35
Linkage in Linkage in Selected Samples Selected Samples Boulder Methodology Workshop Boulder Methodology Workshop 2005 2005 Michael C. Neale Michael C. Neale Virginia Institute for Virginia Institute for Psychiatric & Behavioral Psychiatric & Behavioral Genetics Genetics

Linkage in Selected Samples

  • Upload
    dugan

  • View
    15

  • Download
    0

Embed Size (px)

DESCRIPTION

Linkage in Selected Samples. Boulder Methodology Workshop 2005 Michael C. Neale Virginia Institute for Psychiatric & Behavioral Genetics. Basic Genetic Model. Pihat = p(IBD=2) + .5 p(IBD=1). 1. 1. 1. 1. 1. 1. 1. Pihat. E1. F1. Q1. Q2. F2. E2. e. f. q. q. f. e. P1. P2. - PowerPoint PPT Presentation

Citation preview

Page 1: Linkage in Selected Samples

Linkage in Linkage in Selected SamplesSelected Samples

Boulder Methodology WorkshopBoulder Methodology Workshop20052005

Michael C. NealeMichael C. NealeVirginia Institute for Virginia Institute for Psychiatric & Behavioral Psychiatric & Behavioral

GeneticsGenetics

Page 2: Linkage in Selected Samples

Basic Genetic ModelBasic Genetic Model

Q: QTL Additive Genetic F: Family Environment E: Random Environment3 estimated parameters: q, f and e Every sibship may have different model

Pihat = p(IBD=2) + .5 p(IBD=1)

F1

P1

F2

P2

11

1

1

Q1

1

Q2

1

E2

1

E1

Pihat

e f q q f e

Page 3: Linkage in Selected Samples

Mixture distribution modelMixture distribution modelEach sib pair i has different set of WEIGHTS

p(IBD=2) x P(LDL1 & LDL2 | rQ = 1 )

LDL1 LDL2

Q1 F1 E1 Q2F2E2

T1

q f e qfe

1.00

rQ

1.00

1.00

1.00 1.001.001.00

m mLDL1 LDL2

Q1 F1 E1 Q2F2E2

T1

q f e qfe

1.00

rQ

1.00

1.00

1.00 1.001.001.00

m mLDL1 LDL2

Q1 F1 E1 Q2F2E2

T1

q f e qfe

1.00

rQ

1.00

1.00

1.00 1.001.001.00

m m

p(IBD=1) x P(LDL1 & LDL2 | rQ = .5 )p(IBD=0) x P(LDL1 & LDL2 | rQ = 0 )

Total likelihood is sum of weighted likelihoods

rQ=1 rQ=.5 rQ=.0

weightj x Likelihood under model j

Page 4: Linkage in Selected Samples

QTL's are factorsQTL's are factors

• Multiple QTL models possible, at different Multiple QTL models possible, at different places on genomeplaces on genome

• A big QTL will introduce non-normalityA big QTL will introduce non-normality• Introduce mixture of means as well as Introduce mixture of means as well as

covariances (27ish component mixture)covariances (27ish component mixture)

• Mixture distribution gets nasty for large Mixture distribution gets nasty for large sibshipssibships

Page 5: Linkage in Selected Samples

Biometrical Genetic ModelBiometrical Genetic Model

0

d +a-a

Genotype means

AA

Aa

aa

m + a

m + d

m – a

Courtesy Pak Sham, Boulder 2003

Page 6: Linkage in Selected Samples

Mixture of Normal Distributions Mixture of Normal Distributions

Equal variances, Different means and different proportions according to allele frequencies

Aa AAaa

Page 7: Linkage in Selected Samples

Implementing the ModelImplementing the Model

• Estimate QTL allele frequency pEstimate QTL allele frequency p

• Estimate distance between homozygotes 2aEstimate distance between homozygotes 2a

• Compute QTL additive genetic variance asCompute QTL additive genetic variance as• 2pq[a+d(q-p)]2pq[a+d(q-p)]22

• Compute likelihood conditional on Compute likelihood conditional on • IBD statusIBD status• QTL allele configuration of sib pair (IBS)QTL allele configuration of sib pair (IBS)

Page 8: Linkage in Selected Samples

27 Component Mixture27 Component Mixture

AA

Aa

aa

AA Aa aa

Sib1

Sib 2

Page 9: Linkage in Selected Samples

19 Possible Component 19 Possible Component MixtureMixture

AA

Aa

aa

AA Aa aa

Sib1

Sib 2

Page 10: Linkage in Selected Samples

Results of QTL SimulationResults of QTL Simulation3 Component vs 19 Component

200 simulations of 600 sib pairs each GASP http://www.nhgri.nih.gov/DIR/IDRB/GASP/

Parameter True 3 Component

19 Component

Q 0.4 0.414 0.395

A 0.08 0.02 0.02

E 0.6 0.56 0.58

Test Q=0 (Chisq) --- 13.98 15.88

Page 11: Linkage in Selected Samples

Information in selected samplesInformation in selected samples

• Deviation of pihat from .5Deviation of pihat from .5• Concordant high pairs > .5Concordant high pairs > .5• Concordant low pairs > .5Concordant low pairs > .5• Discordant pairs < .5Discordant pairs < .5

• How come?How come?

Concordant or discordant sib pairs

Page 12: Linkage in Selected Samples

Pihat deviates > .5 in ASPPihat deviates > .5 in ASP

tIBD=2IBD=1IBD=0

t

Larger proportion of IBD=2 pairs

Sib 2

Sib 1

Page 13: Linkage in Selected Samples

Pihat deviates <.5 in DSP’sPihat deviates <.5 in DSP’s

tIBD=2IBD=1IBD=0

t

Larger proportion of IBD=0 pairs

Sib 1

Sib 2

Page 14: Linkage in Selected Samples

Sibship informativeness : sib pairsSibship informativeness : sib pairs

-4 -3 -2 -1 0 1 2 3 4Sib 1 trait -4-3

-2-10

12 3 4

Sib 2 trait

0

0.5

1

1.5

2

Sibship NCP

-4 -3 -2 -1 0 1 2 3 4Sib 1 trait -4

-3-2

-10

12

34

Sib 2 trait

0

0.5

1

1.5

2

Sibship NCP

-4-3

-2-1

01

23

4Sib 1 trait

-4-3

-2-1

01

23

4

Sib 2 trait

0

0.5

1

1.5

2

Sibship NCP

unequal allelefrequencies

dominance

rarerecessive

Courtesy Shaun Purcell, Boulder Workshop 03/03

Page 15: Linkage in Selected Samples

Two sources of informationTwo sources of information

• Phenotypic similarityPhenotypic similarity• IBD 2 > IBD 1 > IBD 0IBD 2 > IBD 1 > IBD 0• Even present in selected samplesEven present in selected samples

• Deviation of pihat from .5Deviation of pihat from .5• Concordant high pairs > .5Concordant high pairs > .5• Concordant low pairs > .5Concordant low pairs > .5• Discordant pairs < .5Discordant pairs < .5

• These sources are independentThese sources are independent

Forrest & Feingold 2000

Page 16: Linkage in Selected Samples

Implementing F&FImplementing F&F

• Simplest form test mean pihat = .5Simplest form test mean pihat = .5

• Predict amount of pihat deviationPredict amount of pihat deviation

• Expected pihat for region of sib pair Expected pihat for region of sib pair scoresscores

• Expected pihat for observed scoresExpected pihat for observed scores

• Use multiple groups in MxUse multiple groups in Mx

Page 17: Linkage in Selected Samples

Predicting Expected Pihat deviationPredicting Expected Pihat deviation

tIBD=2IBD=1IBD=0

t

+Sib 2

Sib 1

Page 18: Linkage in Selected Samples

Expected Pihats: TheoryExpected Pihats: Theory• IBD probability conditional on phenotypic scores IBD probability conditional on phenotypic scores

xx11,x,x22

• E(pihat) = p(IBD=2|(xE(pihat) = p(IBD=2|(x11,x,x22))+.5p(IBD=1|(x))+.5p(IBD=1|(x11,x,x22))))

• p(IBD=2|(xp(IBD=2|(x11,x,x22)) = )) = IBD=2IBD=2(x(x11,x,x22) /) /• [[IBD=2IBD=2(x(x11,x,x22) + 2) + 2IBD=1IBD=1(x(x11,x,x22) + ) + IBD=0IBD=0(x(x11,x,x22))]]

p(IBD=2 |(x|(x11,x,x22)) )+p(IBD=1 |(x|(x11,x,x22)) )+p(IBD=0 |(x|(x11,x,x22)) )

Page 19: Linkage in Selected Samples

Expected PihatsExpected Pihats• Compute Expected Pihats with pdfnorCompute Expected Pihats with pdfnor

• \pdfnor\pdfnor(X_M_C(X_M_C))• Observed scores X (row vector 1 x nvar)Observed scores X (row vector 1 x nvar)• Means M (row vector)Means M (row vector)• Covariance matrix C (nvar x nvar)Covariance matrix C (nvar x nvar)

Page 20: Linkage in Selected Samples

How to measure covariance?How to measure covariance?

tIBD=2IBD=1IBD=0

t

+

Page 21: Linkage in Selected Samples

AscertainmentAscertainment• Critical to many QTL analysesCritical to many QTL analyses

• DeliberateDeliberate• Study designStudy design

• AccidentalAccidental• Volunteer biasVolunteer bias• Subjects dyingSubjects dying

Page 22: Linkage in Selected Samples

Exploiting likelihoodExploiting likelihood• Correction not always necessaryCorrection not always necessary

• ML MCAR/MARML MCAR/MAR

Simulate bivariate normal data X,YSimulate bivariate normal data X,Y Sigma = 1 .5Sigma = 1 .5 .5 1.5 1 Mu = 0, 0Mu = 0, 0

Make some variables missingMake some variables missing Generate independent random normal variable, Z, if Z>0 then Y missingGenerate independent random normal variable, Z, if Z>0 then Y missing If X>0 then Y missing If X>0 then Y missing If Y>0 then Y missingIf Y>0 then Y missing

Estimate elements of Sigma & MuEstimate elements of Sigma & Mu Constrain elements to population values 1,.5, 0 etcConstrain elements to population values 1,.5, 0 etc Compare fitCompare fit Ideally, repeat multiple times and see if expected 'null' distribution emergesIdeally, repeat multiple times and see if expected 'null' distribution emerges

Page 23: Linkage in Selected Samples

ResultsResults of simulationof simulationMissingness mean x mean y var x cov xy var y LR

ChisqMCAR (rand)

MLE -0.0116 -0.1 1.0505 0.4998 0.8769 6.492

sample -0.0116 -0.0919 1.0505 0.8839

MAR (on x) MLE 0.0048 0.0998 1.0084 0.4481 1.1025 5.768

sample 0.0014 0.4437 1.0084 0.9762

NMAR (on y) MLE -0.0204 0.6805 0.9996 0.1356 0.2894 227.262

sample 0.0448 0.7373 0.9996 0.2851

Population covariance 1 .5 1 Means 0, 0Population covariance 1 .5 1 Means 0, 0

Page 24: Linkage in Selected Samples

Weighted likelihood Weighted likelihood approachapproach

• Usual nice properties of ML remainUsual nice properties of ML remain

• FlexibleFlexible

• Simple principle Simple principle • Consideration of possible outcomesConsideration of possible outcomes• Re-normalizationRe-normalization

• May be difficult to computeMay be difficult to compute

Page 25: Linkage in Selected Samples

Example: Two Coin TossExample: Two Coin Toss3 outcomes

HH HT/TH TTOutcome

0

0.5

1

1.5

2

2.5 Frequency

Probability i = freq i / sum (freqs)

Page 26: Linkage in Selected Samples

Example: Two Coin Example: Two Coin TossToss

3 outcomes

HH HT/TH TTOutcome

0

0.5

1

1.5

2

2.5 Frequency

Probability i = freq i / sum (freqs)

Page 27: Linkage in Selected Samples

Non-random ascertainmentNon-random ascertainment• Probability of observing TT globallyProbability of observing TT globally

• 1 outcome from 4 = 1/41 outcome from 4 = 1/4

• Probability of observing TT if HH is not Probability of observing TT if HH is not ascertainedascertained• 1 outcome from 3 = 1/31 outcome from 3 = 1/3

• or 1/4 divided by ‘or 1/4 divided by ‘Ascertainment Ascertainment CorrectionCorrection' of 3/4 = 1/3' of 3/4 = 1/3

Example

Page 28: Linkage in Selected Samples

Correcting for ascertainmentCorrecting for ascertainmentUnivariate case; only subjects > t ascertained

0 1 2 3 4-1-2-3-40

0.1

0.2

0.3

0.4

0.5

xi

likelihood

t

Page 29: Linkage in Selected Samples

AscertainmentAscertainment CorrectionCorrection Be / All you can beBe / All you can be

tx (x) dx

(x)

Page 30: Linkage in Selected Samples

Affected Sib PairsAffected Sib Pairs

tx

ty

1

0

0 1

tx ty(x,y) dy dx

Page 31: Linkage in Selected Samples

Ascertainment Corrections for Ascertainment Corrections for Sib PairsSib Pairs

tx ty(x,y) dy dx ASP ++

tx ty(x,y) dy dx

-DSP +-

tx ty

(x,y) dy dx-

CUSP +--

Page 32: Linkage in Selected Samples

Correcting for ascertainmentCorrecting for ascertainment

• Multivariate selection: multiple integrals Multivariate selection: multiple integrals • double integral for ASPdouble integral for ASP• four double integrals for EDACfour double integrals for EDAC

• Use (or extend) weight formulaUse (or extend) weight formula

• Precompute in a calculation groupPrecompute in a calculation group• unless they vary by subjectunless they vary by subject

Linkage studies

Page 33: Linkage in Selected Samples

Initial Results of SimulationsInitial Results of Simulations Null ModelNull Model

50% heritability50% heritability No QTLNo QTL Used to generate Used to generate

null distributionnull distribution .05 empirical .05 empirical

significance level at significance level at approximately 91 approximately 91 Chi-squareChi-square

QTL SimulationsQTL Simulations 37.5% heritability37.5% heritability 12.5% QTL12.5% QTL Mx: 879 significant Mx: 879 significant

at nominal .05 p-at nominal .05 p-value value

Merlin: 556 Merlin: 556 significant at significant at nominal .05 p-value nominal .05 p-value

Some apparent Some apparent increase in powerincrease in power

Page 34: Linkage in Selected Samples

1.00

F

S1 S2 S3 Sm

l1 l2 l3lm

e1 e2 e3 e4

Measurement is KEYMeasurement is KEYNeed continuous interval scales

Most complex traits not measured this way

Use latent trait instead

Factor model equivalent toItem response theory model

Can allow for non-normal Factors

Measurement of multiple Sx

Page 35: Linkage in Selected Samples

ConclusionConclusion Quantifying QTL variation in selected Quantifying QTL variation in selected

samples can be donesamples can be done

Can be computationally challengingCan be computationally challenging

May provide more powerMay provide more power

Permits multivariate analysis of correlated Permits multivariate analysis of correlated traitstraits