16
LIGO-G080583-00-D Enhanced LIGO ate Dooley niversity of Florida n behalf of the LIGO Scientific Collaboration ESAPS Nov. 1, 2008

LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

Embed Size (px)

Citation preview

Page 1: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D

Enhanced LIGOKate DooleyUniversity of FloridaOn behalf of the LIGO Scientific CollaborationSESAPS Nov. 1, 2008

Page 2: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D 2

Pulsars

Gravitational Wave Sources

COALESCING BINARIES (NS/NS, NS/BH, BH/BH)

h 2G

rc 4

d2I

dt 2

STOCHASTIC BACKGROUND (from the Big Bang)

THE CRAB PULSAR

• spinning neutron star• remnant from supernova in year 1054

• gw frequency gw = 59.8 Hz• spin down due to:

• electromagnetic braking• GW emission?

BURSTS (GRBs, supernovae)

Page 3: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D

Ripples in Space-time

LIGO Scientific Collaboration 3

mirror

detector

laser

Gravitational waves

Physically, h is a strain: L/L LIGO measures h < 10-22 L = 10-18 m !

A Michelson type interferometer is the ideal tool to measure GWs.

Page 4: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D LIGO Scientific Collaboration 4

Livingston (L1 = 4 km)

LIGO Interferometers

Hanford (H1 = 4 km, H2 = 2 km)

Livingston (L1 = 4 km)

Page 5: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D

Gravitational Wave Detectors

Frequency stabilized laser

Suspended masses» Isolated from ground motion

Fabry-Perot cavities» Effectively lengthens arms

Recycled reflected light» Enhances phase sensitivity

LIGO Scientific Collaboration 5

Laser

30 W

~ 60000 W

1500 WCourtesy D. Reitze

Photodiode

eLIGO powers

Page 6: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D

LIGO Sensitivity

LIGO Scientific Collaboration 6

Initial LIGO

Enhanced LIGO

Advanced LIGO

Frequency [Hz]

h(f)

[H

z -1

/2]

Motivation for eLIGO:2x increase in sensitivity ~ 8x inc. in detection rate

Changes: 4x more laser power New GW readout scheme Upgraded Input Optics Prototype of advanced

seismic isolation Upgraded Thermal

Compensation System

Page 7: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D

35 Watt Laser

LIGO Scientific Collaboration 7

LZH (Germany) built us a custom 35W laser• 2W NPRO amplified by a 4 rod Nd:YVO4• lambda = 1064 nm• frequency stabilized by reference cavity

Laser produces beautiful TEM00 Mode

Page 8: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D

Gravitational Wave Readout

LIGO Scientific Collaboration 8

Hardware:• Output Mode Cleaner• advanced seismic isolation

Improves: • shot noise• laser intensity noise

Page 9: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D LIGO Scientific Collaboration 9

Input Optics

The Input Optics include all the elements from the EOM to the Mode-Matching Telescope.

Laser

Reference cavity

Pre-Mode Cleaner

EOM

Mode Cleaner

Faraday isolator

Recycling mirror

Mode matchingtelescope

air vacuum

Electro-optic Modulator – crystal oscillator phase modulates carrier light to create reference sidebands

Mode Cleaner – 3 mirror cavity filters out higher order modes delivered from laser

Faraday Isolator – optical diode protects laser from reflected light

Mode Matching Telescope – 3 spherical mirrors deliver correct beam size and shape to interferometer

Page 10: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D LIGO Scientific Collaboration 10

Faraday Isolator

DKDP1.0 W

New Design:

low absorption crystals

compensating negative lens

increased thermal contact

high extinction ratio polarizers

Isolation ratio: 14 dB 28 dBTransmission: 89% 92%Thermal Drift: 100 urad/W 10 urad/W

Faraday rotator

For higher power need:

minimal thermal lensing

minimal thermal drift

high transmission

high isolation ratio

919 mWCWP TFP TGG TGG

QR

HWP CWP

1.6 mW

Page 11: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D

Status Today

LIGO Scientific Collaboration 11

Page 12: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D

Summary

Enhanced LIGO hardware upgrade nearly complete Challenges we still face:

» Angular instabilities from higher radiation pressure» Alignment control of Output Mode Cleaner» Blasting for oil in Louisiana requires night-time work

Much noise hunting to do! Expect the detection rate for BH/BH to increase from

1/100 years to 1/9 years (uncertain by 2 orders of magnitude in either direction)

Enhanced LIGO science run to begin Spring 2009

LIGO Scientific Collaboration 12

Page 13: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080490-00-I

LIGO Scientific Collaboration

Page 14: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D

Gravitational Waves

Electromagnetic waves Gravitational wavesSource: moving charge moving mass

Speed: c c

Wavelength: c/f c/f

Solution:

Polarizations: +, - h+, hx

Particle: photon graviton

Spin: 1 2

LIGO Scientific Collaboration 14

),(2

,4

tIcr

Gth

r E

r r , t ~

0

4 rˆ r ˆ r

r Ý Ý p

Page 15: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D

RF vs. DC Readout

LIGO Scientific Collaboration 15

-RF -GW +GW +RF

Optical frequency -GW +GW carrier

RF Readout (heterodyne detection)

DC Readout (homodyne detection)

• Operate at dark fringe• GWs beat against sidebands

• Operate off dark fringe• Sidebands removed by Output Mode Cleaner• GWs beat against carrier

Page 16: LIGO-G080583-00-D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D

Noise Budget

LIGO Scientific Collaboration 16