similar to the 132–120 Ma lithospheric man-tle-derived mafic dikes in the Jiaodong Peninsula (e.g.,Guo et al., 2004; Yang et al., 2004; Ma et al., 2013b).

    5.2.2. High-Ti lamprophyre

    The high-Ti lamprophyres have lower initial 87Sr/86Srratios (0.705463–0.707197), much higher eNd(t) values(�0.79 to 1.76) and younger TDM ages (0.68–0.95 Ga) thanthose of the low-Ti rocks (Fig. 6). They have (206Pb/204Pb)iratios of 16.913–17.597, (207Pb/204Pb)i ratios of 15.440–15.641 and (208Pb/204Pb)i ratios of 37.353–37.718, whichalso plot above the North Hemisphere Reference Line(NHRL) (Fig. 7). The high-Ti rocks have Sr–Nd isotopiccompositions that are different from the 132–120 Ma litho-spheric mantle-derived mafic dikes, but similar to those of107–78 Ma asthenospheric mantle-derived rocks (Zhanget al., 2003b, 2008). However, they have Pb isotopic compo-sitions that similar to the lithospheric mantle-derived maficdikes (Fig. 7).

    5.3. Zircon U–Pb geochronology

    Zircon U–Pb data obtained in this study are listed inTable 3. The concordia diagrams and selected zircon CLimages are shown in Fig. 8. All of the zircon CL imagesare shown in Supplementary Fig. S1.

    5.3.1. Low-Ti lamprophyre

    Zircon grains in sample JJLT-1 separated from the low-Ti lamprophyre are generally euhedral, yellow-colorlessand transparent, dominantly short-prismatic with lengthof 80–150 lm. CL images show that magmatic oscillatoryzoning is common in the rims of the crystals. Eleven zircongrains were analyzed and exhibit large ranges of Th (22–220 ppm) and U (55–417 ppm) contents, with Th/U ratiosvarying from 0.08 to 1.06, only one grain having Th/U < 0.1. All their features are consistent with a magmaticorigin. The eleven grains have concordant ages, giving aweighted mean 206Pb/238U age of 120.8 ± 1.8 Ma (2r,MSWD = 2.0) (Fig. 8a). This age is interpreted to be theage of emplacement of the low-Ti lamprophyre. We notein particular that there is no sign of any inherited zircon

  • Table 2Sr, Nd and Pb isotopic compositions of the low-Ti and high-Ti lamprophyres in the Jiaodong Peninsula.

    Sample Rb

    (ppm)

    Sr

    (ppm)

    87Rb/86Sr 87Sr/86Sr 2r ISr Sm(ppm)

    Nd

    (ppm)

    147Sm/144Nd 143Nd/144Nd 2r eNd(t) 2r TDM206Pb/204Pb 207P 204Pb 208Pb/204Pb (206Pb/204Pb)i (207Pb/204Pb)i (208Pb/204Pb)i

    Jiaojia low-Ti

    JJLT-01 102 1004 0.294 0.709539 8 0.709034 7.1 45 0.095 0.511792 2 �14.93 0.04 1739 17.630 15.6 38.290 17.522 15.610 38.184JJLT-02 54 1481 0.105 0.709708 5 0.709527 7.8 45 0.104 0.511835 6 �14.23 0.12 1817 17.878 15.6 38.260 17.852 15.600 38.211JJLT-03 105 952 0.319 0.709886 6 0.709338 8.9 51 0.105 0.511770 1 �15.52 0.02 1932 17.439 15.4 38.134 17.308 15.456 38.003JJLT-04 126 958 0.381 0.710339 4 0.709685 8.7 51 0.103 0.511818 5 �14.56 0.10 1834 17.572 15.5 38.229 17.300 15.538 37.910JJLT-05 73 1217 0.175 0.709517 6 0.709217 6.9 40 0.104 0.511833 1 �14.27 0.02 1827 17.346 15.5 38.590 17.218 15.500 38.436JJLT-06 75 3162 0.069 0.709722 3 0.709604 7.4 45 0.099 0.511847 1 �13.92 0.02 1724 17.795 15.6 38.272 17.717 15.600 38.177JJLT-07 78 934 0.242 0.709739 4 0.709322 8.1 50 0.097 0.511802 1 �14.77 0.02 1756 17.513 15.5 38.111 17.444 15.532 38.019

    Jiaojia high-Ti

    JJHT-01 75 1453 0.149 0.707084 5 0.706828 8.5 48 0.108 0.512615 3 0.92 0.06 773 18.143 15.5 38.387 17.033 15.475 37.576

    JJHT-02 98 1451 0.195 0.706062 8 0.705726 9.0 53 0.103 0.512654 3 1.76 0.06 684 18.301 15.5 38.625 16.913 15.518 37.664

    JJHT-04 75 1449 0.150 0.707455 3 0.707197 9.3 51 0.111 0.512577 5 0.14 0.10 850 18.120 15.6 38.353 17.274 15.578 37.498

    JJHT-05 75 1648 0.132 0.705940 8 0.705713 9.3 49 0.114 0.512585 7 0.24 0.14 868 18.143 15.6 38.493 17.339 15.641 37.718

    JJHT-06 91 2076 0.127 0.705681 10 0.705463 9.9 54 0.110 0.512616 2 0.92 0.04 784 18.306 15.5 38.601 17.066 15.444 37.353

    JJHT-07 78 1175 0.192 0.706042 4 0.705713 9.2 49 0.114 0.512532 3 �0.79 0.06 948 18.082 15.6 38.357 17.236 15.574 37.540JJHT-08 85 2652 0.093 0.706556 4 0.706396 9.8 52 0.113 0.512593 2 0.41 0.04 847 18.086 15.5 38.340 17.597 15.507 37.623

    JJHT-09 90 1502 0.173 0.705824 4 0.705527 9.1 52 0.106 0.512641 4 1.46 0.08 723 18.194 15.4 38.442 17.095 15.440 37.590

    kRb = 1.393 � 10�11 year�1 (Nebel et al., 2011); kSm = 6.54 � 10�12 year-1 (Lugmair and Marti, 1978); kU238 = 1.55125 � 10�10 year�1; 235 = 9.8485 � 10�10 year�1; kTh232 = 4.9475 � 10�11 -year�1 (Steiger and Jäger, 1977);(147Sm/144Nd)CHUR = 0.1967 (Jacobsen and Wasserburg, 1980); (

    143Nd/144Nd)CHUR = 0.512638 (Goldstein et al., 1984);(143Nd/144Nd)DM = 0.513151; (

    147Sm/144Nd)DM = 0.2136 (Liew and Hofmann, 1988).

    L.

    Ma

    etal./

    Geo

    chim

    icaet

    Co

    smo

    chim

    icaA

    cta124

    (2014)250–271

    259

    b/

    15

    01

    62

    51

    06

    04

    35

    29

    85

    19

    80

    04

    15

    31

    93

    kU

  • Fig. 6. Initial 87Sr/86Sr(t) vs. eNd(t) diagram for the low-Ti andhigh-Ti lamprophyres in the Jiaodong Peninsula. Data sources:132–120 Ma lithospheric mantle-derived mafic dikes (Guo et al.,2004; Yang et al., 2004; Ma et al., 2013b), 107–78 Ma astheno-spheric mantle-derived mafic rocks (Zhang et al., 2003b, 2008),lower and upper crust of the NCC (Jahn et al., 1999), MORB(Zindler and Hart, 1986).

    Fig. 7. Initial 206Pb/204Pb vs. 208Pb/204Pb (a) and 206Pb/204Pb vs.207Pb/204Pb (b) diagrams for the low-Ti and high-Ti lamprophyres.Data sources: 132–120 Ma lithospheric mantle-derived mafic dikes(Guo et al., 2004; Yang et al., 2004; Ma et al., 2013b), 107–78 Maasthenospheric mantle-derived mafic rocks (Zhang et al., 2003b,2008), I-MORB (Indian MORB), P&N-MORB (Pacific and NorthAtlantic MORB) and NHRL are taken from Barry and Kent(1998), Zou et al. (2000), and Hart (1984), respectively.

    260 L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271

    ages, either from the Precambrian basement or from the160–157 Ma host granite.

    5.3.2. High-Ti lamprophyre

    Zircon grains in samples JJHT-2 and JJHT-5 from thehigh-Ti lamprophyre are mostly euhedral in morphology,transparent, and light yellow in color. Most of them areequant and short-prismatic and range in length from 80to 180 lm. The CL images show commonly oscillatory zon-ing, indicating a typical feature of magmatic zircon. Tenand nine zircon grains were analyzed for samples JJHT-2and JJHT-5, showing Th/U ratios of 0.14–1.36 and 0.28–1.48, respectively, indicating their magmatic origin. Themeasured 206Pb/238U ages are identical within analyticalprecision, yielding a weighted mean age of 121.6 ± 1.7 Ma(2r, MSWD = 1.3) and 120.6 ± 2.9 Ma (2r, MSWD= 2.7), respectively (Fig. 8b and c). We interpret this asthe crystallization age of the high-Ti lamprophyre. Withintheir limited of uncertainty, the low-Ti and high-Ti lamp-rophyre zircons have the same age.

    5.4. Zircon Hf isotopes

    In-situ zircon Hf isotopes were also determined for theJiaojia lamprophyres with corresponding U–Pb dating onthe same domains. Analytical results are listed in Table 4.The eHf(t) values are calculated using their U–Pb ages.

    5.4.1. Low-Ti lamprophyre

    Eleven spot analyses on ten zicrons from sample JJLT-1were analyzed for their Hf isotopic composition.176Hf/177Hf ratios range from 0.281872 to 0.282050, andthe calculated eHf(t) values vary from �23.1 to �29.3 witha mean eHf(t) value of �26.4 ± 1.1 (Fig. 9a). The corre-sponding TDM2 ages range from 2.62 to 2.99 Ga.

    5.4.2. High-Ti lamprophyre

    Ten spot analyses on ten zicrons from sample JJHT-2were analyzed, yielding 176Hf/177Hf ratios of 0.282586–0.282761. Calculated eHf(t) vary from �4.0 to 2.2 with aweighted mean of 0.6 ± 1.4 (Fig. 9b), corresponding toTDM2 ages ranging from 1.04 to 1.43 Ga. Nine spots fromsample JJHT-5 give 176Hf/177Hf ratios ranging from0.282570 to 0.282759; calculated eHf(t) vary from �4.7 to2.1 with a mean eHf(t) of �1.3 ± 1.8 (Fig. 9c). The TDM2ages vary from 1.04 to 1.47 Ga. Collectively, the measuredeHf(t) for two samples from the high-Ti lamprophyres are ingood agreement with the analytical precision, which ismuch higher than the low-Ti lamprophyres.

    6. DISCUSSION

    6.1. Evaluation of possible crustal contamination

    It is important to consider the possible effects of crustalcontamination before trying to assess the mantle sourcecharacteristics and melting histories of the mafic rocks.Overall, the lamprophyre dikes in the Jiaodong Peninsulaare basic, with low SiO2 and high MgO contents, thusbulk crustal contamination is unlikely. In the primitive

  • Table 3LA-ICP-MS U–Pb isotopic data for the zircons from the low-Ti and high-Ti lamprophyres in the Jiaodong Peninsula.

    Spot Th(ppm) U(ppm) Th/U Isotopic ratios Age(Ma)

    207Pb/206Pb 1r 207Pb/235U 1r 206Pb/238U 1r 207Pb/206Pb 1r 207Pb/235U 1r 206Pb/238U 1r

    JJLT-11 87 182 0.48 0.0494 0.0010 0.1263 0.0021 0.0185 0.0002 166 50 121 2 118 12 72 160 0.45 0.0482 0.0008 0.1259 0.0022 0.0190 0.0002 108 20 120 2 121 13 220 254 0.87 0.0491 0.0136 0.1383 0.0380 0.0204 0.0009 153 414 132 34 130 64 63 285 0.22 0.0699 0.0175 0.1851 0.0455 0.0192 0.0009 924 453 172 39 123 65 120 246 0.49 0.0485 0.0021 0.1297 0.0054 0.0194 0.0003 124 65 124 5 124 26 136 354 0.38 0.0458 0.0185 0.1248 0.0499 0.0198 0.0012 �12 561 119 45 126 77 59 276 0.21 0.0469 0.0217 0.1308 0.0595 0.0202 0.0016 44 635 125 53 129 108 32 142 0.23 0.0479 0.0021 0.1252 0.0052 0.0190 0.0003 96 63 120 5 121 29 32 417 0.08 0.0506 0.0020 0.1338 0.0052 0.0192 0.0003 223 58 128 5 123 210 22 55 0.39 0.0545 0.0138 0.1466 0.0362 0.0195 0.0012 391 397 139 32 124 811 77 73 1.06 0.0505 0.0015 0.1361 0.0037 0.0196 0.0003 219 38 130 3 125 2

    JJHT-21 132 258 0.51 0.0523 0.0023 0.1396 0.0059 0.0194 0.0004 300 63 133 5 124 22 102 224 0.46 0.0500 0.0029 0.1339 0.0074 0.0194 0.0004 194 90 128 7 124 33 87 227 0.38 0.0495 0.0035 0.1314 0.0089 0.0193 0.0004 170 112 125 8 123 34 192 438 0.44 0.0486 0.0024 0.1274 0.0062 0.0190 0.0004 131 77 122 6 121 25 51 288 0.18 0.0486 0.0020 0.1267 0.0051 0.0189 0.0003 129 63 121 5 121 26 796 735 1.08 0.0491 0.0013 0.1283 0.0035 0.0190 0.0003 153 37 123 3 121 27 417 484 0.86 0.0489 0.0018 0.1286 0.0046 0.0191 0.0003 143 54 123 4 122 28 116 846 0.14 0.0498 0.0021 0.1248 0.0049 0.0182 0.0003 183 100 119 4 116 29 1683 1242 1.36 0.0502 0.0012 0.1317 0.0032 0.0190 0.0003 203 31 126 3 122 210 87 307 0.28 0.0495 0.0014 0.1331 0.0039 0.0195 0.0003 173 40 127 3 124 2

    JJHT-51 868 635 1.37 0.0519 0.0062 0.1378 0.0163 0.0193 0.0003 281 269 131 15 123 22 330 224 1.48 0.0497 0.0024 0.1367 0.0064 0.0200 0.0004 182 74 130 6 127 23 57 94 0.61 0.0483 0.0091 0.1163 0.0215 0.0175 0.0006 113 289 112 20 112 44 350 866 0.40 0.0503 0.0012 0.1295 0.0032 0.0187 0.0003 210 32 124 3 119 25 219 173 1.27 0.0511 0.0021 0.1310 0.0054 0.0186 0.0003 244 63 125 5 119 26 136 211 0.64 0.0476 0.0012 0.1236 0.0032 0.0188 0.0003 81 34 118 3 120 27 130 461 0.28 0.0484 0.0017 0.1219 0.0042 0.0183 0.0003 120 52 117 4 117 28 71 181 0.39 0.0499 0.0041 0.1295 0.0103 0.0188 0.0005 188 132 124 9 120 39 170 419 0.40 0.0487 0.0048 0.1303 0.0122 0.0194 0.0006 134 152 124 11 124 4

    L.

    Ma

    etal./

    Geo

    chim

    icaet

    Co

    smo

    chim

    icaA

    cta124

    (2014)250–271

    261

  • Fig. 8. LA-ICP-MS zircon U–Pb concordia diagrams for the low-Ti and high-Ti lamprophyres in Jiaodong Peninsula. The insets show typicalCL images of zircons with U–Pb ages. CL images of all dated zircons with U–Pb ages and eHf(t) values are given in the online SupplementaryMaterial.

    262 L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271

    mantle-normalized spidergram (Fig. 5), the high-Ti lamp-rophyre displays “OIB-like” trace element features, e.g., po-

    sitive Nb, Ta, Zr and P anomalies, indicating a negligiblecrustal contamination. Nb/U and Ce/Pb values are very

  • Table 4Zircon Hf isotopic compositions of the low-Ti and high-Ti lamprophyres in the Jiaodong Peninsula.

    Spot Age(Ma) 176Lu/177Hf 176Hf/177Hf 2r eHf(0) eHf(t) 2r tDM1(Ma) tDM2(Ma) fLu/Hf

    JJLT-11 118 0.002424 0.282050 0.000031 �25.5 �23.1 1.1 1758 2618 �0.932 121 0.001506 0.281974 0.000023 �28.2 �25.7 0.8 1821 2777 �0.953 130 0.001996 0.281933 0.000017 �29.7 �27.0 0.6 1904 2865 �0.944 123 0.003357 0.281939 0.000027 �29.4 �27.0 1.0 1967 2861 �0.905 124 0.001661 0.281964 0.000046 �28.6 �26.0 1.6 1842 2797 �0.956 126 0.002749 0.281952 0.000027 �29.0 �26.5 1.0 1916 2829 �0.927 129 0.001254 0.281872 0.000038 �31.8 �29.1 1.4 1950 2992 �0.968 121 0.001766 0.281874 0.000047 �31.8 �29.3 1.7 1975 2996 �0.959 123 0.001509 0.281897 0.000050 �31.0 �28.4 1.8 1930 2944 �0.9510 124 0.001633 0.281912 0.000191 �30.4 �27.8 6.8 1915 2912 �0.9511 125 0.000716 0.282026 0.000035 �26.4 �23.7 1.2 1712 2658 �0.98

    JJHT-21 124 0.000886 0.282732 0.000014 �1.4 1.2 0.5 735 1100 �0.972 124 0.000898 0.282725 0.000014 �1.6 1.0 0.5 744 1114 �0.973 123 0.000677 0.282748 0.000013 �0.9 1.8 0.5 708 1063 �0.984 121 0.001130 0.282761 0.000014 �0.4 2.2 0.5 698 1038 �0.975 121 0.001112 0.282733 0.000016 �1.4 1.2 0.5 738 1101 �0.976 121 0.001156 0.282731 0.000027 �1.4 1.1 0.9 741 1105 �0.977 122 0.001081 0.282720 0.000015 �1.9 0.7 0.5 756 1129 �0.978 116 0.000958 0.282668 0.000027 �3.7 �1.2 0.9 826 1247 �0.979 122 0.001192 0.282586 0.000014 �6.6 �4.0 0.5 947 1427 �0.9610 124 0.000843 0.282741 0.000021 �1.1 1.6 0.7 721 1079 �0.97

    JJHT-51 123 0.002667 0.282621 0.000031 �5.3 �2.9 1.1 934 1357 �0.922 127 0.002364 0.282590 0.000022 �6.4 �3.8 0.8 972 1423 �0.933 112 0.001201 0.282758 0.000029 �0.5 1.9 1.0 704 1050 �0.964 119 0.002338 0.282685 0.000016 �3.1 �0.6 0.6 832 1214 �0.935 119 0.002164 0.282570 0.000023 �7.1 �4.7 0.8 996 1471 �0.936 120 0.000959 0.282759 0.000025 �0.5 2.1 0.9 698 1042 �0.977 117 0.002582 0.282684 0.000032 �3.1 �0.7 1.1 839 1218 �0.928 120 0.000951 0.282693 0.000037 �2.8 �0.2 1.3 791 1190 �0.979 124 0.000908 0.282674 0.000024 �3.5 �0.8 0.8 816 1229 �0.97

    eHf(t) = 10,000{[(176Hf/177Hf)S–(

    176Lu/177Hf)S � (ekt – 1)]/[(176Hf/177Hf)CHUR,0 � (176Lu/177Hf)CHUR � (ekt � 1)] – 1}.TDM1 = 1/k � ln{1 + (176Hf/177Hf)S � (176Hf/177Hf)DM]/[(176Lu/177Hf)S � (176Lu/177Hf)DM]}.TDM2 = 1/k � ln{1 + [(176Hf/177Hf)S,t � (176Hf/177Hf)DM,t]/[(176Lu/177Hf)C � (176Lu/177Hf)DM]} + t.The 176Hf/177Hf and 176Lu/177Hf ratios of chondrite and depleted mantle at the present are 0.282772 and 0.0332, 0.28325 and 0.0384,respectively (Blichert-Toft and Albarède, 1997; Griffin et al., 2000). k = 1.867 � 10�11 a�1 (Söderlund et al., 2004). (176Lu/177Hf)C = 0.015(Griffin et al., 2002).

    L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271 263

    sensitive to crustal contamination. As shown in Fig. 10a, allof the high-Ti samples have significant higher Nb/U(45.2 ± 7.3) and Ce/Pb (29.9 ± 6.9) values than those ofhost granite (Ma et al., 2013a), which are within the rangeof uncontaminated oceanic basalts (Nb/U = 47 ± 10, Ce/Pb = 25 ± 5; Hofmann et al., 1986; see also Hofmann,2003), clearly demonstrating that they show no sign ofany such contamination.

    In contast, crustal contamination would be very difficultto detect in the low-Ti rocks, because they are characterizedby “crustal-like” geochemical features, e.g., negative Nb–Taand positive Pb anomalies, high initial 87Sr/86Sr and loweNd(t) values, all of which might result from high degreesof crustal contamination. However, their

    PREE (223–

    281 ppm) and Sr (up to 3162 ppm) contents are much higherthan those of host granite values (

    PREE = 32–80 ppm;

    Sr = 215–614 ppm; Ma et al., 2013a), suggesting the REEand LILE of the low-Ti rocks were not obviously affectedby crustal contamination. The negative Nb–Ta anomalies

    are more likely an indication of subduction-related metaso-matism in the source region (e.g. Thirlwall et al., 1994). Sig-nificant crustal assimilation would result in concomitantincrease in 87Sr/86Sr and progressive decreases in eNd(t) withSiO2, such characteristics are not observed in either the high-Ti or the low-Ti rocks (Fig. 10b and c). In conclusion, crustalcontamination, although it cannot be ruled out for the low-Ti rocks, does not appear to be an important factor affectingmagma composition. This is also consistent with the absenceof inherited ages in the zircons from both types of lampro-phyres. Previous studies similarly concluded that crustalassimilation did not play a significant role in the petrogenesisof the mafic dikes in the Jiaodong Peninsula (e.g., Yanget al., 2004; Guo et al., 2004).

    6.2. Fractional crystallization

    The high-Ti lamprophyres exhibit a small range of SiO2and MgO contents, without clear linear correlations in the

  • Fig. 9. Histograms of zircon eHf(t) values for the low-Ti and high-Ti lamprophyres in the Jiaodong Peninsula.

    Fig. 10. (a) Plot of Ce/Pb vs. Nb/U for the high-Ti lamprophyre.The purple rectangle represents global MORB and OIB values(Hofmann et al., 1986). (b) and (c) Plot of Initial 87Sr/86Sr(t) andeNd(t) vs. SiO2 for the low-Ti and high-Ti lamprophyres in theJiaodong Peninsula. The absence of any condition between SiO2content and Sr–Nd isotope is consistent with the absence ofsignificant crustal contamination.

    264 L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271

    Harker diagrams (Fig. 4), indicating that the parental mag-ma have not undergone extensive fractional crystallization.In contrast, samples from the low-Ti lamprophyres showlinear correlations between MgO and major and trace ele-ments, although there is some scatter. The positive correla-tions between MgO and total Fe2O3, CaO/Al2O3, Cr andNi and negative correlations between MgO and SiO2 indi-cate that olivine and clinopyroxene are dominate fraction-ating phases. The absence of Sr and Eu anomalies andnegative correlations between MgO and Al2O3 argueagainst a significant fractionation of plagioclase. Likewise,fractionation of accessory minerals such as apatite andFe–Ti oxides are insignificant as suggested by the negative

    correlations between P2O5, TiO2 and MgO. Accordingly,the compositional characteristics of the low-Ti lamp-rophyre are consistent with olivine and clinopyroxene frac-tionation. We emphasize, however, that the significantlydifferent elemental and isotopic compositions rule out anysimple genetic relationship between the two types of lam-prophyres. Instead, these two magma types have evolvedfrom different sources and different primary magmas.

  • Fig. 11. (a) Rb/Sr vs. Ba/Rb diagram (see e.g., Furman and Graham, 1999). (b) Plot of K/Yb vs. Dy/Yb for the low-Ti and high-Tilamprophyres in the Jiaodong Peninsula. Melting curves for garnet lherzolite, spinel lherzolite, garnet-facies phlogopite lherzolite, garnet-facies amphibole lherzolite and spinel-facies amphibole lherzolite are taken from Duggen et al. (2005). Data sources: 132–120 Ma lithosphericmantle-derived mafic dikes (Guo et al., 2004; Yang et al., 2004; Ma et al., 2013b), 107–78 Ma asthenospheric mantle-derived mafic rocks(Zhang et al., 2003b, 2008).

    L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271 265

    6.3. Nature of mantle sources

    6.3.1. Low-Ti lamprophyre: derived from an ancient and

    enriched lithospheric mantle

    The low-Ti lamprophyre is characterized by high SiO2,MgO, Mg-number and compatible element contents, strongfractionation between LREE and HREE, enrichment ofLILE and depletion of HFSE (Fig. 5). These geochemicalsignatures are similar to those of contemporaneous maficdikes in the Jiaodong Peninsula (Guo et al., 2004; Yang

    et al., 2004; Ma et al., 2013b), which were interpreted tohave originated from a refractory lithospheric mantlesource. The enriched mantle signature of whole rock Sr–Nd and zircon Hf isotope compositions also suggests thatthe low-Ti lamprophyres were derived from an ancient sub-continental lithospheric mantle (Figs. 6 and 9). The deple-tion of HFSE relative to neighboring elements in theprimitive mantle normalized pattern is widely recognizedas a fingerprint of a subduction process (e.g., Thirlwallet al., 1994; Duggen et al. 2005). Thus, the source of the

  • 266 L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271

    low-Ti lamprophyres is inferred to have been modified bysubduction-related fluids. Many previous studies haveshown that the fluid-related metasomatism in the subduc-tion process would result in the depletions of Nb–Ta andZr–Hf relative to La and Sm, respectively (e.g. Elliottet al. 1997).

    The low-Ti rocks have high K2O content and significantLILE enrichment, calling for a LILE-enriched mantlesource in their origin. Volatile-bearing minerals such asphlogopite and amphibole are the major host phases forLILE in lithospheric mantle (Foley et al., 1996; Ionovet al., 1997). Melts in equilibrium with amphibole are ex-pected to have significantly lower Rb/Sr (20). In constrast, melts of a phlogopite bearingsource may have extremely low Ba and Ba/Rb (Furmanand Graham, 1999). The low-Ti rocks have relatively lowerRb/Sr (0.02–0.13) and higher Ba/Rb (12–54), indicating apredominance of amphibole rather than phlogopite in themelting source (Fig. 11a). High Ba/Rb ratios are consistentwith K-richterite in the source, as K-richterite has DRb/Ba > 1, whereas pargasite and kaersutite have DRb/Ba < 1(Tiepolo et al., 2003). The identification of amphibole inthe source region of these rocks implies that the metasoma-tism by fluids occurred prior to melting. We use a plot of K/Yb vs. Dy/Yb introducted by Duggen et al. (2005) to con-strain the composition of the mantle source and degree ofpartial melting that produced the parental magmas of thelow-Ti lamprophyre (Fig. 11b), and to distinguish betweenpartial melting in the spinel and garnet stability fields of aphlogopite- and/or amphibole-bearing lherzolite (Duggenet al., 2005; Jiang et al., 2010). Partial melts in the garnetstability field generally have high Dy/Yb ratios (>2.5),whereas melting in the spinel stability field would producemelts with low Dy/Yb ratios (

  • Fig. 12. Tectonic model for the generation and emplacement of thelow-Ti and high-Ti lamprophyres in the Jiaodong Peninsula(modified from Ma et al., 2013b).

    L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271 267

    asthenospheric mantle in these magmas, indicating that theTriassic magmatism occurred in an extensional setting re-lated to post-orogenic lithospheric delamination (Yanget al., 2007, 2010). Late Triassic dike swarms intrudingthe Liaodong Peninsula, north-eastern China, have beeninterpreted to be derived from asthenospheric sources(Yang et al., 2007). However, although the isotopic compo-sitions of these dikes resemble those of the Cretaceous lam-prophyres discussed here, their trace element signatures aresomewhat ambiguous and intermediate between clearly de-fined lithospheric and asthenospheric characteristics. Thus,the diagnostic trace element ratios of “Group 1” rocks fromLiaodong Peninsula average Nb/U = 31 ± 5 and Ce/Pb = 11 ± 3 and are thus significantly lower than thecanonical values of Nb/U = 47 ± 10 and Ce/Pb = 25 ± 6(Hofmann et al., 1986). Yang et al. (2007) interpret theseratios as having been lowered from normal asthenosphericmantle values by crustal contamination. Although this is areasonable interpretation, the involvement of a source withmore lithospheric character cannot be ruled out, and in thissense the geochemical signals from the Triassic rocks aresomewhat ambiguous. Also, this magmatism was largelyconfined to the craton’s margin, whereas the interior ofthe craton remained stable at that time, suggesting a limitedscale of lithospheric thinning during Triassic time (Wuet al., 2008). It is generally accepted that the Early Creta-ceous was an important period of lithospheric thinning,on the basis of large-scale melting of enriched lithosphericmantle at a peak of 130–120 Ma (e.g. Wu et al., 2008). Incontrast, the asthenosphere-derived magmas were notknown to appear until 107–73 Ma (Yan et al., 2003; Zhanget al., 2003b, 2008). Therefore, geoscientists believed thatthe Late Cretaceous marked the end of lithosphere thin-ning, judging from a lithospheric to asthenospheric transi-tion in basaltic sources at that time (e.g. Xu, 2001).Accordingly, the mechanism of lithospheric thinning hasbeen interpreted in terms of either thermo-mechanical ero-sion or lithospheric delamination, and the debate has con-tinued as to whether the mafic igneous activity wasinstantaneous and marked by rapid delamination lastingno more than 10 Myr, or whether it was part of a more pro-tracted 100 Myr long transformation of the lithospherickeel (Menzies et al., 2007).

    As discussed earlier, the low-Ti lamprophyre have beenderived from an amphibole-bearing, ancient and refractorylithospheric mantle that was metasomatized by subduction-zone hydrous fluids prior to magma generation. In contrast,the high-Ti lamprophyre is inferred to be derived from par-tial melting of a relatively fertile asthenospheric mantlesource. Both of them originated in the spinel-garnet transi-tion zone. Many previous studies have indicated that thedepth of the spinel-garnet transition zone in the upper man-tle is approximately 75–85 km (McKenzie and O’Nions,1991; Robinson and Wood, 1998; Klemme and O’Neill,2000). Thus, the source region of the low-Ti and high-Tilamprophyre is likely to be at a depth of 75–85 km. Becausenormal asthenosphere cannot melt until the thickness of thelithosphere has been reduced to less than about 80 km(McKenzie and Bickle, 1988), the appearance of astheno-sphere-derived high-Ti lamprophyre about 120 Ma ago

    indicates that the thickness of the lithosphere is no morethan 80 km. Thus, the high-Ti lamprophyres represent theearliest asthenosphere-derived magma in the Jiaodong Pen-insula, implying that the lithosphric thinning beneath theJiaodong Peninsula has taken place just prior to�121 Ma. Given that the two distinct rock types of lampro-phyres are coeval, we suggest that the asthenosphere adia-batically rose from the deep to shallow depths, giving riseto decompression melting. At the same time, the lithospher-ic mantle at a depth of 75–85 km melted as it was heated bythe upwelling asthenosphere. The essentially simultaneousformation of both types of magma thus implies that thelithospheric mantle was rapidly detached at a depth of75–85 km at about the same time 121 Ma ago.

    Recent geological and geophysical studies show that thesubduction of Paleo-Pacific oceanic plate beneath northeastChina have played a critical role in the destruction of thelithospheric keel, which was subducted beneath the north-east China continent by �177 Ma ago and then subjectedto roll-back at �155 Ma (Wu et al., 2007; Jiang et al.,2010; Zhu et al., 2011). If this is correct, the eastern marginof the northeast China continent became a continental arcbefore 177 Ma, when the Paleo-Pacific plate was subductedbeneath the northeast China continent at a low angle. Theslab-released fluid modified the overlying mantle wedge andtransformed the original cratonic lithospheric mantle to anenriched lithospheric mantle in Mesozoic time. Up until ca.121 Ma, the continuous slab roll-back caused the continen-tal arc-rifting in eastern NCC, and this resulted in thedetachment of the lithospheric mantle at a depth of about75–85 km. The lithospheric detachment induced decom-pressional melting of upwelling asthenospheric mantle to

  • 268 L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271

    generate asthenospheric mantle-derived magmas mani-fested by the high-Ti lamprophyre. At the same time, theenriched lithospheric mantle was heated by the underlyingconvective asthenosphere and underwent partial meltingto generate the low-Ti lamprophyre. Crustal “underplat-ing” by these hot mafic magmas resulted in partial meltingof the lower crust to generate the granitic plutons such asthe Guojialing granitoid in the Jiaodong Peninsula(Fig. 12). Our new geochronological and geochemical datapresented here narrow the time window and mode of an-cient lithosphere removal. Such a rapid delamination modelcould also account for intensive magmatism and relatedAu–Cu mineralizations at about 120 Ma.

    7. CONCLUSIONS

    The Jiaojia lamprophyres in the Jiaodong Peninsulawere divided into two major magma types, a low-Ti lamp-rophyre and a high-Ti lamprophyre. Zircon LA-ICP-MSU–Pb dating indicates that the two types of lamprophyreswere intruded at the same time of ca. 121 Ma. The low-Tilamprophyres were derived from partial melting of an en-riched lithospheric mantle that was previously modifiedby slab-derived hydrous fluids, whereas the high-Ti lampro-phyres have been originated from the convective astheno-spheric mantle. The co-occurrence of the two types oflamprophyres record a rapid transition from lithosphericto asthenospheric mantle sources, indicating the lithospherebeneath the eastern NCC was rapidly detached at a depthof 75–85 km just prior to ca. 121 Ma at Jiaodong Peninsula.

    ACKNOWLEDGEMENTS

    We would like to thank two anonymous reviewers and DrNorman for their critical and constructive reviews on this paper.We are also grateful to Jing-Hong Yang, Wei Pu, Bing Wu,Ke-Jun Hou, Tao Yang, Hai-Zhen Wei, Huan-Ling Lei, Zhi-YongZhu and Bin Xu for their help with the lab work. This study wassupported by grants from the Chinese Ministry of Science andTechnology 973 project (Grant 2006CB403506), the ChinaNational Science Foundation (No. 41172073) and the State KeyLaboratory for Mineral Deposits Research (Nanjing University).

    APPENDIX A. SUPPLEMENTARY DATA

    Supplementary data associated with this article can befound, in the online version, at http://dx.doi.org/10.1016/j.gca.2013.09.035.

    REFERENCES

    Andersen T. (2002) Correction of common lead in U–Pb analysesthat do not report 204Pb. Chem. Geol. 192, 59–79.

    Barry T. L. and Kent R. W. (1998) Cenozoic magmatism inMongolia and the origin of central and east Asian basalts. InMantle Dynamics and Plate Interactions in East Asia (eds. M. F.J. Flower, S. L. Chung, C. H. Lo and T. Y. Lee). AmericanGeophysical Union Geodynamics Series, pp. 347–364.

    Blichert-Toft J. and Albarede F. (1997) The Lu–Hf isotopegeochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148, 243–258.

    Boynton W. V. (1984) Geochemistry of the rare earth elements:Meteorite studies. In Rare Earth Element Geochemistry (ed. P.Henderson). Elsevier, pp. 63–114.

    Chu N. C., Taylor R. N., Chavagnac V., Nesbitt R. W., Boella R.M., Milton J. A., German C. R., Bayon G. and Burton K.(2002) Hf isotope ratio analysis using multi-collector induc-tively coupled plasma mass spectrometry: An evaluation ofisobaric interference corrections. J. Anal. At. Spectrom. 17,1567–1574.

    Duggen S., Hoernle K., Bogaard P. and Garbe-Schonberg D.(2005) Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Mediterranean: Evidencefor continental-edge delamination of subcontinental litho-sphere. J. Petrol. 46, 1155–1201.

    Edwards C. M. H., Menzies M. A., Thirlwall M. F., Morris J. D.,Leeman W. P. and Harmon R. S. (1994) The transition topotassic alkaline volcanism in island arcs: The Ringgit-Besercomplex, east Java, Indonesia. J. Petrol. 35, 1557–1595.

    Elhlou S., Belousova E., Griffin W. L., Pearson N. J. and O’ReillyS. Y. (2006) Trace element and isotopic composition of GJ-redzircon standard by laser ablation. Geochim. Cosmochim. Acta70, 158.

    Elliott T., Plank T., Zindler A., White W. and Bourdon B. (1997)Element transport from slab to volcanic front at the Marianaarc. J. Geophys. Res. 102, 14991–15019.

    Fan W. M., Zhang H. F., Baker J., Jarvis K. E., Mason P. R. D.and Menzies M. A. (2000) On and off the North China Craton:Where is the Archaean keel? J. Petrol. 41, 933–950.

    Foley S. F., Jackson S. E., Fryer B. J., Greenouch J. D. and JennerG. A. (1996) Trace element partition coefficients for clinopy-roxene and phlogopite in an alkaline lamprophyre fromNewfoundland by LAM-ICP-MS. Geochim. Cosmochim. Acta60, 629–638.

    Foley S. F., Barth M. G. and Jenner G. A. (2000) Rutile/meltpartition coefficients for trace elements and an assessment of theinfluence of rutile on the trace element characteristics ofsubduction zone magmas. Geochim. Cosmochim. Acta 64,933–938.

    Falloon T. J., Green D. H., Hatton C. J. and Harris K. L. (1988)Anhydrous partial melting of a fertile and depleted peridotitefrom 2 to 30 kb and application to basalt petrogenesis. J.Petrol. 29, 1257–1282.

    Furman T. and Graham D. (1999) Erosion of lithospheric mantlebeneath the East African Rift system: Geochemical evidencefrom the Kivu volcanic province. Lithos 48, 237–262.

    Gao S., Rudnick R. L., Carlson R. W., McDonough W. F. and LiuY. S. (2002) Re–Os evidence for replacement of ancient mantlelithosphere beneath the North China craton. Earth Planet. Sci.Lett. 198, 307–322.

    Gao J. F., Lu J. J., Lai M. Y., Lin Y. P. and Pu W. (2003) Analysisof trace elements in rock samples using HR-ICPMS. J. NanjingUniv. (Nat. Sci.) 39, 844–850 (in Chinese with Englishabstract).

    Gao S., Rudnick R. L., Yuan H. L., Liu X. M., Liu Y. S., Xu W.L., Ling W. L., Ayers J., Wang X. C. and Wang Q. H. (2004)Recycling lower continental crust in the North China craton.Nature 432, 892–897.

    Gerstenberger H. and Haase G. (1997) A highly effective emittersubstance for mass spectrometric Pb isotope ratio determina-tions. Chem. Geol. 136, 309–312.

    Goldstein S. L., O’Nions R. K. and Hamilton P. J. (1984) A Sm–Nd isotopic study of atmospheric dusts and particulates frommajor river systems. Earth Planet. Sci. Lett. 70, 221–236.

    Griffin W. L., Zhang A. D., O’Reilly S. Y. and Ryan C. G. (1998)Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In Mantle Dynamics and Plate Interactions in

    http://dx.doi.org/10.1016/j.gca.2013.09.035http://dx.doi.org/10.1016/j.gca.2013.09.035http://refhub.elsevier.com/S0016-7037(13)00544-9/h0005http://refhub.elsevier.com/S0016-7037(13)00544-9/h0005http://refhub.elsevier.com/S0016-7037(13)00544-9/h0545http://refhub.elsevier.com/S0016-7037(13)00544-9/h0545http://refhub.elsevier.com/S0016-7037(13)00544-9/h0545http://refhub.elsevier.com/S0016-7037(13)00544-9/h0545http://refhub.elsevier.com/S0016-7037(13)00544-9/h0545http://refhub.elsevier.com/S0016-7037(13)00544-9/h0010http://refhub.elsevier.com/S0016-7037(13)00544-9/h0010http://refhub.elsevier.com/S0016-7037(13)00544-9/h0010http://refhub.elsevier.com/S0016-7037(13)00544-9/h0015http://refhub.elsevier.com/S0016-7037(13)00544-9/h0015http://refhub.elsevier.com/S0016-7037(13)00544-9/h0015http://refhub.elsevier.com/S0016-7037(13)00544-9/h0020http://refhub.elsevier.com/S0016-7037(13)00544-9/h0020http://refhub.elsevier.com/S0016-7037(13)00544-9/h0020http://refhub.elsevier.com/S0016-7037(13)00544-9/h0020http://refhub.elsevier.com/S0016-7037(13)00544-9/h0020http://refhub.elsevier.com/S0016-7037(13)00544-9/h0020http://refhub.elsevier.com/S0016-7037(13)00544-9/h0025http://refhub.elsevier.com/S0016-7037(13)00544-9/h0025http://refhub.elsevier.com/S0016-7037(13)00544-9/h0025http://refhub.elsevier.com/S0016-7037(13)00544-9/h0025http://refhub.elsevier.com/S0016-7037(13)00544-9/h0025http://refhub.elsevier.com/S0016-7037(13)00544-9/h0030http://refhub.elsevier.com/S0016-7037(13)00544-9/h0030http://refhub.elsevier.com/S0016-7037(13)00544-9/h0030http://refhub.elsevier.com/S0016-7037(13)00544-9/h0030http://refhub.elsevier.com/S0016-7037(13)00544-9/h0035http://refhub.elsevier.com/S0016-7037(13)00544-9/h0035http://refhub.elsevier.com/S0016-7037(13)00544-9/h0035http://refhub.elsevier.com/S0016-7037(13)00544-9/h0035http://refhub.elsevier.com/S0016-7037(13)00544-9/h0040http://refhub.elsevier.com/S0016-7037(13)00544-9/h0040http://refhub.elsevier.com/S0016-7037(13)00544-9/h0040http://refhub.elsevier.com/S0016-7037(13)00544-9/h0045http://refhub.elsevier.com/S0016-7037(13)00544-9/h0045http://refhub.elsevier.com/S0016-7037(13)00544-9/h0045http://refhub.elsevier.com/S0016-7037(13)00544-9/h0050http://refhub.elsevier.com/S0016-7037(13)00544-9/h0050http://refhub.elsevier.com/S0016-7037(13)00544-9/h0050http://refhub.elsevier.com/S0016-7037(13)00544-9/h0050http://refhub.elsevier.com/S0016-7037(13)00544-9/h0050http://refhub.elsevier.com/S0016-7037(13)00544-9/h0055http://refhub.elsevier.com/S0016-7037(13)00544-9/h0055http://refhub.elsevier.com/S0016-7037(13)00544-9/h0055http://refhub.elsevier.com/S0016-7037(13)00544-9/h0055http://refhub.elsevier.com/S0016-7037(13)00544-9/h0055http://refhub.elsevier.com/S0016-7037(13)00544-9/h0060http://refhub.elsevier.com/S0016-7037(13)00544-9/h0060http://refhub.elsevier.com/S0016-7037(13)00544-9/h0060http://refhub.elsevier.com/S0016-7037(13)00544-9/h0060http://refhub.elsevier.com/S0016-7037(13)00544-9/h0060http://refhub.elsevier.com/S0016-7037(13)00544-9/h0065http://refhub.elsevier.com/S0016-7037(13)00544-9/h0065http://refhub.elsevier.com/S0016-7037(13)00544-9/h0065http://refhub.elsevier.com/S0016-7037(13)00544-9/h0075http://refhub.elsevier.com/S0016-7037(13)00544-9/h0075http://refhub.elsevier.com/S0016-7037(13)00544-9/h0075http://refhub.elsevier.com/S0016-7037(13)00544-9/h0075http://refhub.elsevier.com/S0016-7037(13)00544-9/h0070http://refhub.elsevier.com/S0016-7037(13)00544-9/h0070http://refhub.elsevier.com/S0016-7037(13)00544-9/h0070http://refhub.elsevier.com/S0016-7037(13)00544-9/h0070http://refhub.elsevier.com/S0016-7037(13)00544-9/h0080http://refhub.elsevier.com/S0016-7037(13)00544-9/h0080http://refhub.elsevier.com/S0016-7037(13)00544-9/h0080http://refhub.elsevier.com/S0016-7037(13)00544-9/h0080http://refhub.elsevier.com/S0016-7037(13)00544-9/h0085http://refhub.elsevier.com/S0016-7037(13)00544-9/h0085http://refhub.elsevier.com/S0016-7037(13)00544-9/h0085http://refhub.elsevier.com/S0016-7037(13)00544-9/h0090http://refhub.elsevier.com/S0016-7037(13)00544-9/h0090http://refhub.elsevier.com/S0016-7037(13)00544-9/h0090http://refhub.elsevier.com/S0016-7037(13)00544-9/h0550http://refhub.elsevier.com/S0016-7037(13)00544-9/h0550http://refhub.elsevier.com/S0016-7037(13)00544-9/h0550

  • L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271 269

    East Asia (eds. M. Flower, S. L. Chung, C. H. Lo and T. Y. Lee).American Geophysical Union Geodynamics Series, pp. 107–126.

    Griffin W. L., Pearson N. J., Belousova E., Jackson S. E., VanAchterbergh E., O’Reilly S. Y. and Shee S. R. (2000) The Hfisotope composition of cratonic mantle: LAM-MC-ICPMSanalysis of zircon megacrysts in kimberlites. Geochim. Cosmo-chim. Acta 64, 133–147.

    Griffin W. L., Wang X., Jackson S. E., Pearson N. J., O’Reilly S.Y., Xu X. and Zhou X. (2002) Zircon chemistry and magmamixing, SE China: In-situ analysis of Hf isotopes, Tonglu andPingtan igneous complexes. Lithos 61, 237–269.

    Guo F., Fan W. M., Wang Y. J. and Zhang M. (2004) Origin ofearly Cretaceous calc-alkaline lamprophyres from the Suluorogen in eastern China: Implications for enrichment processesbeneath continental collisional belt. Lithos 78, 291–305.

    Guo J. H., Chen F. K., Zhang X. M., Siebel W. and Zhai M. G. (2005)Evolution of syn- to post-collisional magmatism from north SuluUHP beIt, eastern China: Zircon U–Pb geochronology. ActaPetrol. Sin. 21, 1281–1301 (in Chinese with English abstract).

    Hart S. R. (1984) A large-scale isotope anomaly in the SouthernHemisphere mantle. Nature 309, 753–757.

    Hofmann A. W. (1997) Mantle geochemistry: The message fromoceanic volcanism. Nature 385, 219–229.

    Hofmann A. W. (2003) Sampling mantle heterogeneity throughoceanic basalts: Isotopes and trace elements. Treatise Geochem.2, 61–101.

    Hofmann A. W., Jochum K. P., Seufert M. and White W. M.(1986) Nb and Pb in oceanic basalts: New constraints on mantleevolution. Earth Planet. Sci. Lett. 79, 33–45.

    Hou K. J., Li Y. H., Zou T. R., Qu X. M., Shi Y. R. and Xie G. Q.(2007) Laser ablation–MC–ICP–MS technique for Hf isotopemicroanalysis of zircon and its geological applications. ActaPetrol. Sin. 23, 2595–2604 (in Chinese with English abstract).

    Hu F. F., Fan H. H., Yang J. H., Zhai M. G., Xie L. W., Yang Y.H. and Liu X. M. (2007) Petrogenesis of Gongjia gabbro-dioritein the Kunyushan area, Jiaodong Peninsula: Constraints frompetro-geochemistry, zircon U–Pb dating and Hf isotopes. ActaPetrol. Sin. 23, 369–380 (in Chinese with English abstract).

    Ionov D. A., Griffin W. L. and O’Reilly S. Y. (1997) Volatile-bearing minerals and lithophile trace elements in the uppermantle. Chem. Geol. 141, 153–184.

    Jackson S. E., Pearson N. J., Griffin W. L. and Belousova E. A.(2004) The application of laser ablation-inductively coupledplasma-mass spectrometry to in situ U–Pb zircon geochronol-ogy. Chem. Geol. 211, 47–69.

    Jacobsen S. B. and Wasserburg G. J. (1980) Sm–Nd isotopicevolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155.

    Jahn B. M., Cornichet J., Cong B. L. and Yui T. F. (1996)Ultrahigh-eNd eclogites from an ultrahigh-pressure metamor-phic terrain of China. Chem. Geol. 127, 61–79.

    Jahn B. M., Wu F. Y., Lo C. H. and Tsai C. H. (1999) Crust-mantle interaction induced by deep subduction of the conti-nental crust: Geochemical and Sr–Nd isotopic evidence frompost-collisional mafic-ultramafic intrusions of the northernDabie complex, central China. Chem. Geol. 157, 119–146.

    Jahn B. M., Liu D. Y., Wan Y. S., Song B. and Wu J. S. (2008)Archean crustal evolution of the Jiaodong Peninsula, China, asrevealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. Am. J. Sci. 308, 232–269.

    Jiang Y. H., Jiang S. Y., Ling H. F. and Ni P. (2010) Petrogenesisand tectonic implications of Late Jurassic shoshonitic lamp-rophyre dikes from the Liaodong Peninsula, NE China.Mineral. Petrol. 100, 127–151.

    Klemme S. and O’Neill H. S. C. (2000) The near-solidus transitionfrom garnet lherzolite to spinel lherzolite. Contrib. Miner.Petrol. 138, 237–248.

    Li Z. X. and Li X. H. (2007) Formation of the 1300-km-wideintracontinental orogen and postorogenic magmatic province inMesozoic South China: A flat-slab subduction model. Geology35, 179–182.

    Li S. G., Xiao Y. L., Liou D. L., Chen Y. Z., Ge N. J., Zhang Z.Q., Sun S. S., Cong B. L., Zhang R. Y., Hart S. R. and Wang S.S. (1993) Collision of the North China and Yangtse Blocks andformation of coesite-bearing eclogites: Timing and processes.Chem. Geol. 109, 89–111.

    Li S. G., Jagoutz E., Lo C. H., Chen Y. Z., Li Q. L. and Xiao Y. L.(1999) Sm/Nd, Rb/Sr, and 40Ar/39Ar isotopic systematics of theultrahigh-pressure metamorphic rocks in the Dabie-Sulu belt,Central China: A retrospective view. Int. Geol. Rev. 41, 1114–1124.

    Li J. W., Bi S. J. and Vasconcelos P. (2010) Mineralization andgenesis of the Fanjiabu gold deposit in the Sulu ultrahighpressure metamorphic terrain, with a comparison to the goldmineralization in the Jiaobei terrain. Geol. J. China Univ. 16,125–142 (in Chinese with English abstract).

    Liew T. C. and Hofmann A. W. (1988) Precambrian crustalcomponents, plutonic associations, plate environment of theHercynian Fold Belt of central Europe: Indications from a Ndand Sr isotopic study. Contrib. Miner. Petrol. 98, 129–138.

    Liu D. Y., Nutman A. P., Compston W., Wu J. S. and Shen Q. H.(1992) Remnants of P3800 Ma crust in the Chinese part of theSino-Korean craton. Geology 20, 339–342.

    Lugmair G. W. and Marti K. (1978) Lunar initial 143Nd/144Nd:Differential evolution of the lunar crust and mantle. EarthPlanet. Sci. Lett. 39, 349–357.

    Ludwig K. R. (2003) ISOPLOT 3.00: A Geochronology Toolkit forMicrosoft Excel. Berkeley Geochronological Center SpecialPublication, Berkeley.

    Ma L., Jiang S. Y., Dai B. Z., Jiang Y. H., Hou M. L., Pu W. andXu B. (2013a) Multiple sources for the origin of Late JurassicLinglong adakitic granite in the Shandong Peninsula, easternChina: Zircon U–Pb geochronological, geochemical and Sr–Nd–Hf isotopic evidence. Lithos 162–163, 251–263.

    Ma L., Jiang S. Y., Hou M. L., Dai B. Z., Jiang Y. H., Yang T.,Zhao K. D., Pu W., Zhu Z. Y. and Xu B. (2013b) Geochemistryof Early Cretaceous calc-alkaline lamprophyres in the JiaodongPeninsula: Implication for lithospheric evolution of the easternNorth China Craton. Gondwana Res.. http://dx.doi.org/10.1016/j.gr.2013.05.012.

    Maruyama S., Isozaki Y., Kimura G. and Terabayashi M. (1997)Paleogeographic maps of the Japanese Islands: Plate tectonicsynthesis from 750 Ma to the present. Island Arc 6, 121–142.

    McDonough W. F. and Sun S. S. (1995) The composition of theEarth. Chem. Geol. 120, 223–253.

    Mckenzie D. P. and Bickle M. J. (1988) The volume andcomposition of melt generated by extension of the lithosphere.J. Petrol. 29, 625–679.

    Mckenzie D. P. and O’Nions R. K. (1991) Partial melt distribu-tions from inversion of rare earth element concentrations. J.Petrol. 32, 1021–1091.

    Menzies M. A. and Xu Y. G. (1998) Geodynamics of the NorthChina craton. In Mantle Dynamics and Plate Interactions in EastAsia (eds. M. Flower, S. L. Chung, C. H. Lo and T. Y. Lee).American Geophysical Union Geodynamics Series, pp. 155–165.

    Menzies M. A., Fan W. M. and Zhang M. (1993) Palaeozoic andCenozoic lithoprobes and the loss of >120 km of Archaeanlithosphere, Sino-Korean craton, China. In Magmatic Processesand Plate Tectonics (eds. H. M. Prichard, T. Alabaster, N. B.W. Harris and C. R. Neary). Geological Society SpecialPublications, pp. 71–78.

    Menzies M. A., Xu Y. G., Zhang H. F. and Fan W. M. (2007)Integration of geology, geophysics and geochemistry: A key tounderstanding the North China Craton. Lithos 96, 1–21.

    http://refhub.elsevier.com/S0016-7037(13)00544-9/h0550http://refhub.elsevier.com/S0016-7037(13)00544-9/h0550http://refhub.elsevier.com/S0016-7037(13)00544-9/h0095http://refhub.elsevier.com/S0016-7037(13)00544-9/h0095http://refhub.elsevier.com/S0016-7037(13)00544-9/h0095http://refhub.elsevier.com/S0016-7037(13)00544-9/h0095http://refhub.elsevier.com/S0016-7037(13)00544-9/h0095http://refhub.elsevier.com/S0016-7037(13)00544-9/h0100http://refhub.elsevier.com/S0016-7037(13)00544-9/h0100http://refhub.elsevier.com/S0016-7037(13)00544-9/h0100http://refhub.elsevier.com/S0016-7037(13)00544-9/h0100http://refhub.elsevier.com/S0016-7037(13)00544-9/h0105http://refhub.elsevier.com/S0016-7037(13)00544-9/h0105http://refhub.elsevier.com/S0016-7037(13)00544-9/h0105http://refhub.elsevier.com/S0016-7037(13)00544-9/h0105http://refhub.elsevier.com/S0016-7037(13)00544-9/h0110http://refhub.elsevier.com/S0016-7037(13)00544-9/h0110http://refhub.elsevier.com/S0016-7037(13)00544-9/h0110http://refhub.elsevier.com/S0016-7037(13)00544-9/h0110http://refhub.elsevier.com/S0016-7037(13)00544-9/h0115http://refhub.elsevier.com/S0016-7037(13)00544-9/h0115http://refhub.elsevier.com/S0016-7037(13)00544-9/h0125http://refhub.elsevier.com/S0016-7037(13)00544-9/h0125http://refhub.elsevier.com/S0016-7037(13)00544-9/h0130http://refhub.elsevier.com/S0016-7037(13)00544-9/h0130http://refhub.elsevier.com/S0016-7037(13)00544-9/h0130http://refhub.elsevier.com/S0016-7037(13)00544-9/h0120http://refhub.elsevier.com/S0016-7037(13)00544-9/h0120http://refhub.elsevier.com/S0016-7037(13)00544-9/h0120http://refhub.elsevier.com/S0016-7037(13)00544-9/h0135http://refhub.elsevier.com/S0016-7037(13)00544-9/h0135http://refhub.elsevier.com/S0016-7037(13)00544-9/h0135http://refhub.elsevier.com/S0016-7037(13)00544-9/h0135http://refhub.elsevier.com/S0016-7037(13)00544-9/h0140http://refhub.elsevier.com/S0016-7037(13)00544-9/h0140http://refhub.elsevier.com/S0016-7037(13)00544-9/h0140http://refhub.elsevier.com/S0016-7037(13)00544-9/h0140http://refhub.elsevier.com/S0016-7037(13)00544-9/h0140http://refhub.elsevier.com/S0016-7037(13)00544-9/h0145http://refhub.elsevier.com/S0016-7037(13)00544-9/h0145http://refhub.elsevier.com/S0016-7037(13)00544-9/h0145http://refhub.elsevier.com/S0016-7037(13)00544-9/h0150http://refhub.elsevier.com/S0016-7037(13)00544-9/h0150http://refhub.elsevier.com/S0016-7037(13)00544-9/h0150http://refhub.elsevier.com/S0016-7037(13)00544-9/h0150http://refhub.elsevier.com/S0016-7037(13)00544-9/h0155http://refhub.elsevier.com/S0016-7037(13)00544-9/h0155http://refhub.elsevier.com/S0016-7037(13)00544-9/h0160http://refhub.elsevier.com/S0016-7037(13)00544-9/h0160http://refhub.elsevier.com/S0016-7037(13)00544-9/h0160http://refhub.elsevier.com/S0016-7037(13)00544-9/h0160http://refhub.elsevier.com/S0016-7037(13)00544-9/h0165http://refhub.elsevier.com/S0016-7037(13)00544-9/h0165http://refhub.elsevier.com/S0016-7037(13)00544-9/h0165http://refhub.elsevier.com/S0016-7037(13)00544-9/h0165http://refhub.elsevier.com/S0016-7037(13)00544-9/h0165http://refhub.elsevier.com/S0016-7037(13)00544-9/h0170http://refhub.elsevier.com/S0016-7037(13)00544-9/h0170http://refhub.elsevier.com/S0016-7037(13)00544-9/h0170http://refhub.elsevier.com/S0016-7037(13)00544-9/h0170http://refhub.elsevier.com/S0016-7037(13)00544-9/h0175http://refhub.elsevier.com/S0016-7037(13)00544-9/h0175http://refhub.elsevier.com/S0016-7037(13)00544-9/h0175http://refhub.elsevier.com/S0016-7037(13)00544-9/h0175http://refhub.elsevier.com/S0016-7037(13)00544-9/h0180http://refhub.elsevier.com/S0016-7037(13)00544-9/h0180http://refhub.elsevier.com/S0016-7037(13)00544-9/h0180http://refhub.elsevier.com/S0016-7037(13)00544-9/h0200http://refhub.elsevier.com/S0016-7037(13)00544-9/h0200http://refhub.elsevier.com/S0016-7037(13)00544-9/h0200http://refhub.elsevier.com/S0016-7037(13)00544-9/h0200http://refhub.elsevier.com/S0016-7037(13)00544-9/h0190http://refhub.elsevier.com/S0016-7037(13)00544-9/h0190http://refhub.elsevier.com/S0016-7037(13)00544-9/h0190http://refhub.elsevier.com/S0016-7037(13)00544-9/h0190http://refhub.elsevier.com/S0016-7037(13)00544-9/h0190http://refhub.elsevier.com/S0016-7037(13)00544-9/h0195http://refhub.elsevier.com/S0016-7037(13)00544-9/h0195http://refhub.elsevier.com/S0016-7037(13)00544-9/h0195http://refhub.elsevier.com/S0016-7037(13)00544-9/h0195http://refhub.elsevier.com/S0016-7037(13)00544-9/h0195http://refhub.elsevier.com/S0016-7037(13)00544-9/h0195http://refhub.elsevier.com/S0016-7037(13)00544-9/h0185http://refhub.elsevier.com/S0016-7037(13)00544-9/h0185http://refhub.elsevier.com/S0016-7037(13)00544-9/h0185http://refhub.elsevier.com/S0016-7037(13)00544-9/h0185http://refhub.elsevier.com/S0016-7037(13)00544-9/h0185http://refhub.elsevier.com/S0016-7037(13)00544-9/h0205http://refhub.elsevier.com/S0016-7037(13)00544-9/h0205http://refhub.elsevier.com/S0016-7037(13)00544-9/h0205http://refhub.elsevier.com/S0016-7037(13)00544-9/h0205http://refhub.elsevier.com/S0016-7037(13)00544-9/h0210http://refhub.elsevier.com/S0016-7037(13)00544-9/h0210http://refhub.elsevier.com/S0016-7037(13)00544-9/h0210http://refhub.elsevier.com/S0016-7037(13)00544-9/h0210http://refhub.elsevier.com/S0016-7037(13)00544-9/h0210http://refhub.elsevier.com/S0016-7037(13)00544-9/h0215http://refhub.elsevier.com/S0016-7037(13)00544-9/h0215http://refhub.elsevier.com/S0016-7037(13)00544-9/h0215http://refhub.elsevier.com/S0016-7037(13)00544-9/h0555http://refhub.elsevier.com/S0016-7037(13)00544-9/h0555http://refhub.elsevier.com/S0016-7037(13)00544-9/h0555http://refhub.elsevier.com/S0016-7037(13)00544-9/h0220http://refhub.elsevier.com/S0016-7037(13)00544-9/h0220http://refhub.elsevier.com/S0016-7037(13)00544-9/h0220http://refhub.elsevier.com/S0016-7037(13)00544-9/h0220http://refhub.elsevier.com/S0016-7037(13)00544-9/h0220http://dx.doi.org/10.1016/j.gr.2013.05.012http://dx.doi.org/10.1016/j.gr.2013.05.012http://refhub.elsevier.com/S0016-7037(13)00544-9/h0230http://refhub.elsevier.com/S0016-7037(13)00544-9/h0230http://refhub.elsevier.com/S0016-7037(13)00544-9/h0230http://refhub.elsevier.com/S0016-7037(13)00544-9/h0230http://refhub.elsevier.com/S0016-7037(13)00544-9/h0235http://refhub.elsevier.com/S0016-7037(13)00544-9/h0235http://refhub.elsevier.com/S0016-7037(13)00544-9/h0240http://refhub.elsevier.com/S0016-7037(13)00544-9/h0240http://refhub.elsevier.com/S0016-7037(13)00544-9/h0240http://refhub.elsevier.com/S0016-7037(13)00544-9/h0245http://refhub.elsevier.com/S0016-7037(13)00544-9/h0245http://refhub.elsevier.com/S0016-7037(13)00544-9/h0245http://refhub.elsevier.com/S0016-7037(13)00544-9/h0560http://refhub.elsevier.com/S0016-7037(13)00544-9/h0560http://refhub.elsevier.com/S0016-7037(13)00544-9/h0560http://refhub.elsevier.com/S0016-7037(13)00544-9/h0560http://refhub.elsevier.com/S0016-7037(13)00544-9/h0255http://refhub.elsevier.com/S0016-7037(13)00544-9/h0255http://refhub.elsevier.com/S0016-7037(13)00544-9/h0255http://refhub.elsevier.com/S0016-7037(13)00544-9/h0255http://refhub.elsevier.com/S0016-7037(13)00544-9/h0255http://refhub.elsevier.com/S0016-7037(13)00544-9/h0255http://refhub.elsevier.com/S0016-7037(13)00544-9/h0255http://refhub.elsevier.com/S0016-7037(13)00544-9/h0250http://refhub.elsevier.com/S0016-7037(13)00544-9/h0250http://refhub.elsevier.com/S0016-7037(13)00544-9/h0250

  • 270 L. Ma et al. / Geochimica et Cosmochimica Acta 124 (2014) 250–271

    Middlemost E. A. K. (1994) Naming materials in the magma/igneous rock system. Earth Sci. Rev. 37, 215–224.

    Nebel O., Scherer E. E. and Mezger K. (2011) Evaluation of the87Rb decay constant by age comparison against the U–Pbsystem. Earth Planet. Sci. Lett. 301, 1–8.

    Peate D. W., Hawkesworth C. J. and Mantovani M. S. M. (1992)Chemical stratigraphy of the Parana lavas (South America):Classification of magma types and their spatial distribution.Bull. Volcanol. 55, 119–139.

    Peccerillo A. and Taylor S. R. (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northernTurkey. Contrib. Miner. Petrol. 58, 63–81.

    Pu W., Zhao K. D., Ling H. F. and Jiang S. Y. (2004) Highprecision Nd isotope measurement by Triton TI mass spec-trometry. Acta Geoscientica Sin. 25, 271–274 (in Chinese withEnglish abstract).

    Pu W., Gao J. F., Zhao K. D., Ling H. F. and Jiang S. Y. (2005)Separation method of Rb–Sr, Sm–Nd using DCTA and HIBA.J. Nanjing Univ. (Nat. Sci.) 41, 445–450 (in Chinese withEnglish abstract).

    Qiu Y. M., Groves D. I., Mcnaughton N. J., Wang L. G. and ZhouT. H. (2002) Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, easternNorth China craton, China. Miner. Deposita 37, 283–305.

    Robinson J. A. C. and Wood B. J. (1998) The depth of the spinel togarnet transition at the peridotite solidus. Earth Planet. Sci.Lett. 164, 277–284.

    Rock N. M. S. (1987) The nature and origin of lamprophyres: Anoverview. In Alkaline Igneous Rocks (eds. J. G. Fitton and B. G.J. Upton). Geological Society Special Publications, pp. 191–226.

    Söderlund U., Patchett P. J., Vervoort J. D. and Isachsen C. E.(2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. EarthPlanet. Sci. Lett. 219, 311–324.

    Schmandt B., Dueker K., Humphreys E. and Hansen S. (2012) Hotmantle upwelling across the 660 beneath Yellowstone. EarthPlanet. Sci. Lett. 331, 224–236.

    Steiger R. H. and Jäger E. (1977) Subcommission on geochronol-ogy: Convention on the use of decay constants in geo-andcosmochronology. Earth Planet. Sci. Lett. 36, 359–362.

    Stein M. and Hofmann A. W. (1992) Fossil plume head beneaththe Arabian lithosphere? Earth Planet. Sci. Lett. 114, 193–209.

    Sun W. D., Ding X., Hu Y. H. and Li X. H. (2007) The goldentransformation of the Cretaceous plate subduction in the westPacific. Earth Planet. Sci. Lett. 262, 533–542.

    Tan J., Wei J. H., Guo L. L., Zhang K. Q., Yao C. L., Lu J. P. andLi H. M. (2008) LA–ICP–MS zircon U–Pb dating andphenocryst EPMA of dikes, Guocheng, Jiaodong Peninsula:Implications for North China Craton lithosphere evolution.Sci. China, Ser. D Earth Sci. 51, 1483–1500.

    Tang J., Zheng Y. F., Wu Y. B. and Gong B. (2006) ZirconSHRIMP U–Pb dating, C and O isotopes for impure marblesfrom the Jiaobei terrain in the Sulu orogen: Implication fortectonic affinity. Precambr. Res. 144, 1–18.

    Tang J., Zheng Y. F., Wu Y. B., Gong B. and Liu X. M. (2007)Geochronology and geochemistry of metamorphic rocks in theJiaobei terrain: Constraints on its tectonic affinity in the Suluorogen. Precambr. Res. 152, 48–82.

    Thirlwall M. F., Smith T. E., Graham A. M., Theodorou N.,Hollings P., Davidson J. P. and Arculus R. J. (1994) High fieldstrength element anomalies in arc lavas: Source or process? J.Petrol. 35, 819–838.

    Tiepolo M., Zanetti A., Oberti R., Brumm R., Foley S. andVannucci R. (2003) Trace-element partitioning between syn-thetic potassic-richterites and silicate melts, and contrasts with

    the partitioning behaviour of pargasites and kaersutites. Eur. J.Mineral. 15, 329–340.

    Todt W., Cliff R. A. and Hanser A. (1996) Evaluation of a202Pb–205Pb double spike for high-precision lead isotopeanalysis. Geophys. Monographs 95, 429–437.

    Wang L. G., Qiu Y. M., Mcnaughton N. J., Groves D. I., Luo Z.K., Huang J. Z., Miao L. C. and Liu Y. K. (1998) Constraintson crustal evolution and gold metallogeny in t