5
Linear Mathematics & Matrices, pt.1 Dr. H. Schellinx Linear equations A bit of terminology… In order to be able to apply mathematical techniques to problem solving we need to translate problems into mathematical language, which uses algebraic expressions. An algebraic expression is a combination of variables and numbers by means of the usual algebraic operations of addition, multiplication, exponentiation and their inverses. Variables (also called the unknowns) are letters (like x or y or t or v…) that represent some unknown quantity. Addition symbols chop algebraic expressions into parts that we call terms. Example a + b 7 x ( = a + b + 7 x " # $ % & ' ) is an algebraic expression. It is a combination of three terms: a , b and 7 x . The variables are a, b and x. A term without variables is called a constant. Two algebraic expressions that are joined by an equality sign (=) form an (algebraic) equation. Example t 2 + v 3 = z 2 is an equation. It consists of the two algebraic expressions t 2 + v 3 and z 2 . The algebraic expression to the left of the equality sign is a term, which is the square root of yet another algebraic expression ( t 2 + v 3 ), which in turn is a combination of the terms t 2 and v 3 . The algebraic expression to the right of the equality sign is a combination of the terms z and –2. The second of these terms, –2, is a constant. Linear equations… A linear equation is an algebraic equation in which each term is either a constant (a number like 3, or –6.7, or ½, or !! , or , or 7 , or … etc. …) or the product of a number and (the first power of) a single variable (like –5x, or 1020z, or ½a, or ! ! , or 177 , or … etc. ….)

Linear equations (With One Unknown)

  • Upload
    harsman

  • View
    216

  • Download
    1

Embed Size (px)

DESCRIPTION

Introduction to Linear Algebra, part 1

Citation preview

Page 1: Linear equations (With One Unknown)

 

Linear Mathematics & Matrices, pt.1 Dr. H. Schellinx

     Linear  equations      A  bit  of  terminology…    In  order  to  be  able  to  apply  mathematical  techniques  to  problem  solving  we  need  to  translate  problems  into  mathematical  language,  which  uses  algebraic  expressions.    An  algebraic  expression  is  a  combination  of  variables  and  numbers  by  means  of  the  usual  algebraic  operations  of  addition,  multiplication,  exponentiation  and  their  inverses.  Variables  (also  called  the  unknowns)  are  letters  (like  x  or  y  or  t  or  v…)  that  represent  some  unknown  quantity.  Addition  symbols  chop  algebraic  expressions  into  parts  that  we  call  terms.    

Example  -­‐  a+ b − 7x  (= a+ b + −

7x

"

#$

%

&' )  is  an  algebraic  expression.  It  is  a  combination  

of  three  terms:   a ,   b  and  − 7x.  The  variables  are  a,  b  and  x.  

 A  term  without  variables  is  called  a  constant.    Two  algebraic  expressions  that  are  joined  by  an  equality  sign  (=)  form  an  (algebraic)  equation.    

Example  -­‐   t2 + v3= z− 2  is  an  equation.  It  consists  of  the  two  algebraic  expressions

t2 + v3and   z− 2 .    The  algebraic  expression  to  the  left  of  the  equality  sign  is  a  term,  

which  is  the  square  root  of  yet  another  algebraic  expression  ( t2 + v3),  which  in  turn  is  a  

combination  of  the  terms   t2  and   v3.  The  algebraic  expression  to  the  right  of  the  equality  

sign  is  a  combination  of  the  terms  z  and  –2.  The  second  of  these  terms,  –2,  is  a  constant.      Linear  equations…    A  linear  equation  is  an  algebraic  equation  in  which  each  term  is  either  a  constant  (a  number  like  3,  or  –6.7,  or  ½,  or  𝑒!!,  or  𝜋,  or   7,  or  …  etc.  …)  or  the  product  of  a  number  and  (the  first  power  of)  a  single  variable  (like  –5x,  or  1020z,  or  ½a,  or  !

!𝜋𝑏,  or  𝑤 177,  or  …  etc.  ….)  

     

Page 2: Linear equations (With One Unknown)

 

Linear Mathematics & Matrices, pt.1 Dr. H. Schellinx

 Example  -­‐  The  following  are  examples  of  linear  equations:       3x + 5y+ z = 6  

−7x + 72y = z  

x 7 + 29y = 17    The  following  are  examples  of  algebraic  equations  that  are  not  linear  equations:    9 = x2 + y2  19− x.y =123  y =17 2x +w  

   Exercise  1  -­‐  Explain  why  the  first  three  examples  are  linear  equations,  and  why  the  last  three  examples  are  not.  For  each  of  the  equations,  indicate  which  are  the  constants.    

 A  solution  of  an  algebraic  equation  consists  in  a  series  of  numbers  that,  when  substituted  for  the  variables  in  the  equation,  give  rise  to  a  true  statement:  the  result  of  the  substitution  is  an  identity.  To  solve  an  equation  means:  find  all  possible  solutions,  i.e.  find  all  the  numbers  that,  when  substituted  for  the  variables  in  the  equation,  give  rise  to  a  true  statement.    Example    -­‐  The  ordered  pair  or  tuple  (x,y)  =  (1,1)  [i.e.  the  numbers  x  =  1  and  y  =  1]  is  a  solution  of  the  linear  equation  x  +  4y  =  5.  But  it  is  not  the  only  solution.  For  example,  also  the  tuples  (5,0)  and  (0,  1.25)  are  solutions.    

 Exercise  2  -­‐  Can  you  find  all  solutions  (we  will  often  say:  the  solution)  of  the  linear  equation  x  +  4y  =  5?    Exercise  3  -­‐  For  the  following  algebraic  expressions:  find  the  terms,  the  variables  and  the  constants.  If  the  expression  is  an  equation,  is  it  a  linear  equation?  If  it  is  not,  explain  why.  Can  you  solve  the  equations?    

a.    33𝑥 + 42 𝑦    

b.        

c.      

d.        

e.    f.     𝑥 − 3! = 𝑦 + 1  

g.      

 

Exercise  4  -­‐  Is   x −1( )2 = 4  a  linear  equation?  Can  you  solve  it?    

110

x + z2

16+ 7

a+ 3b=1

8p+ sin(π ) = 0a− b

cos(x)−3y = t2

Page 3: Linear equations (With One Unknown)

 

Linear Mathematics & Matrices, pt.1 Dr. H. Schellinx

   A  linear  equation  with  n  different  variables,  say   x1, x2, x3,..., xn ,  can  always  be  written  in  the  form   a1x1 + a2x2 + a3x3 +...+ anxn = c ,  where  the  ai  are  numbers;  they  are  called  the  coefficients  of  the  equation.  Also  c  is  a  number.  It  is  the  constant  of  the  equation.    A  linear  equation  of  the  form   is  said  to  be  in  standard  form.      

Fact:  Every  linear  equation  can  be  transformed  into  an  equivalent  equation  in  standard  form.  

 Example  -­‐  The  equation   7x −8+ 2y+3z = y+ x − 2  is  a  linear  equation  with  3  unknowns  (x,  y  and  z),  but  it  is  not  in  standard  form.  We  transform  it  step  by  step,  into  an  equivalent  equation  that  is  in  standard  form,  as  follows:           7x −8+ 2y+3z = y+ x − 2         ⇔ (7x − x)−8+ 2y+3z = y− 2         ⇔ (7x − x)−8+ (2y− y)+3z = −2         ⇔ (7x − x)+ (2y− y)+3z = −2+8         ⇔ 6x + y+3z = 6  5x −3y = z+w− 6 is  a  linear  equation  with  4  unknowns  (x,y,w  and  z).  It  has  the  equivalent  standard  form   5x −3y−w− z = −6 .  −3y = y+ 2x − 7  is  a  linear  equation  with  2  unknowns  (x  and  y).  It  has  the  equivalent  standard  form   2x + 4y = 7 .  NB.:  We  will  always  put  the  unknowns  in  a  standard  form  in  alphabetical  order,  and,  for  example,  not  write  b  +  2a  =  14,  but:  2a  +  b  =  14.    

 Exercise  5  -­‐  Write  each  of  the  following  linear  equations  in  standard  form.  Then  solve  the  equations.    

a.  3(b+ 2)− 2 = −(5+ b)+ b

   b.8x +3(2− x) = 5x + 6

     

c.  35x + 0.7 = x − 4

5      

d.  2x − 6 = −2x + 4(x − 2)    

e.   0.06(a+ 200)+ 0.1a =172    Exercise  6  -­‐  Translate  the  following  problem  into  mathematical  language,  by  writing  it  as  two  linear  equations  with  two  unknowns,  c  and  t.  Such  a  pair  of  equations  is  also  called  ‘a  system  of  linear  equations’.  Can  you  solve  this  system?  “A  student  has  a  car  loan  (c)  charging  0.75%  interest  per  month  and  a  tuition  loan  (t)  charging  0.5%  interest  per  month.  How  much  does  she  owe  on  each  account  if  she  pays  a  total  of  €  395.50  monthly  interest  on  a  total  debt  of  €  62,200?”    

a1x1 + a2x2 + a3x3 +...+ anxn = c

Page 4: Linear equations (With One Unknown)

 

Linear Mathematics & Matrices, pt.1 Dr. H. Schellinx

     Linear  equations  with  one  unknown    Linear  equations  with  only  one  variable  are  the  simplest  ones.  We  can  always  write  such  an  equation  in  the  standard  form   ax = b .  Here  x  is  the  only  variable  (the  unknown).  The  coefficient  a  and  the  constant  b  are  both  numbers.    

1. If   a ≠ 0 ,  the  equation  has  precisely  one  solution:   x = ba.  

2. If   a = 0 and   b ≠ 0 ,  the  equation  has  no  solution.  It  is  a  contradiction.  3. If   a = 0 and   b = 0 ,  all  real  numbers  satisfy  the  equation.  It  is  an  identity.  

 Recall  that  the  root  or  zero  of  a  function  f(x)  is  a  member  x  of  the  domain  of  f  such  that  f(x)  =  0  (we  say  that  f(x)  vanishes  at  x).  The  solution  of  the  linear  equation  with  one  unknown   ax = b  is  the  root  of  the  linear  function   f (x) = ax − b .  In  the  two  dimensional  ‘Euclidean  plane’,  using  a  rectangular  coordinate  system,  the  graph  of  this  function  is  the  straight  line  represented  by  the  equation   y = ax − b .    The  coefficient  a  is  the  slope  of  the  line.  It  indicates  how  steep  the  line  is.  If  the  slope  is  positive  (a  >  0),  you  will  see  that  the  line  is  going  up  when  you  move  along  the  horizontal  (x-­‐)axis  from  the  left  to  the  right  (from  West  to  East).  If  the  slope  is  negative  (a  <  0),  you  will  see  the  line  is  going  down  when  you  move  along  the  x-­‐axis  from  the  left  to  the  right  (from  West  to  East).    The  constant  b  is  called  the  line’s  y-­‐intercept:  it  tells  us  where  the  line  crosses  the  vertical  (y-­‐)axis.  The  solution  of  the  equation  is  the  point  where  the  line  crosses  the  x-­‐axis  of  our  rectangular  coordinate  system:  it  is  the  x-­‐intercept.    As  an  example,  look  at  the  following  linear  equation  with  one  unknown:  2x = 4 .  The  corresponding  linear  function  is   f (x) = 2x − 4 ,  which  has  as  its  graph  the  line  y = 2x − 4 .  The  solution  of  the  equation  is  the  zero  of  the  function,  i.e.  the  point  where  the  line  crosses  the  x-­‐axis:  (2,0).    

   

Page 5: Linear equations (With One Unknown)

 

Linear Mathematics & Matrices, pt.1 Dr. H. Schellinx

 There  are  many  kinds  of  often  recurring  practical  problems  that  are  most  easily  solved  by  interpreting  them  in  the  form  of  a  linear  equation  with  one  unknown.  Here  are  a  few  examples.  You  may  remember  them  from  the  ‘Intermediate  Algebra’  course:      Problem  1.  (Uniform  Motion  Problem)  A  cyclist  leaves  his  training  base  for  a  morning  workout,  riding  at  the  rate  of  18  kilometers  per  hour.  One  hour  later,  his  support  staff  leaves  the  base  in  a  car,  going  45  kilometers  per  hour  in  the  same  direction.  How  long  will  it  take  the  support  staff  to  catch  up  with  the  cyclist?  Solution:  Suppose  that  it  takes  the  staff  x  hours  to  catch  up  with  the  cyclist.  As  their  car’s  speed  is  45  km/h,  the  distance  travelled  by  the  support  staff  in  x  hours  equals  45x  kilometres.  The  cyclist  left  one  hour  earlier.  When  the  staff’s  car  catches  up  with  him,  he  has  travelled  a  distance  of  18(x+1)  kilometres.  The  two  distances  have  to  be  equal,  so  the  linear  equation  that  we  need  to  solve  is   45x =18(x +1) ,  which  is  equivalent  to  the  standard  form   27x =18 .  We  therefore  find  that  the  support  staff  catches  up  with  the  cyclist  after  18/27  hours  =  2/3  hours  =  40  minutes.    Problem  2.  (Simple  Investment  Problem)  An  investment  club  invested  part  of  €100.000  at  9%  annual  interest,  and  the  rest  at  8%.  If  the  annual  income  from  these  investments  was  €8.600,  how  much  was  invested  at  8%?  Solution:  Suppose  that  the  investment  club  invested  x  euros  at  8%  annual  interest.  Then  the  club  invested  100.000  –  x  euros  at  9%  annual  interest.  The  linear  equation  that  we  need  to  solve  is0,08x + 0,09(100.000− x) = 8.600 ,  which  is  equivalent  to  the  standard  form  0,01x = 400 .  We  therefore  find  that  the  investment  club  invested  €40.000  at  8%.    Problem  3.  (Percent  Mixture  Problem)  A  dairy  mixes  milk  with  4%  of  butterfat  and  milk  with  1%  of  butterfat  to  get  milk  with  2%  of  butterfat.  How  much  of  the  4%  butterfat  milk  does  the  dairy  need  to  mix  with  how  much  of  the  1%  butterfat  milk  to  produce  120  liters  of  milk  with  2%  of  butterfat?  Solution:  Suppose  the  dairy  needs  x  liters  of  4%  butterfat  milk  to  produce  120  liters  of  2%  butterfat  milk.  Then  it  needs  120  –  x  liters  of  1%  butterfat  milk.  The  amount  of  butterfat  in  the  2%  mix  has  to  be  equal  to  the  sum  of  the  amounts  in  the  parts:  the  linear  equation  that  we  need  to  solve  is  0,04x + 0,01(120− x) = 0,02 ⋅120 ,  which  is  equivalent  to  the  standard  form  0,03x =1,2 .  Thus  we  find  that  the  dairy  needs  to  mix  40  liters  of  4%  butterfat  milk  with  80  liters  of  1%  butterfat  milk  in  order  to  obtain  120  liters  of  2%  butterfat  milk.    

 Exercise  7  –  What  are  the  y-­‐intercept  b  and  the  slope  a  of  the  line  that  connects  the  two  points  (-­‐1,  3)  and  (2,0)?    Exercise  8  (*)  –  Find  expressions  for  the  y-­‐intercept  b  and  the  slope  a  of  the  line  that  connects  the  two  points  (x1,  y1)  and  (x2,  y2)  in  terms  of  the  coordinates  x1,  y1,  x2  and  y2  of  the  two  points.