20
List of device bit rates 1 List of device bit rates This is a list of device bit rates, or physical layer information rates, net bit rates, useful bit rates, peak bit rates or digital bandwidth capacity, at which digital interfaces of computer peripheral equipment and network devices can communicate over various kinds of buses and networks. The distinction can be arbitrary between a bus, (which is inside a box and usually relies on many parallel wires), and a communications network cable, (which is external, between boxes and rarely relies on more than four wires). Many device interfaces or protocols (e.g., SATA, USB, SCSI, PCI and a few variants of Ethernet) are used both inside many-device boxes, such as a PC, and one-device-boxes, such as a hard drive enclosure. Accordingly, this page lists both the internal ribbon and external communications cable standards together in one sortable table. Factors limiting actual performance, criteria for real decisions Most of the listed rates are theoretical maximum throughput measures; in practice, the actual effective throughput is almost inevitably lower in proportion to the load from other devices (network/bus contention), interframe gap, and other overhead in data link layer protocols etc. The maximum goodput (for example, the file transfer rate) may be even lower due to higher layer protocol overhead and data packet retransmissions caused by line noise or interference such as crosstalk, or lost packets in congested intermediate network nodes. All protocols lose something, and the more robust ones that deal resiliently with very many failure situations tend to lose more maximum throughput to get higher total long term rates. Device interfaces where one bus transfers data via another will be limited to the throughput of the slowest interface, at best. For instance, SATA 6G controllers on one PCIe 5G channel will be limited to the 5G rate and have to employ more channels to get around this problem. Early implementations of new protocols very often have this kind of problem. The physical phenomena on which the device relies (such as spinning platters in a hard drive) will also impose limits; for instance, no spinning platter shipping in 2009 saturates SATA II (3 Gbit/s), so moving from this 3 Gbit/s interface to USB3 at 4.8 Gbit/s for one spinning drive will result in no increase in realized transfer rate. Contention in a wireless or noisy spectrum, where the physical medium is entirely out of the control of those who specify the protocol, requires measures that also use up throughput. Wireless devices, BPL, and modems may produce a higher line rate or gross bit rate, due to error-correcting codes and other physical layer overhead. It is extremely common for throughput to be far less than half of theoretical maximum, though the more recent technologies (notably BPL) employ preemptive spectrum analysis to avoid this and so have much more potential to reach actual gigabit rates in practice than prior modems. Another factor reducing throughput is deliberate policy decisions made by Internet service providers that are made for contractual, risk management, aggregation saturation, or marketing reasons. Examples are rate limiting, bandwidth throttling, and the assignment of IP addresses to groups. These practices tend to minimize the throughput available to every user, but maximize the number of users that can be supported on one backbone. Furthermore, chips are often not available in order to implement the fastest rates. AMD, for instance, does not support the 32-bit HyperTransport interface on any CPU it has shipped as of the end of 2009. Additionally, WiMax service providers in the US typically support only up to 4 Mbit/s as of the end of 2009. Choosing service providers or interfaces based on theoretical maxima is unwise, especially for commercial needs. A good example is large scale data centers, which should be more concerned with price per port to support the interface, wattage and heat considerations, and total cost of the solution. Because some protocols such as SCSI and Ethernet now operate many orders of magnitude faster than when originally deployed, scalability of the interface is one major factor, as it prevents costly shifts to technologies that are not backward compatible. Underscoring this is the fact that these shifts often happen involuntarily or by surprise, especially when a vendor abandons support for a proprietary system.

List of computer Device Bit Rates

  • Upload
    -

  • View
    599

  • Download
    1

Embed Size (px)

DESCRIPTION

List of computer Device Bit Rates

Citation preview

Page 1: List of computer Device Bit Rates

List of device bit rates 1

List of device bit ratesThis is a list of device bit rates, or physical layer information rates, net bit rates, useful bit rates, peak bit rates ordigital bandwidth capacity, at which digital interfaces of computer peripheral equipment and network devices cancommunicate over various kinds of buses and networks.The distinction can be arbitrary between a bus, (which is inside a box and usually relies on many parallel wires), anda communications network cable, (which is external, between boxes and rarely relies on more than four wires). Manydevice interfaces or protocols (e.g., SATA, USB, SCSI, PCI and a few variants of Ethernet) are used both insidemany-device boxes, such as a PC, and one-device-boxes, such as a hard drive enclosure. Accordingly, this page listsboth the internal ribbon and external communications cable standards together in one sortable table.

Factors limiting actual performance, criteria for real decisionsMost of the listed rates are theoretical maximum throughput measures; in practice, the actual effective throughput isalmost inevitably lower in proportion to the load from other devices (network/bus contention), interframe gap, andother overhead in data link layer protocols etc. The maximum goodput (for example, the file transfer rate) may beeven lower due to higher layer protocol overhead and data packet retransmissions caused by line noise orinterference such as crosstalk, or lost packets in congested intermediate network nodes. All protocols lose something,and the more robust ones that deal resiliently with very many failure situations tend to lose more maximumthroughput to get higher total long term rates.Device interfaces where one bus transfers data via another will be limited to the throughput of the slowest interface,at best. For instance, SATA 6G controllers on one PCIe 5G channel will be limited to the 5G rate and have toemploy more channels to get around this problem. Early implementations of new protocols very often have this kindof problem. The physical phenomena on which the device relies (such as spinning platters in a hard drive) will alsoimpose limits; for instance, no spinning platter shipping in 2009 saturates SATA II (3 Gbit/s), so moving from this3 Gbit/s interface to USB3 at 4.8 Gbit/s for one spinning drive will result in no increase in realized transfer rate.Contention in a wireless or noisy spectrum, where the physical medium is entirely out of the control of those whospecify the protocol, requires measures that also use up throughput. Wireless devices, BPL, and modems mayproduce a higher line rate or gross bit rate, due to error-correcting codes and other physical layer overhead. It isextremely common for throughput to be far less than half of theoretical maximum, though the more recenttechnologies (notably BPL) employ preemptive spectrum analysis to avoid this and so have much more potential toreach actual gigabit rates in practice than prior modems.Another factor reducing throughput is deliberate policy decisions made by Internet service providers that are madefor contractual, risk management, aggregation saturation, or marketing reasons. Examples are rate limiting,bandwidth throttling, and the assignment of IP addresses to groups. These practices tend to minimize the throughputavailable to every user, but maximize the number of users that can be supported on one backbone.Furthermore, chips are often not available in order to implement the fastest rates. AMD, for instance, does notsupport the 32-bit HyperTransport interface on any CPU it has shipped as of the end of 2009. Additionally, WiMaxservice providers in the US typically support only up to 4 Mbit/s as of the end of 2009.Choosing service providers or interfaces based on theoretical maxima is unwise, especially for commercial needs. Agood example is large scale data centers, which should be more concerned with price per port to support theinterface, wattage and heat considerations, and total cost of the solution. Because some protocols such as SCSI andEthernet now operate many orders of magnitude faster than when originally deployed, scalability of the interface isone major factor, as it prevents costly shifts to technologies that are not backward compatible. Underscoring this isthe fact that these shifts often happen involuntarily or by surprise, especially when a vendor abandons support for aproprietary system.

Page 2: List of computer Device Bit Rates

List of device bit rates 2

ConventionsBy convention, bus and network data rates are denoted either in bit/s (bits per second) or byte/s (bytes per second).In general, parallel interfaces are quoted in byte/s and serial in bit/s. The more commonly used is shown below inbold type.On devices like modems, bytes may be more than 8 bits long because they may be individually padded out withadditional start and stop bits; the figures below will reflect this. Where channels use line codes (such as Ethernet,Serial ATA and PCI Express), quoted rates are for the decoded signal.The figures below are simplex data rates, which may conflict with the duplex rates vendors sometimes use inpromotional materials. Where two values are listed, the first value is the downstream rate and the second value is theupstream rate.All quoted figures are in metric decimal units, where:•• 1 byte (B) = 8 bit•• 1 kbit/s = 1,000 bit/s•• 1 Mbit/s = 1,000,000 bit/s•• 1 Gbit/s = 1,000,000,000 bit/s•• 1 kB/s = 1,000 byte/s•• 1 MB/s = 1,000,000 byte/s•• 1 GB/s = 1,000,000,000 byte/s•• 1 TB/s = 1,000,000,000,000 byte/sNote that this goes against the traditional use of binary prefixes for memory size. These decimal prefixes have longbeen established in data communications. This occurred before 1998 when IEC and other organizations introducednew binary prefixes and attempted to standardize their use across all computing applications.

BandwidthsThe figures below are grouped by network or bus type, then sorted within each group from lowest to highestbandwidth; gray shading indicates a lack of known implementations.

TTY/Teletypewriter or telecommunications device for the deaf (TDD)

Technology Max. rate (bit/s) Max. rate (characters/s) Year

TTY (V.18) 45.4545 bit/s 6 characters/s[1]

TTY (V.18) 50 bit/s 6.6 characters/s

NTSC Line 21 Closed Captioning 1 kbit/s ~100 characters/s

Modems—narrow and broadbandThe bytes column of this particular table shows a net data transfer rate after the protocol overhead has been removed.(The other device tables show bit rate equivalents.)

Page 3: List of computer Device Bit Rates

List of device bit rates 3

Technology Rate (kbit/s) Rate (kbyte/s) Year

Narrowband (POTS: 3.1 kHz channel) — — —

Morse code (skilled operator) 0.056 kbit/s 4 cps (~40 wpm)[2] 1844

Modem 110 baud (symbols / second) (Bell 101) 0.11 kbit/s 0.010 kB/s (~10 cps)[3] 1959

Modem 300 (300 baud) (Bell 103 or V.21) 0.3 kbit/s 0.03 kB/s (~30 cps)[3] 1962[]

Modem 1200 (600 baud) (Bell 212A or V.22) 1.2 kbit/s 0.12 kB/s (~120 cps)[3] 1976

Modem 1200/75 (600 baud) (V.23) 1.2/0.075 kbit/s 0.12/0.0075 kB/s (~120 cps)[3]

Modem 2400 (600 baud) (V.22bis) 2.4 kbit/s 0.24 kB/s[3]

Modem 4800 (1600 baud) (V.27ter) 4.8 kbit/s 0.48 kB/s[3]

Modem 9600 (2400 baud) (V.32) 9.6 kbit/s 0.96 kB/s[3] 1989[]

Modem 14.4 (2400 baud) (V.32bis) 14.4 kbit/s 1.8 kB/s[3] 1991[]

Modem 28.8 (3200 baud) (V.34-1994) 28.8 kbit/s 2.9 kB/s[3] 1994

Modem 33.6 (3429 baud) (V.34-1996/98) 33.6 kbit/s 3.3 kB/s[3] 1996[4]

Modem 56k (8000/3429 baud) (V.90) 56.0/33.6 kbit/s[5] 5.6/3.3 kB/s 1998

Modem 56k (8000/8000 baud) (V.92) 56.0/48.0 kbit/s[5] 5.6/4.8 kB/s 2001

Modem data compression (variable) (V.92/V.44) 56.0–320.0 kbit/s[5] 5.6–32 kB/s

ISP-side text/image compression (variable) 56.0–1000.0 kbit/s 5.6–100 kB/s

ISDN Basic Rate Interface (single/dual channel) 64/128 kbit/s[6] 8/16 kB/s 1986[]

IDSL (dual ISDN + 16 kbit/s data channels) 144 kbit/s 18 kB/s 2000[7]

Broadband (hundreds of kHz wide) — — —

HDSL ITU G.991.1 aka DS1 1,544 kbit/s 193 kB/s 1998[8]

MSDSL 2,000 kbit/s 250 kB/s

SDSL 2,320 kbit/s 290 kB/s

SHDSL ITU G.991.2 5,690 kbit/s 711 kB/s 2001

ADSL (G.Lite) 1,536/512 kbit/s 192/64 kB/s 1998

ADSL (G.DMT) 8,192/1,024 kbit/s 1,024/128 kB/s 1999

ADSL2 12,288/1,440 kbit/s 1,536/180 kB/s 2002

ADSL2+ 24,576/3,584 kbit/s 3,072/448 kB/s 2003

DOCSIS v1.0[9] (Cable modem) 38,000/9,000 kbit/s 4,750/1,125 kB/s 1997

DOCSIS v2.0[10] (Cable modem) 38,000/27,000 kbit/s 4,750/3,375 kB/s 2001

DOCSIS v3.0[11] (Cable modem) 160,000/120,000 kbit/s 20,000/15,000 kB/s (~200,000,000 wpm) 2006

Uni-DSL 200,000 kbit/s 25,000 kB/s

VDSL ITU G.993.1 52,000 kbit/s 7,000 kB/s 2001

VDSL2 ITU G.993.2 100,000 kbit/s 13,000 kB/s 2006

Page 4: List of computer Device Bit Rates

List of device bit rates 4

BPON (G.983) fiber optic service 622,000/155,000 kbit/s 77,700/19,300 kB/s 2005[12]

GPON (G.984) fiber optic service 2,488,000/1,244,000 kbit/s 311,000/155,500 kB/s (~3 billion+ wpm) 2008[13]

Mobile telephone interfaces

Technology Download rate (bit/s) Upload rate (bit/s) Download rate (byte/s) Upload rate (byte/s) Year

GSM CSD (2G) 14.4 kbit/s[14] 14.4 kbit/s 1.8 kB/s 1.8 kB/s

HSCSD 57.6 kbit/s 14.4 kbit/s 5.4 kB/s 1.8 kB/s

GPRS (2.5G) 57.6 kbit/s 28.8 kbit/s 7.2 kB/s 3.6 kB/s

WiDEN 100 kbit/s 100 kbit/s 12.5 kB/s 12.5 kB/s

CDMA2000 1×RTT 153 kbit/s 153 kbit/s 18 kB/s 18 kB/s

EDGE (2.75G) (type 1 MS) 236.8 kbit/s 236.8 kbit/s 29.6 kB/s 29.6 kB/s

UMTS 3G 384 kbit/s 384 kbit/s 48 kB/s 48 kB/s

EDGE (type 2 MS) 473.6 kbit/s 473.6 kbit/s 59.2 kB/s 59.2 kB/s

EDGE Evolution (type 1 MS) 1,184 kbit/s 474 kbit/s 148 kB/s 59 kB/s

EDGE Evolution (type 2 MS) 1,894 kbit/s 947 kbit/s 237 kB/s 118 kB/s

1×EV-DO rev. 0 2,457 kbit/s 153 kbit/s 307.2 kB/s 19 kB/s

1×EV-DO rev. A 3.1 Mbit/s 1.8 Mbit/s 397 kB/s 230 kB/s

1×EV-DO rev. B 14.7 Mbit/s 5.4 Mbit/s 1,837 kB/s 675 kB/s

HSPA (3.5G) 13.98 Mbit/s 5.760 Mbit/s 1,706 kB/s 720 kB/s

4×EV-DO Enhancements (2×2 MIMO) 34.4 Mbit/s 12.4 Mbit/s 4.3 MB/s 1.55 MB/s

HSPA+ (2×2 MIMO) 42 Mbit/s 11.5 Mbit/s 5.25 MB/s 1.437 MB/s

15×EV-DO rev. B 73.5 Mbit/s 27 Mbit/s 9.2 MB/s 3.375 MB/s

UMB (2×2 MIMO) 140 Mbit/s 34 Mbit/s 17.5 MB/s 4.250 MB/s

LTE (2×2 MIMO) 173 Mbit/s 58 Mbit/s 21.625 MB/s 7.25 MB/s

UMB (4×4 MIMO) 280 Mbit/s 68 Mbit/s 35 MB/s 8.5 MB/s

EV-DO rev. C 280 Mbit/s 75 Mbit/s 35 MB/s 9 MB/s

LTE (4×4 MIMO) 326 Mbit/s 86 Mbit/s 40.750 MB/s 10.750 MB/s

Wide area networks

Page 5: List of computer Device Bit Rates

List of device bit rates 5

Technology Rate (bit/s) Rate (byte/s) Year

DS0 0.064 Mbit/s 0.008 MB/s

G.Lite (aka ADSL Lite) 1.536/0.512 Mbit/s 0.192/0.064 MB/s

DS1/T1 (and ISDN Primary Rate Interface) 1.544 Mbit/s 0.192 MB/s

E1 (and ISDN Primary Rate Interface) 2.048 Mbit/s 0.256 MB/s

G.SHDSL 2.304 Mbit/s 0.288 MB/s

LR-VDSL2 (4 to 5 km [long-]range) (symmetry optional) 4 Mbit/s 0.512 MB/s

SDSL[15] 2.32 Mbit/s 0.29 MB/s

T2 6.312 Mbit/s 0.789 MB/s

ADSL[16] 8.0/1.024 Mbit/s 1.0/0.128 MB/s

E2 8.448 Mbit/s 1.056 MB/s

ADSL2 12/3.5 Mbit/s 1.5/0.448 MB/s

Satellite Internet[17] 16/1 Mbit/s 2.0/0.128 MB/s

ADSL2+ 24/3.5 Mbit/s 3.0/0.448 MB/s

E3 34.368 Mbit/s 4.296 MB/s

DOCSIS v1.0 (Cable modem)[9] 55.62/42.88 Mbit/s 10.24 Mbit/s

DOCSIS v2.0 (Cable modem)[10] 55.62/42.88 Mbit/s 30.72 Mbit/s

DS3/T3 ('45 Meg') 44.736 Mbit/s 5.5925 MB/s

STS-1/EC-1/OC-1/STM-0 51.84 Mbit/s 6.48 MB/s

VDSL (symmetry optional) 100 Mbit/s 12.5 MB/s

DOCSIS v3.0 (Cable modem)[11] 222.48/171.52 Mbit/s 122.88 Mbit/s

OC-3/STM-1 155.52 Mbit/s 19.44 MB/s

VDSL2 (symmetry optional) 250 Mbit/s 31.25 MB/s

T4 274.176 Mbit/s 34.272 MB/s

T5 400.352 Mbit/s 50.044 MB/s

OC-9 466.56 Mbit/s 58.32 MB/s

OC-12/STM-4 622.08 Mbit/s 77.76 MB/s

OC-18 933.12 Mbit/s 116.64 MB/s

OC-24 1.244 Gbit/s 155.5 MB/s

OC-36 1.900 Gbit/s 237.5 MB/s

OC-48/STM-16 2.488 Gbit/s 311.04 MB/s

OC-96 4.976 Gbit/s 622.08 MB/s

OC-192/STM-64 9.953 Gbit/s 1.244 GB/s

10 Gigabit Ethernet WAN PHY 9.953 Gbit/s 1.244 GB/s

10 Gigabit Ethernet LAN PHY 10.000 Gbit/s 1.25 GB/s

OC-256 13.271 Gbit/s 1.659 GB/s

OC-768/STM-256 39.813 Gbit/s 4.976 GB/s

OC-1536/STM-512 79.626 Gbit/s 9.953 GB/s

Page 6: List of computer Device Bit Rates

List of device bit rates 6

OC-3072/STM-1024 159.252 Gbit/s 19.907 GB/s

Local area networks

Technology Rate (bit/s) Rate (byte/s) Year

LocalTalk 230 kbit/s 28.8 kB/s

Econet 800 kbit/s 100 kB/s 1981

Omninet 1 Mbit/s 125 kB/s

IBM PC Network 2 Mbit/s 250 kB/s 1985

ARCNET (Standard) 2.5 Mbit/s 312.5 kB/s 1977

Token Ring (Original) 4 Mbit/s 500 kB/s 1985

Ethernet (10BASE-T) 10 Mbit/s 1.25 MB/s 1980 (1985 IEEE Standard)

Token Ring (Later) 16 Mbit/s 2 MB/s 1989

ARCnet Plus 20 Mbit/s 2.5 MB/s 1992

Token Ring IEEE 802.5t 100 Mbit/s 12.5 MB/s

Fast Ethernet (100BASE-TX) 100 Mbit/s 12.5 MB/s 1995

FDDI 100 Mbit/s 12.5 MB/s

MoCA 1.0[18] 100 Mbit/s 12.5 MB/s

MoCA 1.1[18] 175 Mbit/s 21.875 MB/s

HomePlug AV 200 Mbit/s 25 MB/s 2005

FireWire (IEEE 1394) 400[19][20] 400 Mbit/s 50 MB/s 1995

HIPPI 800 Mbit/s 100 MB/s

IEEE 1901 1,000 Mbit/s 125 MB/s 2010

Token Ring IEEE 802.5v 1 Gbit/s 125 MB/s 2001

Gigabit Ethernet (1000BASE-T) 1 Gbit/s 125 MB/s 1998

Reflective Memory or RFM2 [21] (1.25 µs latency) 2 Gbit/s 235 MB/s 1970

Myrinet 2000 2 Gbit/s 250 MB/s

Infiniband SDR 1×[22] 2 Gbit/s 250 MB/s

RapidIO Gen1 1x 2.5 Gbit/s 312.5 MB/s

Quadrics QsNetI 3.6 Gbit/s 450 MB/s

Infiniband DDR 1×[22] 4 Gbit/s 500 MB/s

RapidIO Gen2 1x 5 Gbit/s 625 MB/s

Infiniband QDR 1×[22] 8 Gbit/s 1 GB/s

Infiniband SDR 4×[22] 8 Gbit/s 1 GB/s

Quadrics QsNetII 8 Gbit/s 1 GB/s

RapidIO Gen1 4x 10 Gbit/s 1.25 GB/s

RapidIO Gen2 2x 10 Gbit/s 1.25 GB/s

Page 7: List of computer Device Bit Rates

List of device bit rates 7

10 Gigabit Ethernet (10GBASE-X) 10 Gbit/s 1.25 GB/s

Myri 10G 10 Gbit/s 1.25 GB/s

Infiniband DDR 4×[22] 16 Gbit/s 2 GB/s

RapidIO Gen2 4x 20 Gbit/s 2.5 GB/s

Scalable Coherent Interface (SCI) Dual Channel SCI, x8 PCIe 20 Gbit/s 2.5 GB/s

Infiniband SDR 12×[22] 24 Gbit/s 3 GB/s

Infiniband EDR 1×[22] 25 Gbit/s 3.125 GB/s

Infiniband QDR 4×[22] 32 Gbit/s 4 GB/s

RapidIO Gen2 8x 40 Gbit/s 5 GB/s

40 Gigabit Ethernet (40GBASE-X) 40 Gbit/s 5 GB/s

Infiniband DDR 12×[22] 48 Gbit/s 6 GB/s

RapidIO Gen2 16x 80 Gbit/s 10 GB/s

Infiniband QDR 12×[22] 96 Gbit/s 12 GB/s

Infiniband EDR 4×[22] 100 Gbit/s 12.5 GB/s

100 Gigabit Ethernet (100GBASE-X) 100 Gbit/s 12.5 GB/s

Infiniband EDR 12×[22] 300 Gbit/s 37.5 GB/s

Wireless networks802.11 networks in infrastructure mode are half-duplex; all stations share the medium. In access point(infrastructure) mode, all traffic has to pass through the AP (Access Point). Thus, two stations on the same AP whichare communicating with each other must have each and every frame transmitted twice: from the sender to the accesspoint, then from the access point to the receiver. This approximately halves the effective bandwidth. In ad hoc modedevices communicate directly (like with a crossover cable) rather than to the network (like through a hub).

Standard Rate (bit/s) Rate (byte/s) Year

Classic WaveLAN 2 Mbit/s 250 kB/s 1988

IEEE 802.11 2 Mbit/s 250 kB/s 1997

RONJA 10 Mbit/s 1.25 MB/s

IEEE 802.11a 54 Mbit/s 6.75 MB/s 1999

IEEE 802.11b 11 Mbit/s 1.375 MB/s 1999

IEEE 802.11g 54 Mbit/s 6.75 MB/s 2003

IEEE 802.16 (WiMAX) 70 Mbit/s 8.75 MB/s 2004

IEEE 802.11g with Super G by Atheros 108 Mbit/s 13.5 MB/s 2003

IEEE 802.11g with 125 High Speed Mode by Broadcom 125 Mbit/s 15.625 MB/s 2003

IEEE 802.11g with Nitro by Conexant 140 Mbit/s 17.5 MB/s 2003

IEEE 802.11n 600 Mbit/s 75 MB/s 2009

IEEE 802.11ac (maximum theoretical speed) 6.93 Gbit/s 850 MB/s 2012

Page 8: List of computer Device Bit Rates

List of device bit rates 8

Wireless personal area networks

Technology Rate (bit/s) Rate (byte/s) Year

ANT 20 kbit/s 2.5 kB/s

IrDA-Control 72 kbit/s 9 kB/s

IrDA-SIR 115.2 kbit/s 14 kB/s

802.15.4 (2.4 GHz) 250 kbit/s 31.25 kB/s

Bluetooth 1.1 1 Mbit/s 125 kB/s 2002

Bluetooth 2.0+EDR 3 Mbit/s 375 kB/s 2004

IrDA-FIR 4 Mbit/s 500 kB/s

IrDA-VFIR 16 Mbit/s 2 MB/s

Bluetooth 3.0 24 Mbit/s 3 MB/s 2009

Bluetooth 4.0 24 Mbit/s 3 MB/s 2010

IrDA-UFIR 96 Mbit/s 12 MB/s

WUSB-UWB 480 Mbit/s 60 MB/s

IrDA-Giga-IR 1,024 Mbit/s 128 MB/s

Computer buses

Main buses

Technology Rate (bit/s) Rate (byte/s) Year

I²C 3.4 Mbit/s 425 kB/s

Apple II series (incl. Apple IIGS) 8-bit/1 MHz 8 Mbit/s 1 MB/s,[23][24]

SS-50 Bus 8-bit/1(?) MHz 8 Mbit/s 1 MB/s

ISA 8-Bit/4.77 MHz 19.1 Mbit/s 2.39 MB/s 1981 (created)

ISA 16-Bit/8.33 MHz 66.7 Mbit/s 8.33 MB/s 1984 (created)

STD80 8-bit/8 MHz 16 Mbit/s 2 MB/s

STD80 16-bit/8 MHz 32 Mbit/s 4 MB/s

Zorro II 16-bit/7.14 MHz[25] 42.4 Mbit/s 5.3 MB/s 1986

S-100 bus 8-bit/10 MHz 80 Mbit/s 10 MB/s

Serial Peripheral Interface Bus (Up to 100 MHz) 100 Mbit/s 12.5 MB/s

Low Pin Count 133.33 Mbit/s 16.67 MB/s

C-Bus 16-bit/10 MHz 160 Mbit/s 20 MB/s[26]

HP Precision Bus 184 Mbit/s 23 MB/s

EISA 8-16-32bit/8.33 MHz 266.56 Mbit/s 33.32 MB/s 1988

STD 32 32-bit/8 MHz 256 Mbit/s 32 MB/s[27]

NESA 32-bit/8 MHz 256 Mbit/s 32 MB/s[28]

VME64 32-64bit 400 Mbit/s 40 MB/s

NuBus 10 MHz 400 Mbit/s 40 MB/s

Page 9: List of computer Device Bit Rates

List of device bit rates 9

DEC TURBOchannel 32-bit/12.5 MHz 400 Mbit/s 50 MB/s

MCA 16-32bit/10 MHz 660 Mbit/s 66 MB/s 1987

NuBus90 20 MHz 800 Mbit/s 80 MB/s

APbus 32-bit/25(?) MHz 800 Mbit/s 100 MB/s[29]

Sbus 32-bit/25 MHz 800 Mbit/s 100 MB/s 1989

DEC TURBOchannel 32-bit/25 MHz 800 Mbit/s 100 MB/s

Local Bus 98 32-bit/33 MHz 1,056 Mbit/s 132 MB/s[30]

VESA Local Bus - VLB 32-bit/33 MHz 1,067 Mbit/s 133.33 MB/s 1992

PCI 32-bit/33 MHz 1,067 Mbit/s 133.33 MB/s 1993

HP GSC-1X 1,136 Mbit/s 142 MB/s

Zorro III 32-bit/async (eq. 37.5 MHz)[31][32] 1,200 Mbit/s 150 MB/s[33] 1990

VESA Local Bus - VLB 32-bit/40 MHz 1,280 Mbit/s 160 MB/s 1992

Sbus 64-bit/25 MHz 1.6 Gbit/s 200 MB/s

PCI Express 1.0 (×1 link)[34] 2.5 Gbit/s 250 MB/s z 2004

HP GSC-2X 2.048 Gbit/s 256 MB/s

PCI 64-bit/33 MHz 2.133 Gbit/s 266.7 MB/s 1993

PCI 32-bit/66 MHz 2.133 Gbit/s 266.7 MB/s 1995

AGP 1× 2.133 Gbit/s 266.7 MB/s 1997

RapidIO Gen1 1x 2.5 Gbit/s 312.5 MB/s

HIO bus 2.560 Gbit/s 320 MB/s

GIO64 64-bit/40 MHz 2.560 Gbit/s 320 MB/s

PCI Express 1.0 (×2 link)[34] 5 Gbit/s 500 MB/s z 2011

PCI Express 2.0 (×1 link)[35] 5 Gbit/s 500 MB/s z 2007

AGP 2× 4.266 Gbit/s 533.3 MB/s

PCI 64-bit/66 MHz 4.266 Gbit/s 533.3 MB/s

PCI-X DDR 16-bit 4.266 Gbit/s 533.3 MB/s

RapidIO Gen2 1x 5 Gbit/s 625 MB/s

PCI 64-bit/100 MHz 6.399 Gbit/s 800 MB/s

PCI Express 3.0 (×1 link)[36] 8 Gbit/s 984.6 MB/s y 2011

Unified Media Interface (UMI) (×4 link) 10 Gbit/s 1 GB/s z 2011

Direct Media Interface (DMI) (×4 link) 10 Gbit/s 1 GB/s z 2004

Enterprise Southbridge Interface (ESI) 8 Gbit/s 1 GB/s

PCI Express 1.0 (×4 link)[34] 10 Gbit/s 1 GB/s z 2004

AGP 4× 8.533 Gbit/s 1.067 GB/s

PCI-X 133 8.533 Gbit/s 1.067 GB/s

PCI-X QDR 16-bit 8.533 Gbit/s 1.067 GB/s

InfiniBand single 4×[22] 8 Gbit/s 1 GB/s

Page 10: List of computer Device Bit Rates

List of device bit rates 10

RapidIO Gen1 4x 10 Gbit/s 1.25 GB/s

RapidIO Gen2 2x 10 Gbit/s 1.25 GB/s

UPA 15.360 Gbit/s 1.920 GB/s

Unified Media Interface 2.0 (UMI 2.0) (×4 link) 20 Gbit/s 2 GB/s z 2012

Direct Media Interface 2.0 (DMI 2.0) (×4 link) 20 Gbit/s 2 GB/s z 2011

PCI Express 1.0 (×8 link)[34] 20 Gbit/s 2 GB/s z 2004

PCI Express 2.0 (×4 link)[35] 20 Gbit/s 2 GB/s z 2007

AGP 8x 17.066 Gbit/s 2.133 GB/s

PCI-X DDR 17.066 Gbit/s 2.133 GB/s

RapidIO Gen2 4x 20 Gbit/s 2.5 GB/s

HyperTransport (800 MHz, 16-pair) 25.6 Gbit/s 3.2 GB/s 2001

PCI Express 3.0 (×4 link)[36] 32 Gbit/s 3.934 GB/s 2011 y

HyperTransport (1 GHz, 16-pair) 32 Gbit/s 4 GB/s

PCI Express 1.0 (×16 link)[34] 40 Gbit/s 4 GB/s z 2004

PCI Express 2.0 (×8 link)[35] 40 Gbit/s 4 GB/s z 2007

PCI-X QDR 34.133 Gbit/s 4.266 GB/s

AGP 8× 64-bit 34.133 Gbit/s 4.266 GB/s

RapidIO Gen2 8x 40 Gbit/s 5 GB/s

PCI Express 3.0 (×8 link)[36] 64 Gbit/s 7.88 GB/s 2011 y

PCI Express 1.0 (×32 link)[34] 80 Gbit/s 8 GB/s z 2001

PCI Express 2.0 (×16 link)[35] 80 Gbit/s 8 GB/s z 2007

RapidIO Gen2 16x 80 Gbit/s 10 GB/s

PCI Express 3.0 (×16 link)[36] 128 Gbit/s 15.75 GB/s 2011 y

PCI Express 2.0 (×32 link)[35] 160 Gbit/s 16 GB/s z 2007

QPI (4.80GT/s, 2.40 GHz) 153.6 Gbit/s 19.2 GB/s

HyperTransport 2.0 (1.4 GHz, 32-pair) 179.2 Gbit/s 22.4 GB/s 2004

QPI (5.86GT/s, 2.93 GHz) 187.52 Gbit/s 23.44 GB/s

QPI (6.40GT/s, 3.20 GHz) 204.8 Gbit/s 25.6 GB/s

QPI (7.2GT/s, 3.6 GHz) 230.4 Gbit/s 28.8 GB/s 2012

PCI Express 3.0 (×32 link)[35] 256 Gbit/s 31.5 GB/s 2011 [y]

QPI (8.0GT/s, 4.0 GHz) 256.0 Gbit/s 32.0 GB/s 2012

HyperTransport 3.0 (2.6 GHz, 32-pair) 332.8 Gbit/s 41.6 GB/s 2006

HyperTransport 3.1 (3.2 GHz, 32-pair) 409.6 Gbit/s 51.2 GB/s 2008

z Uses 8B/10B encoding, meaning that 20% of each transfer is used by the interface instead of carrying data frombetween the hardware components at each end of the interface. For example, a single link PCIe 1.0 has a 2.5 Gbit/stransfer rate, yet its usable bandwidth is only 2 Gbit/s (250 MB/s).

Page 11: List of computer Device Bit Rates

List of device bit rates 11

y Uses 128B/130B encoding, meaning that about 1.54% of each transfer is used by the interface instead of carryingdata between the hardware components at each end of the interface. For example, a single link PCIe 3.0 interface hasan 8 Gbit/s transfer rate, yet its usable bandwidth is only about 7.88 Gbit/s.

Portable

Technology Rate (bit/s) Rate (byte/s) Year

PC Card 16-bit 255 ns byte mode 31.36 Mbit/s 3.92 MB/s

PC Card 16-bit 255 ns word mode 62.72 Mbit/s 7.84 MB/s

PC Card 16-bit 100 ns byte mode 80 Mbit/s 10 MB/s

PC Card 16-bit 100 ns word mode 160 Mbit/s 20 MB/s

PC Card 32-bit (CardBus) byte mode 267 Mbit/s 33.33 MB/s

ExpressCard 1.2 USB 2.0 mode 480 Mbit/s 60 MB/s

PC Card 32-bit (CardBus) word mode 533 Mbit/s 66.66 MB/s

PC Card 32-bit (CardBus) doubleword mode 1,067 Mbit/s 133.33 MB/s

ExpressCard 1.2 PCI Express mode 2,500 Mbit/s 250 MB/s

ExpressCard 2.0 USB 3.0 mode 4,800 Mbit/s 480 MB/s

ExpressCard 2.0 PCI Express mode 5,000 Mbit/s 625 MB/s

Storage

Technology Rate (bit/s) Rate (byte/s) Year

PC Floppy Disk Controller (1.2 MB/1.44 MB) 0.5 Mbit/s 0.062 MB/s

CD Controller (1×) 1.171 Mbit/s 0.146 MB/s

MFM 5 Mbit/s 0.625 MB/s

RLL 7.5 Mbit/s 0.937 MB/s

DVD Controller (1×) 11.1 Mbit/s 1.32 MB/s

ESDI 24 Mbit/s 3 MB/s

ATA PIO Mode 0 26.4 Mbit/s 3.3 MB/s

HD DVD Controller (1×) 36 Mbit/s 4.5 MB/s

Blu-ray Controller (1×) 36 Mbit/s 4.5 MB/s

SCSI (Narrow SCSI) (5 MHz)[37] 40 Mbit/s 5 MB/s

ATA PIO Mode 1 41.6 Mbit/s 5.2 MB/s

ATA PIO Mode 2 66.4 Mbit/s 8.3 MB/s

Fast SCSI (8 bits/10 MHz) 80 Mbit/s 10 MB/s

ATA PIO Mode 3 88.8 Mbit/s 11.1 MB/s

AoE over Fast Ethernet, per path 100 Mbit/s 12.5 MB/s

iSCSI over Fast Ethernet 100 Mbit/s 12.5 MB/s

ATA PIO Mode 4 133.3 Mbit/s 16.7 MB/s

Fast Wide SCSI (16 bits/10 MHz) 160 Mbit/s 20 MB/s

Ultra SCSI (Fast-20 SCSI) (8 bits/20 MHz) 160 Mbit/s 20 MB/s

Page 12: List of computer Device Bit Rates

List of device bit rates 12

Ultra DMA ATA 33 264 Mbit/s 33 MB/s

Ultra Wide SCSI (16 bits/20 MHz) 320 Mbit/s 40 MB/s

Ultra-2 SCSI 40 (Fast-40 SCSI) (8 bits/40 MHz) 320 Mbit/s 40 MB/s

Ultra DMA ATA 66 533.6 Mbit/s 66.7 MB/s

Ultra-2 wide SCSI (16 bits/40 MHz) 640 Mbit/s 80 MB/s

Serial Storage Architecture SSA 640 Mbit/s 80 MB/s

Ultra DMA ATA 100 800 Mbit/s 100 MB/s

Fibre Channel 1GFC (1.0625 GHz)[38] 850 Mbit/s 106.25 MB/s

AoE over Gigabit Ethernet, per path 1,000 Mbit/s 125 MB/s

iSCSI over Gigabit Ethernet 1,000 Mbit/s 125 MB/s

Ultra DMA ATA 133 1,064 Mbit/s 133 MB/s

Ultra-3 SCSI (Ultra 160 SCSI; Fast-80 Wide SCSI) (16 bits/40 MHz DDR) 1,280 Mbit/s 160 MB/s

Serial ATA (SATA-150)[39] 1,500 Mbit/s 150 MB/s

Fibre Channel 2GFC (2.125 GHz)[38] 1,700 Mbit/s 212.5 MB/s

Ultra-320 SCSI (Ultra4 SCSI) (16 bits/80 MHz DDR) 2,560 Mbit/s 320 MB/s

Serial Attached SCSI (SAS)[39] 3,000 Mbit/s 300 MB/s

Serial ATA 2 (SATA-300)[39] 3,000 Mbit/s 300 MB/s

Fibre Channel 4GFC (4.25 GHz)[38] 3,400 Mbit/s 425 MB/s

Ultra-640 SCSI (16 bits/160 MHz DDR) 5,120 Mbit/s 640 MB/s

Serial Attached SCSI (SAS) 2[39] 6,000 Mbit/s 600 MB/s

Serial ATA 3 (SATA-600)[39] 6,000 Mbit/s 600 MB/s

Fibre Channel 8GFC (8.50 GHz)[38] 6,800 Mbit/s 850 MB/s

Serial Attached SCSI (SAS) 3[39] 9,600 Mbit/s 1,200 MB/s

AoE over 10GbE, per path 10,000 Mbit/s 1,250 MB/s

iSCSI over 10GbE 10,000 Mbit/s 1,250 MB/s

FCoE over 10GbE 10,000 Mbit/s 1,250 MB/s

iSCSI over InfiniBand 4× 32,000 Mbit/s 4,000 MB/s

iSCSI over 100G Ethernet (hypothetical) 100,000 Mbit/s 12,500 MB/s

FCoE over 100G Ethernet (hypothetical) 100,000 Mbit/s

Peripheral

Page 13: List of computer Device Bit Rates

List of device bit rates 13

Technology Rate (bit/s) Rate (byte/s) Year

CBM Bus[40][41] 2.7 kbit/s 0.34 kB/s 1981

Apple Desktop Bus 10.0 kbit/s 1.25 kB/s

Serial MIDI 31.25 kbit/s 3.9 kB/s

Serial EIA-232 max. 230.4 kbit/s 28.8 kB/s

Serial DMX512A 250.0 kbit/s 31.25 kB/s

Parallel (Centronics) 1 Mbit/s 125 kB/s

Serial 16550 UART max. 1.5 Mbit/s 187.5 kB/s

USB low speed 1.536 Mbit/s 192 kB/s 1996

Serial UART max 2.7648 Mbit/s 345.6 kB/s

GPIB/HPIB (IEEE-488.1) IEEE-488 max. 8 Mbit/s 1 MB/s

Serial EIA-422 max. 10 Mbit/s 1.25 MB/s

USB full speed 12 Mbit/s 1.5 MB/s 1996

Parallel (Centronics) EPP 2 MHz 16 Mbit/s 2 MB/s

Serial EIA-485 max. 35 Mbit/s 3.5 MB/s

GPIB/HPIB (IEEE-488.1-2003) IEEE-488 max. 64 Mbit/s 8 MB/s

FireWire (IEEE 1394) 100 98.304 Mbit/s 12.288 MB/s 1995

FireWire (IEEE 1394) 200 196.608 Mbit/s 24.576 MB/s 1995

FireWire (IEEE 1394) 400 393.216 Mbit/s 49.152 MB/s 1995

USB Hi-Speed (USB 2.0) 480 Mbit/s 60 MB/s 2000

FireWire (IEEE 1394b) 800[42] 786.432 Mbit/s 98.304 MB/s 2002

Fibre Channel 1 Gb SCSI 1,062.5 Mbit/s 100 MB/s

FireWire (IEEE 1394b) 1600[42] 1,573 Mbit/s 196.6 MB/s 2007

Camera Link Base (single) 24-bit 85 MHz 2,040 Mbit/s 255 MB/s

Fibre Channel 2 Gb SCSI 2,125 Mbit/s 200 MB/s

eSATA (SATA 300) 3 Gbit/s 300 MB/s 2004

CoaXPress Base (up and down bidirectional link) 3.125 Gbit/s + 20.833 Mbit/s 390 MB/s 2009

FireWire (IEEE 1394b) 3200[42] 3,145.7 Mbit/s 393.216 MB/s 2007

External PCI Express 2.0 ×1 4 Gbit/s 500 MB/s

Fibre Channel 4 Gb SCSI 4.25 Gbit/s 531.25 MB/s

USB super speed (USB 3.0) 5 Gbit/s 625 MB/s 2010

Camera Link full (dual) 64-bit 85 MHz 5.44 Gbit/s 680 MB/s

eSATA (SATA 600) 6 Gbit/s 600 MB/s 2011

CoaXPress full (up and down bidirectional link) 6.25 Gbit/s + 20.833 Mbit/s 781 MB/s 2009

External PCI Express 2.0 ×2 8 Gbit/s 1,000 MB/s

Thunderbolt 10 Gbit/s × 2 1,250 MB/s × 2 2011

External PCI Express 2.0 ×4 16 Gbit/s 2,000 MB/s

External PCI Express 2.0 ×8 32 Gbit/s 4,000 MB/s

Page 14: List of computer Device Bit Rates

List of device bit rates 14

External PCI Express 2.0 ×16 64 Gbit/s 8,000 MB/s

MAC to PHY

Technology Rate (bit/s) Rate (byte/s) Year

MII (4 lanes) 100 Mbit/s 12.5 MB/s

RMII (2 lanes) 100 Mbit/s 12.5 MB/s

SMII (1 lane) 100 Mbit/s 12.5 MB/s

GMII (8 lanes) 1.0 Gbit/s 125 MB/s

RGMII (4 lanes) 1.0 Gbit/s 125 MB/s

SGMII (2 lanes) 1.0 Gbit/s 125 MB/s

XGMII (32 lanes) 10.0 Gbit/s 1.25 GB/s

XAUI (4 lanes) 10.0 Gbit/s 1.25 GB/s

XLGMII 40.0 Gbit/s 5 GB/s

CGMII 100.0 Gbit/s 12.5 GB/s 2008

PHY to XPDR

Technology Rate (bit/s) Rate (byte/s) Year

XSBI (16 lanes) 0.995 Gbit/s 0.124 GB/s

Random access memoryThe table below shows values for PC memory module types. These modules usually combine multiple chips on onecircuit board. Every module connects to the computer via a 64 bit wide interface. Some other computer architecturesuse different modules with a different bus width.FPM, EDO, SDR, and RDRAM memories were not commonly installed in a dual-channel configuration. DDR andDDR2 memory are usually installed in single or dual-channel configuration. DDR3 memory are installed in single,dual, tri, and quad-channel configurations. Bit rates of multi-channel configuration are slightly increased.

Module type Chip Type Memory clock Bus speed Transfer rate (bit/s) Transfer rate (byte/s)

FPM DRAM 45 ns 22 MHz 0.177 GT/s 1.416 Gbit/s 177 MB/s

EDO DRAM 30 ns 33 MHz 0.266 GT/s 2.128 Gbit/s 266 MB/s

PC-66 SDR SDRAM 10/15 ns 66 MHz 0.066 GT/s 4.264 Gbit/s 533 MB/s

PC-100 SDR SDRAM 8 ns 100 MHz 0.100 GT/s 6.4 Gbit/s 800 MB/s

PC-133 SDR SDRAM 7/7.5 ns 133 MHz 0.133 GT/s 8.528 Gbit/s 1.066 GB/s

RIMM-1200 RDRAM PC-600 300 MHz 0.600 GT/s 9.6 Gbit/s 1.2 GB/s

RIMM-1400 RDRAM PC-700 350 MHz 0.700 GT/s 11.2 Gbit/s 1.4 GB/s

RIMM-1600 RDRAM PC-800 400 MHz 0.800 GT/s 12.8 Gbit/s 1.6 GB/s

PC-1600 DDR SDRAM DDR-200 100 MHz 0.200 GT/s 12.8 Gbit/s 1.6 GB/s

RIMM-2100 RDRAM PC-700 533 MHz 1.066 GT/s 17.034 Gbit/s 2.133 GB/s

PC-2100 DDR SDRAM DDR-266 133 MHz 0.266 GT/s 17.034 Gbit/s 2.133 GB/s

PC-2700 DDR SDRAM DDR-333 166 MHz 0.333 GT/s 21.336 Gbit/s 2.667 GB/s

Page 15: List of computer Device Bit Rates

List of device bit rates 15

PC-3200 DDR SDRAM DDR-400 200 MHz 0.400 GT/s 25.6 Gbit/s 3.2 GB/s

PC2-3200 DDR2 SDRAM DDR2-400 100 MHz 0.400 GT/s 25.6 Gbit/s 3.2 GB/s

PC-3500 DDR SDRAM DDR-433 216 MHz 0.433 GT/s 27.728 Gbit/s 3.466 GB/s

PC-3700 DDR SDRAM DDR-466 233 MHz 0.466 GT/s 29.864 Gbit/s 3.733 GB/s

PC-4000 DDR SDRAM DDR-500 250 MHz 0.500 GT/s 32 Gbit/s 4 GB/s

PC-4200 DDR SDRAM DDR-533 266 MHz 0.533 GT/s 34.128 Gbit/s 4.266 GB/s

PC2-4200 DDR2 SDRAM DDR2-533 133 MHz 0.533 GT/s 34.128 Gbit/s 4.266 GB/s

PC-4400 DDR SDRAM DDR-550 275 MHz 0.550 GT/s 35.2 Gbit/s 4.4 GB/s

PC-4800 DDR SDRAM DDR-600 300 MHz 0.600 GT/s 38.4 Gbit/s 4.8 GB/s

PC2-5300 DDR2 SDRAM DDR2-667 167 MHz 0.667 GT/s 42.664 Gbit/s 5.333 GB/s

PC2-6000 DDR2 SDRAM DDR2-750 188 MHz 0.750 GT/s 48 Gbit/s 6 GB/s

PC2-6400 DDR2 SDRAM DDR2-800 200 MHz 0.800 GT/s 51.2 Gbit/s 6.4 GB/s

PC3-6400 DDR3 SDRAM DDR3-800 100 MHz 0.800 GT/s 51.2 Gbit/s 6.4 GB/s

PC2-7200 DDR2 SDRAM DDR2-900 225 MHz 0.900 GT/s 57.6 Gbit/s 7.2 GB/s

PC2-8000 DDR2 SDRAM DDR2-1000 250 MHz 1 GT/s 57.6 Gbit/s 7.2 GB/s

PC2-8500 DDR2 SDRAM DDR2-1066 267 MHz 1.066 GT/s 64 Gbit/s 8 GB/s

PC3-8500 DDR3 SDRAM DDR3-1066 133 MHz 1.066 GT/s 64 Gbit/s 8 GB/s

PC2-8800 DDR2 SDRAM DDR2-1100 275 MHz 1.1 GT/s 70.4 Gbit/s 8.8 GB/s

PC2-8888 DDR2 SDRAM DDR2-1100 278 MHz 1.111 GT/s 71.104 Gbit/s 8.888 GB/s

PC2-9136 DDR2 SDRAM DDR2-1142 286 MHz 1.142 GT/s 73.088 Gbit/s 9.136 GB/s

PC2-9200 DDR2 SDRAM DDR2-1150 288 MHz 1.15 GT/s 73.6 Gbit/s 9.2 GB/s

PC2-9600 DDR2 SDRAM DDR2-1200 300 MHz 1.2 GT/s 76.8 Gbit/s 9.6 GB/s

PC2-10000 DDR2 SDRAM DDR2-1250 313 MHz 1.25 GT/s 80 Gbit/s 10 GB/s

PC3-10600 DDR3 SDRAM DDR3-1333 167 MHz 1.333 GT/s 85.336 Gbit/s 10.667 GB/s

PC3-11000 DDR3 SDRAM DDR3-1375 172 MHz 1.375 GT/s 88 Gbit/s 11 GB/s

PC3-12800 DDR3 SDRAM DDR3-1600 200 MHz 1.6 GT/s 102.4 Gbit/s 12.8 GB/s

PC3-13000 DDR3 SDRAM DDR3-1625 203 MHz 1.625 GT/s 104 Gbit/s 13 GB/s

PC3-14400 DDR3 SDRAM DDR3-1800 225 MHz 1.8 GT/s 115.2 Gbit/s 14.4 GB/s

PC3-14900 DDR3 SDRAM DDR3-1866 233 MHz 1.866 GT/s 119.464 Gbit/s 14.933 GB/s

PC3-15000 DDR3 SDRAM DDR3-1866 233 MHz 1.866 GT/s 119.464 Gbit/s 14.933 GB/s

PC3-16000 DDR3 SDRAM DDR3-2000 250 MHz 2 GT/s 128 Gbit/s 16 GB/s

PC3-17000 DDR3 SDRAM DDR3-2133 266 MHz 2.133 GT/s 136.528 Gbit/s 17.066 GB/s

PC3-17600 DDR3 SDRAM DDR3-2200 275 MHz 2.2 GT/s 140.8 Gbit/s 17.6 GB/s

PC3-19200 DDR3 SDRAM DDR3-2400 300 MHz 2.4 GT/s 153.6 Gbit/s 19.2 GB/s

PC3-21300 DDR3 SDRAM DDR3-2666 333 MHz 2.666 GT/s 170.4 Gbit/s 21.3 GB/s

PC3-24000 DDR3 SDRAM DDR3-3000 375 MHz 3.0 GT/s 192 Gbit/s 24 GB/s

Page 16: List of computer Device Bit Rates

List of device bit rates 16

Video RAMRAM memory modules are also utilised by graphics processing units, however, video memory differs some-whatparticularly with lower power requirements, and are specialised to serve GPUs, for example, the introduction ofGDDR3 which was fundamentally based on DDR2. Every video memory chip is directly connected to the GPU(point-to-point). The total GPU memory bus width varies with the number of memory chips and the number of lanesper chip. For example, GDDR5 specifies either 16 or 32 lanes per "device" (chip). Over the years, bus widths rangedfrom 64 bit to 512 bit.[43] Because of this variability, graphics memory speeds are sometimes compared per pin. Fordirect comparison to the values for 64-bit modules shown above, video RAM is compared here in 64-lane lots,corresponding to two chips. In 2012, high-end GPUs use 8 or even 12 chips with 32 lanes each, for a total memorybus width of 256 or 384 bits. Combined with a transfer rate per pin of 5 GHz or more, such cards can reach 240 GB/sor more.Video RAM frequencies vary greatly. The values given below are examples for high-end cards.[44] Since many cardshave more than one pair of chips, the total bandwidth is correspondingly higher. For example, high-end cards oftenhave eight chips, so that the total bandwidth is four times the value given below.

Module type Chip Type Memory clock Transfers/s Transfer rate (bit/s) Transfer rate (byte/s)

64 lanes DDR 350 MHz 0.7 GT/s 44.8 Gbit/s 5.6 GB/s

64 lanes DDR2 250 MHz 1 GT/s 64 Gbit/s 8 GB/s

64 lanes GDDR3 1250 MHz 2.5 GT/s 159 Gbit/s 19.9 GB/s

64 lanes GDDR4 1100 MHz 2.2 GT/s 140.8 Gbit/s 17.6 GB/s

64 lanes GDDR5 1500 MHz 6 GT/s 384 Gbit/s 48 GB/s

Digital audio

Device Rate (bit/s) Rate (byte/s)

CD Audio (16-bit PCM) 1.411 Mbit/s 176.4 KB/s

S/PDIF 3.072 Mbit/s 0.384 MB/s

I²S 2.250 Mbit/s @ 24bit/48 kHz 0.281 MB/s

AC'97 12.288 Mbit/s 1.536 MB/s

McASP Unknown Unknown

Intel High Definition Audio rev. 1.0[45] 48 (outbound) & 24 (inbound) Mbit/s 6 & 3 MB/s (outbound & inbound)

ADAT Lightpipe (Type I) 9.216 Mbit/s 2.304 MB/s

AES/EBU 2.625 Mbit/s @ 24-bit/48 kHz 0.328 MB/s

HDMI 36.86 Mbit/s 4.606 MB/s

MADI 100 Mbit/s 12.5 MB/s

Page 17: List of computer Device Bit Rates

List of device bit rates 17

Digital video interconnectsData rates given are from the video source (e.g., video card) to receiving device (e.g., monitor) only. Out of band andreverse signaling channels are not included.

Device Rate (bit/s) Rate (byte/s)

HD-SDI (SMPTE 292M) 1.485 Gbit/s 0.186 GB/s

LVDS Display Interface[46] 2.8 Gbit/s 0.35 GB/s

3G-SDI (SMPTE 424M) 2.97 Gbit/s 0.371 GB/s

Single link DVI 4.95 Gbit/s 0.619 GB/s [a]

HDMI v. 1.0[47] 4.95 Gbit/s 0.619 GB/s [a]

DisplayPort v. 1.0 (4-lane reduced rate)[48] 6.48 Gbit/s 0.810 GB/s [a]

Dual link DVI 8.03 Gbit/s 1.238 GB/s [a]

HDMI v. 1.3[49] 10.2 Gbit/s 1.275 GB/s [a]

Dual High-Speed LVDS Display Interface 10.5 Gbit/s 1.312 GB/s

DisplayPort v. 1.0 (4-lane full rate)[48] 10.8 Gbit/s 1.35 GB/s [a]

DisplayPort v. 1.2 (4-lane)[48] 21.6 Gbit/s 2.7 GB/s [a]

a Uses 8B/10B encoding for video data—effective data rate is 80% of the symbol rate

Notes[1] TTY uses a Baudot code, not ASCII. This uses 5 bits per character instead of 8, plus one start and approx. 1.5 stop bits (7.5 total bits per

character sent).[2][2] WPM, or Words Per Minute, is the number of times the word "PARIS" is transferred per minute. Strictly speaking the code is quinary,

accounting inter-element, inter-letter, and inter-word gaps, yielding 50 binary elements (bits) per one word. Therefore 40 wpm is 2000bits/min or 55.6 bits/s. Counting characters, including inter-word gaps, gives six characters per word or 240 characters per minute, and finallyfour characters per second.

[3][3] All modems are wrongly assumed to be in serial operation with 1 start bit, 8 data bits, no parity, and 1 stop bit (2 stop bits for 110-baudmodems). Therefore, currently modems are wrongly calculated with transmission of 10 bits per 8-bit byte (11 bits for 110-baud modems).Although the serial port is nearly always used to connect a modem and has equivalent data rates, the protocols, modulations and errorcorrection differ completely.

[4] ITU.int (http:/ / www. itu. int/ rec/ T-REC-V/ en)[5] 56K modems: V.90 and V.92 have just 5% overhead for the protocol signaling. The maximum capacity can only be achieved when the

upstream (service provider) end of the connection is digital, i.e. a DS0 channel.[6] Note that effective aggregate bandwidth for an ISDN installation is typically higher than the rates shown for a single channel due to the use of

multiple channels. A basic rate interface (BRI) provides two "B" channels and one "D" channel. Each B channel provides 64 kbit/s bandwidthand the "D" channel carries signaling (call setup) information. B channels can be bonded to provide a 128 kbit/s data rate. Primary rateinterfaces (PRI) vary depending on whether the region uses E1 (Europe, world) or T1 (North America) bearers. In E1 regions, the PRI carries30 B-channels and one D-channel; in T1 regions the PRI carries 23 B-channels and one D-channel. The D-channel has different bandwidth onthe two interfaces.

[7] Adam.com.au (http:/ / www. adam. com. au/ about_history. php)[8] Itu.int (http:/ / www. itu. int/ rec/ T-REC-G. 991. 1-199810-I/ en)[9] DOCSIS 1.0 (http:/ / www. cablemodem. com/ specifications/ specifications10. html) includes technology which first became available

around 1995–1996, and has since become very widely deployed. DOCSIS 1.1 (http:/ / www. cablemodem. com/ specifications/specifications11. html) introduces some security improvements and Quality of Service (QoS).

[10] DOCSIS 2.0 (http:/ / www. cablemodem. com/ specifications/ specifications20. html) specifications provide increased upstream throughputfor symmetric services.

[11] DOCSIS 3.0 (http:/ / www. cablemodem. com/ primer/ ) is currently in development by the CableLabs consortium and is slated to includesupport for channel bonding and IPv6.

[12] ITU.int (http:/ / www. itu. int/ rec/ T-REC-G. 983. 2/ en)

Page 18: List of computer Device Bit Rates

List of device bit rates 18

[13] ITU.int (http:/ / www. itu. int/ rec/ T-REC-G. 984. 4/ en)[14][14] Most operators only support up to 9600bit/s[15][15] SDSL is available in various speeds.[16] ADSL connections will vary in throughput from 64 kbit/s to several Mbit/s depending on configuration. Most are commonly below 2 Mbit/s.

Some ADSL and SDSL connections have a higher digital bandwidth than T1 but their rate is not guaranteed, and will drop when the systemgets overloaded, whereas the T1 type connections are usually guaranteed and have no contention ratios.

[17][17] Satellite internet may have a high bandwidth but also has a high latency due to the distance between the modem, satellite and hub. One-waysatellite connections exist where all the downstream traffic is handled by satellite and the upstream traffic by land-based connections such as56K modems and ISDN.

[18] "MoCA 1.1 improves throughput" (http:/ / www. mocalliance. org/ news/ pr_102207_PQoS_and_175_Mbp. php) over coaxial cable to 175Mbits/s versus the 100 Mbits/s provided by the MoCA 1.0 specification.

[19] FireWire natively supports TCP/IP, and is often used at an alternative to Ethernet when connecting 2 nodes. Tweaktown.com (http:/ / www.tweaktown. com/ articles/ 309/ 3)

[20] Data rate comparison between FW and Giganet shows that FW's lower overhead has nearly the same throughput as Giganet. Unibrain.com(http:/ / www. unibrain. com/ Products/ DriverAPI/ FireNET. htm)

[21] http:/ / www. ge-ip. com/ reflectivememorynetworks[22] InfiniBand uses an 8B/10B encoding scheme.[23] Mac History (http:/ / www. mac-history. net/ computer-history/ 2008-05-25/ apple-i-and-apple-ii)[24] VAW: Apple IIgs Specs (http:/ / www. vectronicsappleworld. com/ profiles/ 83. html)[25] The Zorro II bus use 4 clocks per 16-Bit of data transferred. See the Zorro III technical specification (http:/ / www. thule. no/ haynie/

zorroiii/ docs/ zorro3. pdf) for more information.[26] Japan wikipedia article, Bus used in early NEC PC-9800 series and compatible systems[27] STD 32 Bus Specification and Designer's Guide (http:/ / www. controlled. com/ std32mg/ std32. pdf)[28] Japan wikipedia article, Bus used in later NEC PC-9800 series and compatible systems[29] Local Area Networks Newsletter by Paul Polishuk, September 1992, Page 7 (http:/ / books. google. de/ books?id=XBvHNQzM2P0C&

pg=PA7& lpg=PA7& dq=APbus+ MIPS+ mhz& source=bl& ots=aRrJwlf5UE& sig=EtvZr-drqdWZRXCKiYTzFEJ2HSA& hl=de&ei=AHKkTI6WDM7Lswby99WgCA& sa=X& oi=book_result& ct=result& resnum=4& ved=0CCgQ6AEwAw) (APbus used in Sony NeWSand NEC UP4800 workstations and NEC EWS4800 servers after VMEbus and before switch to PCI)

[30] Japan wikipedia article, Bus used in NEC PC-9821 series[31] Dave Haynie, designer of the Zorro III bus, claims in this (http:/ / groups. google. com/ group/ comp. sys. amiga/ msg/

c532a74c1fa3f992?dmode=source) posting that the theoretical max of the Zorro III bus can be derived by the timing information given in‘’chapter 5’’ of the Zorro III technical specification (http:/ / www. thule. no/ haynie/ zorroiii/ docs/ zorro3. pdf).

[32] Dave Haynie, designer of the Zorro III bus, states in this (http:/ / groups. google. com/ group/ comp. sys. amiga. advocacy/ msg/42ecbcbae063cfe1?dmode=source) posting that Zorro III is an asynchronous bus and therefore does not have a classical MHz rating. Amaximum theoretical MHz value may be derived by examining timing constraints detailed in the Zorro III technical specification (http:/ /www. thule. no/ haynie/ zorroiii/ docs/ zorro3. pdf), which should yield about 37.5 MHz. No existing implementation performs to this level.

[33] Dave Haynie, designer of the Zorro III bus, claims in this (http:/ / groups. google. com/ group/ comp. sys. amiga. hardware/ msg/03b8cec336310e4a?dmode=source) posting that Zorro III has a max burst rate of 150 MB/s.

[34] Note that PCI Express 1.0/2.0 lanes use an 8B/10B encoding scheme.[35][35] PCIe 2.0 effectively doubles the bus standard's bandwidth from 2.5 GT/s to 5 GT/s[36][36] PCIe 3.0 increases the bandwidth from 5 GT/s to 8 GT/s and switches to 128b-130b encoding[37][37] SCSI-1, SCSI-2 and SCSI-3 are signaling protocols and do not explicitly refer to a specific rate. Narrow SCSI exists using SCSI-1 and

SCSI-2. Higher rates use SCSI-2 or later.[38] Fibre Channel 1GFC, 2GFC, 4GFC use an 8B/10B encoding scheme. Fibre Channel 10GFC, which uses a 64B/66B encoding scheme, is not

compatible with 1GFC, 2GFC and 4GFC, and is used only to interconnect switches.[39] SATA and SAS use an 8B/10B encoding scheme.[40] proprietary serial version of IEEE-488 by Commodore International[41] http:/ / cbmmuseum. kuto. de/ floppy. html[42] FireWire (IEEE 1394b) uses an 8B/10B coding scheme.[43][43] Comparison of AMD graphics processing units[44][44] Comparison of Nvidia graphics processing units[45] High Definition Audio Specification (http:/ / download. intel. com/ standards/ hdaudio/ pdf/ HDAudio_03. pdf), Revision 1.0, 2004[46] Videsignline.com (http:/ / www. videsignline. com/

208403647;jsessionid=OD1LDTBAAOB4EQSNDLQCKH0CJUNN2JVN?printableArticle=true), Panel display interfaces and bandwidth:From TTL, LVDS, TDMS to DisplayPort

[47] Octavainc.com (http:/ / www. octavainc. com/ HDMI 1. 3. htm)[48] Displayport Technical Overview (http:/ / www. displayport. org/ cms/ sites/ default/ files/ downloads/ DisplayPort_Technical_Overview.

pdf), May 2010[49] HDMI.org (http:/ / www. hdmi. org/ learningcenter/ faq. aspx#12)

Page 19: List of computer Device Bit Rates

List of device bit rates 19

External links• Interconnection Speeds Compared (http:/ / www. pixelbeat. org/ speeds. html)• Internet speed chart showing bit rates on types of broadband internet connections (http:/ / broadbandbuyer. com/

chartbusiness. htm)• Need for Speed: Theoretical Bandwidth Comparison (http:/ / www. d-silence. com/ feature.

php?id=237)—Contains a graph (from 2004) illustrating digital bandwidths

Page 20: List of computer Device Bit Rates

Article Sources and Contributors 20

Article Sources and ContributorsList of device bit rates  Source: http://en.wikipedia.org/w/index.php?oldid=547988703  Contributors: 119, 2mcm, A5b, Aaa3-other, Abdull, Adamantios, Afwm1985, Agoode, Ajsphila,Akumiszcza, Alereon, Altintx, Aluvus, Alvestrand, AndrewAllen, AndrewRH, Andrewcrawford, Angelic Wraith, Anss123, Arnocs, Author23, Azhad, Bellhead, BenFrantzDale, BenRG, Bert490,BigChilli, Biggiesized, Bilbo1507, Blound, Bluezy, Bobblewik, Bobprime, Boris Barowski, Boscobiscotti, Brian Patrie, BulletZ, Campoftheamericas, CanisRufus, Capnquackenbush, CaseyAbell, Cgmusselman, Chbarts, Chrisbolt, ChristTrekker, CodeCaster, ColdShine, CosineKitty, Cpiral, Cwillis1964, DRAGON Elemental, DSTKSC, DanKidger, Danigro456, Dante Alighieri,DavidCary, Daviesow, Dcljr, Delirium, Deylight, Dipa1965, DmitryKo, DocWatson42, Dogcow, DoriSmith, Dycedarg, Dysprosia, Eagleone 123, Eatcacti, Edknol, Edward, Electron9, Elishabet,EncMstr, Endlessnameless, Enigmasoldier, Europamoon, Evanh, Feedmecereal, Ferion69, Flewis, Flightsoffancy, Frap, Fratrep, Funandtrvl, Ghakko, Ghewgill, GianoM, Gibwar, Giftlite,GoingBatty, Golffies, Gregzeng, Grendelkhan, Grin, Gudeldar, Gundark, Guoguo12, Guy Harris, Hawkwindeb, Hetar, Hippo99, Hoof Hearted, Hroo772, Htmlspinnr, Il hamster, Jack007, Jannex,Jay.slovak, Jengelh, Jerryseinfeld, Jim.henderson, Jmoz2989, Joeinwap, John of Reading, Jonth, Juhis, KJBracey, Kaihuang, Kalizec, Kanji, Karn, Kbdank71, KelleyCook, Kelp, Khazar,Knightofbaghdad, Knotnic, Kvng, Larek, LeetHaxor, Liberty Miller, Lightmouse, Lironl, LittleWink, Logan, Lotje, Loïc Le Gal, Luis wiki, MISTYFAN4EVER8887, Macoukji, Mange01,Mangezdespommes, Marbud, Marcan, Mark Rizo, MartinRe, MatthewWilcox, Mauls, Megapixie, Mendaliv, Metalim, Michael Pheddyn, Micru, Mild Bill Hiccup, Mindmatrix, Mittosi, Mjb,Mjkmail, Mogism, Mojoworker, Mortenoesterlundjoergensen, MrDolomite, Mrand, Myria, Nailbiter, Nanjoutai, NapoliRoma, NetRolller 3D, Nhl94, Nick Wilson, Nickshanks, NonarKitten,Nono64, Northgrove, Omegatron, PaleAqua, Pascal666, Peter Crabtree, Phil Holmes, Phillips.jj, PhnomPencil, Phoenix720, Pierpao, Pip2andahalf, Pmc, Pmsyyz, Pnm, Poppafuze, Poseidon69,Potatoswatter, Pwscottiv, Quanstro, QuantumShadow, Qxl32, R'n'B, RainerBlome, RatOmeter, Ratfox, Rconan, Rebroad, Reedy, Retroneo, Rilak, Rjamorim, Rjwilmsi, Robbat2, RobertBorkowski, RooZ, Royk, Rsaxvc, Ruckb, Rvvs89, Rwwww, SMC, SQL, Sahrin, Samrawlins, Sasquatch, SchmuckyTheCat, Scott McNay, SebastianHelm, Sendai2ci, Sentinel23, Sfoskett,Sharkford, Shjacks45, Sigmundpetersen, Skilltim, Sladen, Smashman2004, Smbil58, Sodaant, SoledadKabocha, Ssd, Sspalfilter, Standmatt, Stephen.sweat, Sticker1, Subterminal, Sugree,Tagishsimon, Theaveng, Theo Pardilla, Threeme3, Thunderbird2, Time sheep, Timl, Tins128, Tlogmer, Tolly4bolly, Tony1, Torst, Towel401, Toytoy, Trojancowboy, Twimoki, Txt.file,UncleBubba, UriBudnik, Urvabara, Vague Rant, Vahid83, VgerNeedsTheInfo, ViPeR-7, Vonvon, VoxLuna, Vswitchs, Waffle, Wayne Hardman, Wbm1058, Wernher, West London Dweller,WhartoX, Widefox, Wiki fanatic, WikiTorch, Winterspan, Wislam, Wkped2007utah, Wtshymanski, Xanzzibar, Xmaillard, Ysangkok, Zac67, ZeroOne, Zerofire0, Zootboy, Zowie, 820anonymous edits

LicenseCreative Commons Attribution-Share Alike 3.0 Unported//creativecommons.org/licenses/by-sa/3.0/