21
Literature Report 李李李 2014.3.19 Article source : Gut 2013;62:1415--1424

Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

Embed Size (px)

Citation preview

Page 1: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

Literature Report

李丽婷 2014.3.19

Article source : Gut 2013;62:1415--1424

Page 2: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

Content

Introduction

Methods

Results

Conclusion

Prospect

Page 3: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

Part1: Introduction

Page 4: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

1.Over 1390 000 diagnoses per annum

2.By 2030,the 10th leading cause of global mortality.

3.In the western world, over fivefold in 30 years

4.5-year survival: 15%

Introduction

The basic background

New therapy!!!

Page 5: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

Molecularly targeted therapy (Abnormality : key driver)Inter-patient heterogeneity

Therapy resistance

Not been broadly adopted

???(target at initial presentation)

The aim:1.Determine the most frequently active cell signaling pathways 2.RTK array measuring phosphorylation status could be used to select the most effective and broadly applicable therapy strategies. 3.Apply this approach to human tissue samples as a proof of principle.

Introduction

Page 6: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

Part2: Methods

Page 7: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

Materials

1.samples:(1)cancer cohort for gene expression profiling n=75 (2)cases for P-Erk immunostaining n=434 (3)patient samples for RTK array n= 462.Cell line:14 sorts3.Inhibitor :EGFR/ErbB2 inhibitor,Mek inhibitor,other TIKs(EGFR TKI,Met TKI,FGFR TKI,Ret TKI)

Experiments

1.GSEA and HOPACH clustering2.Immunohistochemistry for P-ERK3.RTK phosphorylation profiling4.Proliferation assays5.Apoptosis arrays6.Protein phosphorylation status

MAPK?

RTK?

In patients?

Methods

Page 8: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

Methods

Page 9: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

Part3: Results

Page 10: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

1.MPAK :enrichment pathway

(1)Enrichment scores( figure A)by HOPACH GSEA KEGG(2)50.7%(38/75)of samples enriched for overexpression of signaling pathway (3)MPKA pathway is enriched in 42.7%(32/75)of samples.

NE: Normal oesophagusBE:Barrett’s oesophagusDYS;Dysplastic Barrett’sAC:Adenocarcinoma

Results

GSEA :Gene set enrichment analysisREGG : molecular signatures databaseHOPACH :cluster simples using pathway enrichment scores

Page 11: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

2.Phospho-Erk status confirms MAPK as a key pathway

148/434(34.3%) of cases expressed high levels of phosphorylated (2+,3+)

Results

Page 12: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

3.Selective inhibition of activated RTKs inhibits MAPK signalling

RTK array : Drug selection to ensure the maximal therapeutic effect.

Results

MKNI RTK activation profile

Full RTK array

In MKNI,with no active RTKs,TKIs or Mek inhibition did not inhibit proliferation until the uM range

Proliferation dose-response of MKN1 to TKIs

Page 13: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

3.Selective inhibition of activated RTKs inhibits MAPK signalling

RTK activation profile

Proliferation dose response to TKIs MEK

Cell cycle profile in response to TKIs

Western blotting for downstream MAPK components Atk and ERKNOTE:EGFR/ErbB2for OE19,Met ,MKN45,FGFR for KatoIII

One:An obvious dominant RTKTherapy with a singer TKIs

Results

Page 14: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

3.Selective inhibition of activated RTKs inhibits MAPK signalling

RIK activation profile

Proliferation dose-response to TKIs (Mek inhibition)Cell cycle profile in response to TKIs

Western blotting for downstream MAPK components Atk and ERKNOTE:FGFR2for HSC39,EGFR,ErbB2,ErbB3,FGFR3,Met and RET for OE33

Two :Complex RTKs activation

Results

Page 15: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

SUMMARY

Cell line: OE19,MKN45, KatoIII

An obvious RTK activation

Therapy with a single TKI

Cell line:HSC39,OE33 Complex PTK activation

HSC39:a combination of three TKIs

OE33:dual agent treatment(TKI combination and Mek inhibitor

Patient cohort

Results

Page 16: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

RTK activation in a patient cohort

Patient Samples:n=46 RTK array Results : RTK activation

No One Tw o Multiple

Cases 8/46(17,4%) 8/46(17.4%) 13/46(28.3%) 17/46(37.0%)

If RTK array could help in drug selection in patients?RTK activation ?

Results

Page 17: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

Part4:Conclusion

Page 18: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

1.The MAPK pathway is commonly activated in oesophago –gastric cancer secondary to activation of number of RTK.

2.The RTK activity profile ,using RTK arrays, is useful to guide which TKI would offer therapeutic efficacy.(cell lines)

3.If multiple RTKs are active , inhibition of downstream signaling might offer an alternative clinical approach. (Mek inhibitor)

4. Using an RTK array in patients could help in drug selection to ensue the maximal therapeutic effect.

Conclusion

Page 19: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

Part5:Prospect

Page 20: Literature Report 李丽婷 2014.3.19 Article source : Gut 2013;62:1415--1424

1.Which are the most clinically relevant therapeutic targets?

2.Which is more effective , using a single inhibitor or a combination?

3.How do we translate this information into a therapeutic strategy with maximise outcomes and minimize toxicity?

Prospect