Liquid Gas Absorption Process

Embed Size (px)

Citation preview

  • 8/19/2019 Liquid Gas Absorption Process

    1/89

    +

    1

    Gas-Liquid Separation

     Absorption Process

    Part 01

  • 8/19/2019 Liquid Gas Absorption Process

    2/89

    + 2Content

     Types of Separation Processes and Methods Equilibrium Relation Between Phases

     Single and Multiple Equilibrium Contact Stages

     Mass Transfer Between Phases

     Continuous Humidification Processes

     Absorption on plate and Packed Tower

     Absorption and Concentrated Mixtures in Packed

    Tower

     Estimation of Mass Transfer Coefficient in Packed Tower

  • 8/19/2019 Liquid Gas Absorption Process

    3/89

    + 3Types of Separation Processes and Methods

     In order to separate or remove one or more of the component

    from its original mixture, it must be contact with anotherphase to allow solute to diffuse from one phase to the others

    phase.

     During the contact of the two phase, the component of the

    original mixture redistribute themselves between the two

    phases. The phases are then separated by simple physical

    methods.

     By choosing the proper conditions and phases, one phase is

    enriched while the other phase is depleted in one or more

    components.

     The two phase pair can be:

    1.   Gas (vapor)-liquid :absorption, distillation, etc

    2.   Gas –solid :adsorption, etc

    3.   Liquid-liquid :liquid-liquid extraction, etc

    4.   Liquid- solid :leaching, crystallization, etc

  • 8/19/2019 Liquid Gas Absorption Process

    4/89

    + 4Gas-Liquid Separation

     Absorption

     A  solute A  or several solutes from a gas phase are absorbed into aliquid phase.

      involves molecular and turbulent diffussion or mass transfer of solute A through a stagnant, nondifussing gas B into a stagnantliquid C

     e.g: absorbing NH3 (A) from air (B) using liquid water (C).

     Stripping/desorption

     reverse of absorption: separating a  solute A  or several solutesfrom a liquid phase by contacting the liquid with a gas phase.

     E.g. removal of volatile component of the oils by passing out withthe steam.

     Humidification

     When the gas is pure air and the liquid is pure water

     transfer of water vapor from liquid water into pure air.  Dehumidification

     removal of water vapor from air.

  • 8/19/2019 Liquid Gas Absorption Process

    5/89

    + 5Equilibrium Relation Between PhasesGas-Liquid Equilibrium – Henry’s Law

      Henry’s Laws:

     where,

    p A = partial pressure of component A (atm).

    H = Henry’s law constant (atm/mol

    fraction).

    H’ = Henry’s law constant (mol frac.gas/mol

    frac.liquid). = H/P.x A    = mole fraction of component A in

    liquid.

    y A = mole fraction of component A in gas =

    p A /P.

    P = total pressure (atm).

    H’ depend on total pressure, whereas H does

    not.

     At low concentration – a straight line on plot

    p A  vs x A .

     A A   Hx p     A A   x H  y   '

  • 8/19/2019 Liquid Gas Absorption Process

    6/89

    + 6Single Stage Equilibrium Contact

     Single-stage process

      two different phases (liquid & gas for absorption) are brought into contact

    & then separated.

     various component diffuse and redistribute themselves between two

    phase

     long enough, equilibrium is reached.

     Two exit stream L1 andV1 leave in equilibrium with each other.

     Gas phase contains solute A & inert gas B

     Liquid phase contains solute A & inert liquid (solvent) C.

     Inert gas is insoluble in the solvent and the solvent does not vaporize to

    the gas phase.

    L1 ,xA1Lo ,xAo

    V2, yA2V1 , yA1

    SingleStageLiquid phase

    inletLiquid phase

    outlet

    Gas phaseinlet

    Gas phaseoutlet

  • 8/19/2019 Liquid Gas Absorption Process

    7/89

    +   Single Stage Equilibrium Contact for Absorption

     Total material balance

     Component A balance on single stage equilibrium contact for

    absorption

     Both L’ and V’ are constant and usually is known

     To solve the value x A1 and y A1, we use a Henry’s Law relationship

     Remember the unit H’ is mol frac.gas/mol frac.liquid

    7

     Lo x Ao +V 2 y A2 = L1 x A1 +V 1 y A1 = Mx AM 

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

      1

    1

    1

    1

    2

    2

    1'1'1'1'  A

     A

     A

     A

     A

     A

     Ao

     Ao

     y

     y

    V  x

     x

     L y

     y

    V  x

     x

     L

     A A   x H  y   '

     Lo +V 2 = L1 +V 1 = M 

    L1 ,xA1Lo ,xAo

    V2, yA2V1 , yA1

    SingleStageLiquid phase

    inletLiquid phase

    outlet

    Gas phaseinlet

    Gas phaseoutlet

     V = gas flow rate

     V’= inert/pure gas (B) flow rate = V(1-y A )

    L = liquid flow rate

    L’= inert/pure liquid (C) flow rate = L(1-x A )

    x= mole fraction in liquid phase

    y = mole fraction in gas phase

  • 8/19/2019 Liquid Gas Absorption Process

    8/89

    + 8

     A gas mixture at 1.0 atm pressure abs containing air and CO2is contacted in a single-stage mixer continuously with pure

     water at 293 K. The two exit gas and liquid streams reach

    equilibrium. The inlet gas flow rate is 100 kg mol/h, with a

    mole fraction of CO2   of y A2   = 0.20. The liquid flow rate

    entering is 300 kg mol water/h. calculate the amounts and

    compositions of the two outlet phases. Assume that waterdoes not vaporize to the gas phase.

    Example 10.3-1

    L1= ?xA1 =?

    L0= 300 kg/h

    xAo =0

    V2= 100 kg/hyA2 =0.20

    Single-stageV1= ?

    yA1 =?

  • 8/19/2019 Liquid Gas Absorption Process

    9/89

    + 9Solution Example 10.3-1

    The inert water flow is L’ = L0 = 300 kg mol/h.

    The inert air flow V’ is obtained from, V’ = V(1-y A ). Hence, the inert air flowis

     V’ = V2 (1-y A2 )

    = 100 (1-0.20)

    = 80 kg mol/h .

    Substituting into equation to make a balance on CO2 (A).

    ……….(1) 

      

     

     

      

     

     

      

     

     

      

     

      1

    1

    1

    1

    180

    1300

    20.01

    20.080

    01

    0300

     A

     A

     A

     A

     y

     y

     x

     x

  • 8/19/2019 Liquid Gas Absorption Process

    10/89

    + 10

     At 293 K, the Henry’s law constant from Appendix A.3 is

    H = 0.142 x 104 atm/mol frac.

    Then

    H’ = H/P = 0.142 x 104 /1.0 = 0.142 x 104 mol frac. gas/mol frac.liquid.

    Substituting into,

    y A1 = 0.142 x 104 x A1   ………(2)

    Solve simultaneous equation.

    x A1 = 1.41 x 104 and y A1 = 0.20

    To calculate the total flow rates leaving,

    hkgmol x

     L

     L A

     / 3001041.11

    300

    1   41

    '

    hkgmol y

    V V 

     A

     / 10020.01

    80

    1 1

    '

    1  

    Solution Example 10.3-1

  • 8/19/2019 Liquid Gas Absorption Process

    11/89

    + 11

      Countercurrent multiple-contact stages.

     more concentrated product.

      total number of ideal stages = N.

      Component B&C may or may be not be somewhat miscible in each other.

      two streams leaving a stage in equilibrium with each other.  Total overall material balance: L 0 + V  N+1 = L  N  + V 1 = M 

      Component A balance: L 0 x 0 + V  N+1 y  N+1 = L  N  x  N  + V 1 y 1 = Mx  M 

      For the first n stages: L 0 x 0 + V  n+1 y  n+1 = L  n x  n + V 1 y 1

     Operating line:

     An operating line is an important material-balance equation because it relatesthe concentration yn+1 in the V stream with xn in the L stream passing it.

     Slope= Ln/Vn+1 in operating line is varies if the L and V streams vary from stage tostage

    1    2 n N 

    L0 

      L1 

      L2 

      Ln - 1    L n    L N - 1    L N 

    V  N + 1 

    V  N 

    V  n + 1 

    V  n 

    V  3 

    V  2 

    V  1 

    Countercurrent Multiple Contact Stage

     yn+1 =  LnV n+1

     xn +V 

    1 y

    1 − L0 x0V n+1

  • 8/19/2019 Liquid Gas Absorption Process

    12/89

    + 12Countercurrent Multiple Contact Stage – Number of Ideal Stages

  • 8/19/2019 Liquid Gas Absorption Process

    13/89

    + 13

     Graphical calculation for determining number of ideal stage,

    N:

    1)   Plot y A  vs x A .

    2)   Draw operating line.

    3)   Draw equilibrium line (Henry’s law).

    4)   Stepping upward (or downward) until yN+1 (or y1) is reached5)   N = number of steps/trays

     Dilute system (

  • 8/19/2019 Liquid Gas Absorption Process

    14/89

    + 14Example 10.3-2

    It is desired to absorb 90% of the acetone in a gas containing

    1.0 mol % acetone in air in a countercurrent stage tower. The

    total inlet gas flow to the tower is 30.0 kg mol/h and the total

    inlet pure water flow to be used to absorb the acetone is 90

    kg mol H2O/h. The process is to be operate isothermally at

    300 K and a total pressure of 101.3 kPa. The equilibrium

    relation for the acetone (A) in the gas-liquid is y A  = 2.53x A .Determine the number of theoretical stages required for this

    separation.

  • 8/19/2019 Liquid Gas Absorption Process

    15/89

    + 15Solution Example 10.3-2

    Given values are y AN+1 = 0.01, x A0 = 0,VN+1 = 30.0 kg mol/h, and L0 =L’= 90.0 kg mol/h.

     Amount of entering acetone = y AN+1 VN+1= 0.01(30.0)

    = 0.3 kg mol/h.

    Entering air,V’   = (1- y AN+1 )VN+1= (1-0.01)(30.0)

    = 29.7 kg mol air/h

     Acetone leaving in V1 = 0.10(0.30) = 0.03 kg mol/h.

     Acetone leaving in L1

     = 0.90(0.30) = 0.27 kg mol/h. (10% avetone enter is absorbed)

     V1   = 29.7 + 0.03 = 29.73 kg mol air + acetone/h.

    y1  = (0.030/29.73) = 0.00101

    LN   = 90.0 + 0.27 = 90.27 kg mol water + acetone /h.

    xN = (0.27/90.27) = 0.0030.

    Since the flow of liquid varies only slightly from L0 = 90.0 at the inlet to LN = 90.27 at the the outlet and V from 30.0 to 29.73, the slope Ln /Vn+1 of the operating line is essentially constant. This line is plotted,and the equilibrium relation y A  = 2.53x A  is also plotted.

    Starting at point y A1 ,x A0   the stages are drawn. About 5.2 theoretical stages are required.

  • 8/19/2019 Liquid Gas Absorption Process

    16/89

    + 16Solution Example 10.3-2

    0 0 0.001 0.002 0.003 0.004

    0.004

    0.008

    0.012

    xANxA0

    yA1

    yAN+1

    Equilibrium line

    Operating line

    3

    2

    1

    4

    5

    Mole fraction acetone in water, xA

    Mole fraction acetone in air, yA

  • 8/19/2019 Liquid Gas Absorption Process

    17/89

    + 17 Analytical Equations For Countercurrent StageContact : Kremser equations

     Kremser equations

      calculate the number of ideal stages.

      valid only when operating & equilibrium lines are straight.

      v, L have a constant value

     Absorption Stripping

    When A = 1

     N  =   y N +1 − y1 y

    1 −mx

    0

     N  = In

      x0 − ( y N +1 /  m) x N  − ( y N +1 /  m) 1− A( ) + A

     In(1 /  A) N  =

     In   y N +1 −mx0 y1 −mx01−  1 A        +

     1 A

     InA

     N  =   x0 − x N  x N  − y N +1 /  m

    Procedure (for varying A):

    1.Calculate A 1 = L0/mV1 at L0 & V1.

    2.Calculate A N = LN/mVN+1   at LN &VN+1.3.Calculate geometric average area, A ave. =

    4. Calculate N.

    m = slope of equilibrium line.

     A = absorption factor = constant = L/(mV).

    L, V = molar flow rates

     N  A A

    1

  • 8/19/2019 Liquid Gas Absorption Process

    18/89

    + 18Example 10.3-3

    Repeat Example 10.3-2 but use the Kremser analytical equation

    for countercurrent stage processes.

    Solution

     At one end of the process at stages 1,V 1 = 29.73 kg mol/h y  A1 = 0.001001

     L 0 = 90.0, and x   A0   = 0.

     Also, the equilibrium relation is y  A   = 2.53x  A   where m = 2.53.

    Then,

    20.173.2953.2

    0.90

    1

    0

    1  mV 

     L

    mV 

     L

     A

  • 8/19/2019 Liquid Gas Absorption Process

    19/89

    + 19Solution Example 10.3-3

     At stage N,

     VN+1 =30.0, y AN+1 = 0.01,LN = 90.27, and x AN = 0.0030.

    The geometric average,

    Then,

    This compares closely with 5.2 stages using graphical method

    19.10.3053.2

    27.90

    1

     N 

     N  N 

    mV 

     L A

    195.119.120.01     N  A A A

    04.5)195.1log(

    195.1

    1

    195.1

    11

    )0(53.200101.0

    )0(53.201.0log

     

      

     

     N 

  • 8/19/2019 Liquid Gas Absorption Process

    20/89

    +Next Part

     Types of Separation Processes and Methods

     Equilibrium Relation Between Phases

     Single and Multiple Equilibrium Contact Stages

     Mass Transfer Between Phases

     Continuous Humidification Processes

     Absorption on plate and Packed Tower

     Absorption and Concentrated Mixtures in Packed Tower

     Estimation of Mass Transfer Coefficient in Packed Tower

    20

  • 8/19/2019 Liquid Gas Absorption Process

    21/89

    +

    21

    Gas-Liquid Separation

    Part 02

  • 8/19/2019 Liquid Gas Absorption Process

    22/89

    +Next Part

    Types of Separation Processes and Methods Equilibrium Relation Between Phases

    Single and Multiple Equilibrium Contact Stages

    Mass Transfer Between Phases

    Continuous Humidification Processes Absorption on plate and Packed Tower

     Absorption and Concentrated Mixtures in Packed

    Tower

    Estimation of Mass Transfer Coefficient in PackedTower

    22

  • 8/19/2019 Liquid Gas Absorption Process

    23/89

    +Subtopics:

    Mass Transfer Between Phases

     Introduction

     Film Mass Transfer Coefficient and Interface Concentration :

    Equimolar Counterdiffusion

     Film Mass Transfer Coefficient and Interface Concentration :

    Diffusion of A through Stagnant & Nondiffusing B

     Overall Mass-Transfer Coefficients:

    Equimolar Counterdiffusion/Diffusion in Dilute Solutions

     Overall Mass-Transfer Coefficients:

    Diffusion of A Through Stagnant & Nondiffusing B

    23

  • 8/19/2019 Liquid Gas Absorption Process

    24/89

  • 8/19/2019 Liquid Gas Absorption Process

    25/89

    +Mass Transfer Between Phases

    y AG   - average or bulk mole fraction of A in gas phase

    x AL   - average or bulk mole fraction of A in liquid phase

    y Ai & x Ai   - equilibrium mole fraction at interface

    25

    Distance from interface

    NA

    yAGyAi

    interface

    gas-phase mixture

    of A in gas G

    liquid-phase solution

    of A in liquid L.

    xAixAL

    Concentration profile of solute A diffusing through two phases.

  • 8/19/2019 Liquid Gas Absorption Process

    26/89

    +Film Mass Transfer Coefficient and InterfaceConcentration : Equimolar Counterdiffusion

    k’y   -gas phase mass transfer coefficient (kgmol/s.m2.mol frac.)

    k’x   -liquid phase mass transfer coefficient (kgmol/s.m2.mol frac.)

    Point P is bulk phase compositions y AG and x AL

    Point M is interface concentration x Ai and y Ai

    26

    )(')('  AL Ai x Ai AG y A   x xk  y yk  N   

    )(

    )(

    '

    '

     Ai AL

     Ai AG

     y

     x

     x x

     y y

    If two film coefficient k’x and k’yare known, the interface

    composition can be

    determined by drawing line

    PM with slope –k’x/k’yintersecting the equilibrium

    line

  • 8/19/2019 Liquid Gas Absorption Process

    27/89

    +   Film Mass Transfer Coefficient and InterfaceConcentration : Diffusion of A through Stagnant &

    Nondiffusing B

     Trial and error need to get the slope. For first trial assume (1-y A )iMand (1-x A )iM equal to 1.

    27

    )]1 /()1[(

    )1()1()1(

    )]1 /()1[(

    )1()1()1(

    )1(

    '

    )1(

    ')()(

     Ai AL

     Ai AL

    iM  A

     AG Ai

     AG Ai

    iM  A

    iM  A

     x

     x

    iM  A

     y

     y

     AL Ai x Ai AG y A

     x x In

     x x x

     y y In

     y y y

     x

    k k 

     y

    k k 

     x xk  y yk  N 

    )(

    )(

    )1 /('

    )1 /('

    )()1(

    ')()1(

    '

     Ai AL

     Ai AG

    iM  A y

    iM  A x

     AL Ai

    iM  A

     x Ai AG

    iM  A

     y A

     x x

     y y

     yk 

     xk 

     x x xk  y y

     yk  N 

  • 8/19/2019 Liquid Gas Absorption Process

    28/89

    +   Example 10.4-1The solute A is being absorbed from a gas mixture of A and B in a wetted-wall

    tower with the liquid flowing as a film downward along the wall. At certain point

    in the tower the bulk gas concentration y AG = 0.380 mol fraction and the bulk

    liquid concentration is x AL = 0.1. The tower is operating at 298 K and 1.013 x 105

    Pa and the equilibrium data are as follows:

    x A    y A    x A    y A 

    0 0 0.20 0.131

    0.05 0.022 0.25 0.187

    0.10 0.052 0.30 0.265

    0.15 0.087 0.35 0.385

    The solute A diffuse through stagnant B in the gas phase and then through a

    nondiffusing liquid. Using correlations for   dilute solutions   in wetted-wall

    towers, the film mass-transfer coefficient for A in the gas phase is predicted as

    ky = 1.465 x 10-3 kg mol A/s.m2 mol frac. And for the liquid phase as kx = 1.967

    x 10-3 kg mol A/s.m2 mol frac. Calculate the interface concentrations y Ai and x Ai

    and the flux N A .

    28

  • 8/19/2019 Liquid Gas Absorption Process

    29/89

    +Overall Mass-Transfer Coefficients andDriving Force

     Film or single phase mass transfer coefficient k’y and k’xor ky and kx are often difficult to measure

     As a result, overall mass transfer coefficient K’y and Kx’ are

    measured based on gas phase or liquid phase.

    K’y   - overall gas phase driving force (kgmol/s.m2.mol frac.)

    K’x   - overall liquid phase driving force (kgmol/s.m2.mol frac.)

    y* A    - mole fraction that equilibrium with x AL

    X* A    - mole fraction that equilibrium with y AG

    29

     N  A = K ' y ( y AG − y A* ) = K ' x ( x A* − x AL )

  • 8/19/2019 Liquid Gas Absorption Process

    30/89

    +   Overall Mass-Transfer Coefficients:Equimolar Counterdiffusion/Diffusion in Dilute Solutions

    30

      Gas phase controlling (i.e major resistance in gas

    phase)- m’ is small, so that the equilibrium curve is

    almost horizontal, a small value of yA in the gas willgive a large value of xA in equilibrium in liquid. A is

     very soluble in liquid phase

      Liquid phase controlling (i.e major resistance in

    liquid phase) - m” is large and A is very insoluble

    in liquid phase

     N  A = K ' y ( y AG − y A*

    ) = K ' x ( x A* − x AL )

    1

     K ' y =  1

    k  y ' + m '

    k  x 'm ' =

      y Ai − y A*

     x Ai − x AL1

     K ' x=   1m"k  y '

    +   1k  x '

    m" =  y AG − y Ai x A

    * − x Ai

    '

    1

    '

    1

     y y   k K 

    '

    1

    '

    1

     x x  k K 

  • 8/19/2019 Liquid Gas Absorption Process

    31/89

    +   Overall Mass-Transfer Coefficients:Diffusion of A Through Stagnant & Nondiffusing B

    31

    )()1(

    )()1(

    ''

     AL A

     M  A

     x A AG

     M  A

     y

     A   x x x

    K  y y

     y

    K  N   

     

    )]1 /()1[()1()1()1(

    )]1 /()1[()1()1()1(

    )1(

    '

    )1(

    '

    *

    *

    **

    *

    *

    **

     A AL

     A AL M  A

     AG A

     AG A M  A

     M  A

     x

     x

     M  A

     y

     y

     x x In x x x

     y y In y y y

     x

    K K 

     y

    K K 

    iM  A xiM  A y M  A y   xk 

    m

     yk  yK    )1 /('

    '

    )1 /('

    1

    )1 /('

    1

    *  

    iM  A xiM  A y M  A x   xk  yk m xK    )1 /('

    1

    )1 /('"

    1

    )1 /('

    1

    *  

  • 8/19/2019 Liquid Gas Absorption Process

    32/89

    +Example 10.4-2

    Using the same data as in Example 10.4-1, calculate the overall

    mass transfer coefficient K’y and the percent resistance in the

    gas and liquid films. Do this for the case of A diffusing through

    stagnant B.

    32

  • 8/19/2019 Liquid Gas Absorption Process

    33/89

    +Subtopics:

    Continuous Humidification Processes

     Water-Gas Interface for Water Cooling Tower

     Common Term in Humidification

     Operating Line for Water Cooling Tower

     Tower Height For Water-Cooling

     Design of Water Cooling Tower Using Film Mass Transfer

    Coefficient

     Design of Water Cooling Tower Using Overall Mass Transfer

    Coefficient

     Minimum Value of Air Flow

     Design of Water Cooling using Height of Transfer Unit

    33

  • 8/19/2019 Liquid Gas Absorption Process

    34/89

    +Continuous Humidification Process

      When a relatively warm liquid is brought into direct contact with a gas that is

    unsaturated, some of the liquid is vaporized to the gas phase.

      This done for the following purpose

      Humidifying of air for control the moisture content of air in drying or air conditioning

      Dehumidifying air where cold water condenses some water vapor from air.

      Water cooling where water is evaporated to air to cool the warm water.

      Typical water cooling tower

      Warm water flows counter currently to an air stream.   The warm water enters the top of a packed tower and cascades down through the

    packing,leaving at the bottom.

      Air enters at the bottom of the tower and flows upward through the descending water

    by the natural draft or by the action of a fan.

      The water is distributed by troughs and overflows to cascade over slat gratings or

    packing that provide large interfacial areas of contact between the water air air in

    the form of droplets and film of water.   The tower packing often consists of slats of wood or plastic or of a packed bed

      In humidification and dehumidification, the gas phase resistance controls the

    rate of the mass transfer.

    34

  • 8/19/2019 Liquid Gas Absorption Process

    35/89

    + Water-Gas Interface for Water CoolingTower

    Sensible heat flow from liquid to the interface= sensible heat flow in

    the gas phase + latent heat (vaporization) flow in the gas.

    35

  • 8/19/2019 Liquid Gas Absorption Process

    36/89

    +   Common Term in HumidificationChapter 9.3

     Humidity (H) of an air-water vapor is the kg of water vapor

    contained in  1 kg of dry air.

     Saturated humidity (Hs)- air in which the water vapor is equilibrium

     with liquid water at given P & T. Partial pressure of water vapor inair-water mixture is equal to the vapor pressure p As of pure water at

    given T

     Percentage humidity (Hp)

     Percentage relative humidity (HR)

    36

  • 8/19/2019 Liquid Gas Absorption Process

    37/89

    +Common Term in Humidification

     Dew point

     the temperature at which a given mixture of air and water vapor would be saturated.

     or temperature at which vapor begins to condense when the gas

    phase is cooled at constant pressure.

     Humid heat cS  amount of heat required to raise the temperature of 1 kg of dry air

    plus the water vapor present by 1 K.

    cS (kJ/kg dry air.K) = 1.005 + 1.88H (SI)

     where, cP water(v) = 1.88 kJ/kg water vapor. K and cP air = 1.005

    kJ/kg dry air. K

    37

  • 8/19/2019 Liquid Gas Absorption Process

    38/89

    +Common Term in Humidification

     Humid volume, vH - total volume (m3) of 1 kg of dry air plus

    the vapor it contains at 1 atm abs pressure and the given gastemp.

     vH   (m3/kg dry air) = (2.83 x 10-3 + 4.56 x 10-3 H) T (K).

     Total enthalpy of an air-water mixture, H Y  - the total enthalpyof 1 kg of air plus its water vapor. Sensible heat of the air-

     water vapor mixture plus the latent heat.

    H Y  (kJ/kg dry air) = (1.005 + 1.88 H) (T ºC-0) + 2501.4

     where,Tref for both components = 0 ºC

    38

  • 8/19/2019 Liquid Gas Absorption Process

    39/89

    +   Humidity Chart39

  • 8/19/2019 Liquid Gas Absorption Process

    40/89

    +   Operating Line for Water CoolingTower

     Assumption:

    1. Process carried out adiabatic

    2. L is constant

    3. cL is constant at 4.187 x 103 J/kg. K

    Slope= LcL/G

    G = dry air flow, kg/s.m2.

    L = water flow, kg water/s.

    cL = heat capacity of water, assumed constant at 4187 kJ/kg.K.

    TL= temperature of water, ºC or K.

    Hy= enthalpy of air-water vapor mixture, J/kg air.

    = cs (T-T0) + H0 = (1.005 + 1.88H)103 (T-0) + 2.501x106H

    H = humidity of air, kg water/kg dry air – Humidity chart in Fig. 9.3-2pg. 568.

    40

    )()( 11   L L L y y   T T  Lc H  H G  

  • 8/19/2019 Liquid Gas Absorption Process

    41/89

    + 41Tower Height For Water-Cooling

     Tower height for water-cooling

    z = column height

    MB   = molecular weight of air

    a = m2 of interfacial area per m3 volume of packed section

    kG   = gas phase mass transfer coefficient ( kgmol/s. m2)

    kGa = volumetric coefficient in kgmol/s.m3 volume

    P = pressure in atm

     Slope of line from interface composition to point in equilibrium line

     

      2

    1

     Hy

     Hy y yi

     y

    G B  H  H 

    dH 

    aPk  M 

    G z

     Li

     y yi

     BG

     L

    T T 

     H  H 

    PaM k 

    ah

  • 8/19/2019 Liquid Gas Absorption Process

    42/89

    +   Temperature Enthalpy Diagram AndOperating Line For Water- Cooling

    42

  • 8/19/2019 Liquid Gas Absorption Process

    43/89

    +   Enthalpies of Saturated Air-Water VaporMixture (0C Base Temperature)

    43

  • 8/19/2019 Liquid Gas Absorption Process

    44/89

    +   Design of Water Cooling Tower UsingFilm Mass Transfer Coefficient

    1.   Draw equilibrium line ( Data from table 10.5-1) in H-versus-T plot

    2.   Draw operating line with slope LcL/G.

    3.   Determine Hyi-Hy by plot a line from P (TL, Hy) to M (Ti, Hyi). The slope of thisline –hLa/kGaMBP. Do for various P point between (TL1, Hy1) to (TL2, Hy2).

    4.   Use numerical or graphical integration to obtain the value of integration in

    height tower equation. For example using graphical method, plot 1/(Hyi-Hy)

     versus Hy.

    44

     

      2

    1

     Hy

     Hy y yi

     y

    G B   H  H 

    dH 

    aPk  M 

    G z

     Li

     y yi

     BG

     L

    T T 

     H  H 

    PaM k 

    ah

  • 8/19/2019 Liquid Gas Absorption Process

    45/89

    +   Design of Water Cooling Tower UsingOverall Mass Transfer Coefficient

      Often overall mass transfer coefficient KGa (kgmol/s.m3.Pa) is available. Then

    to determine tower height, z

    1.  Draw equilibrium line ( Data from table 10.5-1) in H-versus-T plot

    2.  Draw operating line with slope LcL/G.

    3.  Determine H*y-Hy by plot a line from P (TL, Hy) to R (TL, H*y). The slope of thisline –hLa/kGaMBP. Do for various P point between (TL1, Hy1) to (TL2, Hy2).

    4.  Use numerical or graphical integration to obtain the value of integration inheight tower equation. For example using graphical method, plot 1/(Hyi-Hy)

     versus Hy.

    45

     Li

     y yi

     BG

     L

    T T 

     H  H 

    PaM k 

    ah

     

      2

    1   *

     Hy

     Hy y y

     y

    G B   H  H 

    dH 

    aPK  M 

    G z

    46

  • 8/19/2019 Liquid Gas Absorption Process

    46/89

    +Example 10.5-1

     A packed countercurrent water-cooling tower using a gas flow

    rate of G = 1.356 kg dry air/s. m2 and a water flow rate of L =1.356 kg water/s. m2 to cool the water from TL2 = 43.3 ºC to TL1= 29.4 ºC. The entering air at 29.4 ºC has a wet bulb

    temperature of 23.9 ºC . The mass-transfer coefficient kG a is

    estimated as 1.207 x 10-7 kg mol/s.m3.Pa and hL a / kG aMBP as

    4.187 x 104

     J/kg.K . Calculate the height of packed tower z. Thetower operates at a pressure of 1.013 x 105 Pa.

    46

    47

  • 8/19/2019 Liquid Gas Absorption Process

    47/89

    + 47Solution Example 10.5-1

    Following the step outlined, the enthalpies from the saturated air-water vapor

    mixtures from Table 10.5-1 are plotted in Fig. 10.5-4.

    The inlet air at TG1  = 29.4 ºC has a wet bulb temperature of 23.9 ºC . The

    humidity from the humidity chart is H1 = 0.0165 kg H2O/kg dry air.

    Substituting into Eq.(9.3-8),

    Hy1 = cs (T-T0) + H0 = (1.005 + 1.88H) (T-T0) + H0

    Hy1 = (1.005 + 1.88 x 0.0165)103 (29.4-0) + 2.501 x 106 (0.0165).

    = 71.7 x 103 J/kg.

    The point Hy1 = 71.7 x 103 and TL1 = 29.4 ºC is plotted.

    Then substituting into Eq. (10.5-2) and solving,

    G(Hy2 –Hy1) = LcL (TL2 – TL1)

    1.356 (Hy2 – 71.7 x 103) = 1.356 (4.187 x 103) (43.3 – 29.4).

    Hy2 = 129.9 x 103 J/kg dry air.

    + 48

  • 8/19/2019 Liquid Gas Absorption Process

    48/89

    + 48Solution Example 10.5-1

    + 49

  • 8/19/2019 Liquid Gas Absorption Process

    49/89

    + 49

    + 50

  • 8/19/2019 Liquid Gas Absorption Process

    50/89

    + 50

    + Mi i V l f Ai Fl 51

  • 8/19/2019 Liquid Gas Absorption Process

    51/89

    +   Minimum Value of Air Flow  The air flow G is not fixed but must be set for the design of the cooling

    tower.

     For a minimum value of G, the operating line MN is drawn through the

    point Hy1 and TL1 with a slope that touches the equilibrium line at TL2,point N.

      If the equilibrium line is quite curved, line MN could become tangent tothe equilibrium line at a point farther down the equilibrium line thanpoint N.

     For the actual tower, a value of G greater than Gmin must be used. Often,a value of G equal to 1.3 to 1.5 times Gmin is used.

    51

    + D i f W t C li i H i ht f 52

  • 8/19/2019 Liquid Gas Absorption Process

    52/89

    +   Design of Water Cooling using Height of Transfer Unit

    Using Film Mass Transfer Coefficient

    Using Overall Mass Transfer Coefficient

    52

    2

    1

    2

    1

     Hy

     Hy y yi

     y

    G

    G B

    G

     Hy

     Hy y yi

     y

    G B

     H  H 

    dH  N 

    aPk  M 

    G H 

     H  H 

    dH 

    aPk  M 

    G z

    2

    1   *

    2

    1   *

     Hy

     Hy y y

     y

    OG

    G B

    OG

     Hy

     Hy

     y y

     y

    G B

     H  H 

    dH  N 

    aPK  M 

    G H 

     H  H 

    dH 

    aPK  M 

    G z

    z= height of transfer unit

    X number of transfer unit

    +

  • 8/19/2019 Liquid Gas Absorption Process

    53/89

    +

    53

    Gas-Liquid SeparationPart 03

    + 54

  • 8/19/2019 Liquid Gas Absorption Process

    54/89

    +Next Part

    Types of Separation Processes and Methods

    Equilibrium Relation Between Phases

    Single and Multiple Equilibrium Contact Stages

    Mass Transfer Between Phases

    Continuous Humidification Processes

     Absorption in Plate and Packed Tower Pressure Drop & Flooding in Packed Towers

     Absorption of Dilute Gas Mixtures in Packed Tower

     Absorption of Concentrated Gas Mixtures in

    Packed Tower Design of Packed Towers Using Transfer Units

    54

    + 55

  • 8/19/2019 Liquid Gas Absorption Process

    55/89

    +Equipment for Absorption & Distillation

    1. Plate (tray) tower

      Sieve tray

      Valve tray

      Bubble cap tray

    2. Structured packing

    3. Packed tower

      Raschig ring

      Lessing ring

      Berl saddle

      Pall ring

      etc

    55

    + 56

  • 8/19/2019 Liquid Gas Absorption Process

    56/89

    +Tray/Plate Tower

    56

    + 57

  • 8/19/2019 Liquid Gas Absorption Process

    57/89

    +Tray (Plate) Tower

     Sieve tray

       Valve tray

    57

    + 58

  • 8/19/2019 Liquid Gas Absorption Process

    58/89

    +Tray (Plate) Tower

     Bubble cap tray

    58

    + S d P ki59

  • 8/19/2019 Liquid Gas Absorption Process

    59/89

    +   Structured Packing59

    + S d P ki60

  • 8/19/2019 Liquid Gas Absorption Process

    60/89

    +   Structured Packing

     Corrugated structured packing

    60

    + 61

  • 8/19/2019 Liquid Gas Absorption Process

    61/89

    +Packed Tower

    + Packed Tower 62

  • 8/19/2019 Liquid Gas Absorption Process

    62/89

    +   Packed Tower

    + P D & Fl di i P k d T 63

  • 8/19/2019 Liquid Gas Absorption Process

    63/89

    +  Pressure Drop & Flooding in Packed Towers

     Flooding velocity – upper limit of gas flow rate

     At low gas velocities the liquid flow downward through the

    the packing, essentially uninfluenced by the upward gas flow

     As the gas flow rate increased at low gas velocities, the

    pressure drop is proportional to the flow rate to the 1.8

    power.

     At a gas flow rate called the loading point, the gas start to

    hinder the liquid downflow, and local accumulations or pools

    of liquid start to appear in the packing. The pressure drop of 

    the gas starts to rise at a faster rate

     As the gas flow arte is increased, the liquid holdup or

    accumulation increase. At the flooding point, the liquid no

    longer flow down through the packing and is blown out withthe gas.

     The optimum economic gas velocity is about 0ne-half or

    more of the flooding velocity

    + P D i R d P ki64

  • 8/19/2019 Liquid Gas Absorption Process

    64/89

    + Pressure Drop in Random Packing

    Note: this capacity parameters is not dimensionless and that onlythese unit (english) should be used

    + 65

  • 8/19/2019 Liquid Gas Absorption Process

    65/89

    + Pressure Drop in Structured Packing

    + Packing Factors (F ) for Random and 66

  • 8/19/2019 Liquid Gas Absorption Process

    66/89

    +   Packing Factors (Fp) for Random andStructured packing

    + Flooding Pressure Drops in Packed and 67

  • 8/19/2019 Liquid Gas Absorption Process

    67/89

    +   Flooding Pressure Drops in Packed andStructured Packing

     Can be used for packing factors from 9 up to 60. It predicts all the

    data for flooding within +- 15% and most for +-10%  for packing factor of 60 or higher, this equation is not valid and the

    pressure drop can be taken as 2 in H2O/ft( 166.7 mm H2O/m)

    ∆ P  flood  = 0.115 F 0.7

    + Procedure to Determine Limiting Flow Rate 68

  • 8/19/2019 Liquid Gas Absorption Process

    68/89

    +   Procedure to Determine Limiting Flow Rateand Tower Diameter

    1.   A suitable random packing or structured packing is selected, giving an Fp value

    2.   A suitable GL/GG is selected along with the total gas flow rate

    3.   The pressure drop at flooding is calculated

    4.   The flow parameter is calculated, and using the pressure drop at flooding and either fig 10.6-5 or10.6-6, the capacity parameter is read off the plot

    5.   Using the capacity parameters, the GG is obtained, which is the maximum at flooding

    6.   Using a suitable % of the flooding value of GG for design, a new GG and GL are obtained. Thepressure drop can also be obtained from the plot.

    7.   Knowing the total gas flow rate and GG, the tower cross sectional are and ID can be calculated.

    + 69

  • 8/19/2019 Liquid Gas Absorption Process

    69/89

    +Example 10.6-1

     Ammonia is being absorbed in a tower using pure water at 25C

    and 1 atm abs pressure. The feed rate is 1440 lbm/h (653 kg/h)and contains 3 mol% ammonia in air. The process design

    specifies a liquid to gas mass flaw rate ration GL/GG of 2/1 and

    the use of 1-in metal Pall rings.

    a)   calculate the pressure drop n the packing and gas mass

     velocity at flooding. Using 50% of the flooding velocity,calculate the pressure drop, gas and liquid flows and tower

    diameter.

    b)   Repeat(a) above but use Mellapak 250Y structured

    packing.

    + Design of Plate Absorption Tower70

  • 8/19/2019 Liquid Gas Absorption Process

    70/89

    +   Design of Plate Absorption Tower

     Operating line assumption

      solute A diffusing through a stagnant gas B

      the moles of pure air and pure water remain constant throughout the

    entire tower

     similar equation to countercurrent stages process

      Overall material balance

      Balance around the dashed-lined box

      If x and y are very dilute, (1-x) and (1-y)can be taken as 1.0 and the operating lineis straight with a slope L’/V’

    + N b f T71

  • 8/19/2019 Liquid Gas Absorption Process

    71/89

    + Number of Tray

     Graphical determination of the number of trays

    + 72

  • 8/19/2019 Liquid Gas Absorption Process

    72/89

    +Example 10.6-2

     A tray tower is to be designed to absorb SO2 from an air stream

    by using pure water at 293 K. the entering gas contains 20 mol% SO2 and that leaving 2 mol % at the total pressure of 101.3

    kPa . The inert air flow rate is 150 kg air/h.m2 and the entering

     water flow rate is 6000 kg water/h.m2. Assuming an overall tray

    efficiency of 25 %, how many theoretical trays and actual trays

    are needed? Assume that the tower operate at 293 K.

    +Design of Packed Tower for Absorption73

  • 8/19/2019 Liquid Gas Absorption Process

    73/89

    +Design of Packed Tower for Absorption

     solute A diffusing through a

    stagnant gas B    Overall material balance

     Balance around the dashed line box

      give a curve line on yx plot

      If x and y are very dilute, (1-x) and (1-y)can be taken as 1.0 and the operating lineis straight with a slope L’/V’

    + L ti f O ti Li74

  • 8/19/2019 Liquid Gas Absorption Process

    74/89

    + Location of Operating Line

    + 75

  • 8/19/2019 Liquid Gas Absorption Process

    75/89

    +Limiting and Optimum L’/V’ Ratios

      In absorption, V1, y1, y2, x2 is always known.

    Only amount of the entering liquid flow (L2

     or

    L) is open to choice.

      L’min  – when operating line has a minimum

    slope and touch (becoming tangent) to the

    equilibrium line.The value of x1 is x1max.

      To solve L’min, insert the value y1 and x1max in

    operating line equation.

      The choice of optimum L’

    /V’

    ratio dependon an economic balance

      too high ratio value require a large liquid flow

    and a large diameter tower.

      too small value give small liquid flow result in a

    high tower,which is also costly.

      An optimum liquid flow rate can be taken as

    1.2-1.5 times L’ min.

      For stripping, optimum gas flow rate is takenat about 1.5 timesV’ min.

    + Analytical Equations for Theoretical76

  • 8/19/2019 Liquid Gas Absorption Process

    76/89

    +  Analytical Equations for TheoreticalNumber of Steps or Trays

      Absorption

    Procedure (for varying A):

    1. Calculate m1 and m2

    2. Calculate A1 and A2

    3. Calculate geometric average area, A ave.= /A1A2

    4. Used m2 in equation

      Stripping

    Procedure (for varying A):

    1. Calculate m1 and m2

    2. Calculate A1 and A2

    3. Calculate geometric average area, A ave.= /A1A2

    4. Used m1 in equation

     N  = In

      y1 −mx2 y2 − mx2

    1−   1 A

          

      +   1

     A  

     InA N  =

     In   ( x2 −  y1  / m x1 − y1  /  m

    ) 1− A( ) +  A

     In(1 /  A)

    + 77

  • 8/19/2019 Liquid Gas Absorption Process

    77/89

    +Example 10.6-3

     A tray tower is absorbing ethyl alcohol from an inert gas stream

    using pure water at 303K and 101.3 kPa. The inlet gas streamflow rate is 100 kmol/h and it contains 2.2 mol% alcohol. It is

    desired to recover 90% of the alcohol. The equilibrium

    relationship is y=0.68x for this dilute stream. Using 1.5 times

    the minimum liquid flow rate. determine the number of trays

    needed. Do this graphically and also using the analytical

    equations.

    + Film and Overall Mass Transfer 78

  • 8/19/2019 Liquid Gas Absorption Process

    78/89

    +   Film and Overall Mass TransferCoefficients in Packed Towers

     Defining a as interfacial area in m2 per m3 volume of packed

    section, the volume of packing in a height dz m is S dz, where S ism2 cross sectional area of tower. Also

    dA = aS dz

     The volumetric film and overall mass transfer coefficient are then

    defined as

    +Design Method for Packed Tower using Mass 79

  • 8/19/2019 Liquid Gas Absorption Process

    79/89

    +Design Method for Packed Tower using MassTransfer Coefficient

     Absorption of A from stagnant B and the moles of A leaving V equal

    to the moles entering L (i.e d( Vy)= d(Lx)

     Using film coefficient

     Using overall coefficient

     The equilibrium and operating

    lines are usually curved, and k’xa,

    k’ya, K’ya and K’xa vary somewhat with total gas and liquid flows

     Then, these equations must be

    integrated numerically or

    graphically

    + Simplified Design Method for Absorption of 80

  • 8/19/2019 Liquid Gas Absorption Process

    80/89

    + Simplified Design Method for Absorption of Dilute Gas Mixture in Packed Towers

     Assumptions

     Concentration can be considered dilute when mole fraction y or xare less than about 0.10 (10%).

     Operating line is straight

    L = (L1+L2)/2

     V = (V1+V2)/2

     M  x M  y

     M i x M i y

     x xazK  x xS 

     L y yazK  y y

     x xazk  x xS 

     L y yazk  y y

    )(')()(')(

    )(')()(')(

    *

    21

    *

    21

    2121

    + Simplified Design Method for Absorption of 81

  • 8/19/2019 Liquid Gas Absorption Process

    81/89

    + Simplified Design Method for Absorption of Dilute Gas Mixture in Packed Towers

    1.  Plot operating line and equilibrium line

    2.  Determine interface composition yi1and xi1 at point y1, x1. To get this , findintersection point by draw a line toequilibrium line with slope

    Then determine interface compositionyi2, xi2   at point y2,x2   using the samemethod. Do trial and error if necessary.

    If overall mass transfer coefficient use,find appropriate y1

    *, y2*, x1

    * or x2*.

    3.  Calculate related (y-yi)M  or (y-y*)M   for

    gas coefficient and (xi-x)M or (x*-x)M.

    4.  Calculate the column height byappropriate simplified equation.

    )1 /('

    )1 /('

    1

    1

     yak 

     xak slope

     y

     x

    +E l 10 6 4

    82

  • 8/19/2019 Liquid Gas Absorption Process

    82/89

    Example 10.6-4

     Acetone is being absorbed by water in a packed tower having

    a cross sectional area of 0.186 m2 at 293 K and 101.32 (1 atm).The inlet air contains 2.6 mol % acetone and outlet 0.5%. The

    gas flow is 13.65 kg mol inert air/h. The pure water inlet flow is

    45.36 kg mol water/h. Film coefficients for the given flows in

    the tower are k’y a = 3.78 x 10-2 kg mol/s.m3.mol frac. And k’x a

    = 6.16 x10-2 kg mol/s.m3.mol frac. Equilibrium data are given in

     Appendix A.3.

    (a) Calculate the tower height using k’y a.

    (b) Repeat using k’x a.

    (c) Calculate K’y a, and the tower height.

    +   Design Method for Absorption of  83

  • 8/19/2019 Liquid Gas Absorption Process

    83/89

    g p

    Concentrated Mixtures in Packed Tower

     The design equation must be integrated graphically or

    numerically.

    1

    2*

    *

    1

    2*

    *

    1

    2

    1

    2

    ))(1()1(

    '))(1(

    )1(

    '

    ))(1()1(

    '))(1(

    )1(

    '

     x

     x

     M 

     x

     y

     y

     M 

     y

     x

     x

    i

    iM 

     x

     y

     y

    i

    iM 

     y

     x x x x

    aS K 

     Ldx z

     y y y y

    aS K 

    Vdy z

     x x x x

    aS k 

     Ldx z

     y y y y

    aS k 

    Vdy z

    +   Design Method for Absorption of  84

  • 8/19/2019 Liquid Gas Absorption Process

    84/89

    Concentrated Mixtures in Packed Tower

    1.   Plot operating line and equilibrium line

    2.   Calculate value k’ya and k’xa from empirical equation given

    3.   Use trial and error to determine interface composition at several

    point between P1(y1,x1) and P2(y2,x2) by draw a line with following

    slope from the point to intersect to equilibrium line.

    4.   Using the value yi and xi, calculate the value f(y) as follows. Then

    plot f(y) vs. y. Calculate numerically or graphically area under

    curve to insert into design equation for height.

    iM  y

    iM  x

     yak 

     xak slope

    )1 /('

    )1 /('

    ))(1()1(

    '

    )(

    i

    iM 

     y  y y y yaS k 

    V  y f 

    +E l 10 7 1

    85

  • 8/19/2019 Liquid Gas Absorption Process

    85/89

    Example 10.7-1

     A tower packed with 25.4 mm ceramic rings is to be designed

    to absorb SO2 from air by using pure water at 293 K and 1.013 x105 Pa abs pressure. The entering gas contains 20 mol % SO2and that leaving 2mol %. The inert air flow is 6.53 x10-4 kg mol

    air /s. the tower cross-sectional area is 0.0929 m2. For dilute SO2,the film mass transfer coefficients at 293 K are for 25.4 mm

    rings,

    k’ya = 0.0594 Gy0.7 Gx

    0.25 and k’xa = 0.152GX0.82.

     where k’ya & k’xa is kg mol/s.m3. mol frac., and Gx ,Gy are kg

    total liquid or gas, respectively, per sec per m2

    tower crosssection. Calculate the tower height.

  • 8/19/2019 Liquid Gas Absorption Process

    86/89

    +   Design Of Packed Towers Using Transfer Units: 87

  • 8/19/2019 Liquid Gas Absorption Process

    87/89

    Design for Dilute Solutions

     The terms (1-y)iM/(1-y), (1-x)iM/(1-x), (1-y)*M/(1-y) and (1-x)*M/(1-x)

    are close to one, and if the operating lines and equilibrium line arestraight and dilute,

     z  = H G N G =  H Gdy

     y− yi y2 y1∫    = H G ×   y1 − y2

    ( y − yi ) M 

     z  = H OG N OG =  H OG dy y− y* y2 y1

    ∫    = H G ×   y1 − y2( y − y* ) M 

     z  = H  L N  L =  H  Ldx

     xi − x x2 x1∫    = H  L ×   x1 − x2

    ( xi − x) M 

     z  = H OL N OL =  H OLdx

     x* − x x2 x1

    ∫    = H OL ×

      x1 − x2( x* − x) M 

    +   Design Of Packed Towers Using Transfer Units: 88

  • 8/19/2019 Liquid Gas Absorption Process

    88/89

    Design for Dilute Solutions

      Using the equilibrium line equation y = mx and letting A = L/mV, the number

    of transfer unit for absorption and stripping are

     When the operating and equilibrium lines are straight and not parallel, NOGis related to the number of theoretical trays N by equation:

      The height of theoretical trays (HETP)

     N OG =  1

    (1−1 /  A) In[(1−1 /  A)( y1 −mx2

     y2 −mx2) +1 /  A]

     N OL =  1

    (1− A) In[(1− A)( x2 − y1 /  m

     x1 − y1 /  m) + A]

     HETP  = H OG In(1 /  A)

    (1− A) /  AThen, z  = N  x HETP

     N OG =  N   In A

    (1−1 /  A)

    +E l 10 6 5

    89

  • 8/19/2019 Liquid Gas Absorption Process

    89/89

    Example 10.6-5

     Acetone is being absorbed by water in a packed tower having

    a cross sectional area of 0.186 m2 at 293 K and 101.32 (1 atm).The inlet air contains 2.6 mol % acetone and outlet 0.5%. The

    gas flow is 13.65 kg mol inert air/h. The pure water inlet flow is

    45.36 kg mol water/h. Film coefficients for the given flows in

    the tower are k’y a = 3.78 x 10-2 kg mol/s.m3.mol frac. And k’x a

    = 6.16 x10-2 kg mol/s.m3.mol frac. Equilibrium data are given in

     Appendix A.3.

    a)   Use HG and NG to calculate tower height

    b)   Use HOG and NOG to calculate tower height

    c)   Use E 10.6-52 to calculate NOG and tower height

    d)   Using analytical equations, calculate HETP, theoreticalsteps N and tower height.