30
24.5.2013 1 LIGNOCELLVALUE-ADDED MATERIALS AND FUNCTIONAL STRUCTURES FROM LIGNOCELLULOSICS Steering Committee Meeting / 11.5.2012 http://www4.ncsu.edu/~ojrojas/Lignocell.htm Lignocell: Instrument to develop knowledge in lignocellulose science and engineering Students: Temporal: Learn from core competences and apply their skills in proposed Lignocell subjects Permanent: Long-term learning to become top-notch scientists Mentors: To provide ideas, guidance and to connect people Industry: Opportunity to “steer” work in strategic areas in an open, scientifically-driven effort

LIGNOCELLVALUE-ADDED MATERIALS AND …ojrojas/Lignocell/Report 1 May 2012.pdf · VALUE-ADDED MATERIALS AND FUNCTIONAL STRUCTURES FROM LIGNOCELLULOSICS ... CA, March 25-29, 2012 2

  • Upload
    vuliem

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

24.5.2013

1

LIGNOCELLVALUE-ADDED MATERIALS AND FUNCTIONAL STRUCTURES FROM LIGNOCELLULOSICS

Steering Committee Meeting / 11.5.2012

http://www4.ncsu.edu/~ojrojas/Lignocell.htm

Lignocell: Instrument to develop knowledge in lignocellulose science and engineering

Students: • Temporal: Learn from core competences and apply

their skills in proposed Lignocell subjects • Permanent: Long-term learning to become top-notch

scientists

Mentors: To provide ideas, guidance and to connect people

Industry: Opportunity to “steer” work in strategic areas in an open, scientifically-driven effort

24.5.2013

2

Luis G.Castillo& Belkis Sulbaran, Univ. Guadalajara & SCA Catalina Alvarez, UPB Colombia Dr. Hongyi Liu Prof. Niangui Wang, Hubei University Soledad Peresin, VTT Jordi Garcia, UPC, Barcelona

Dr. G

erardo

Mo

ntero

, Textiles, NC

SU P

rof. A

na Fo

rgiarini, U

niv d

e Los A

nd

es Juan

C P

erira, Un

iv Carab

ob

o R

osan

a Ro

jas, Leibn

iz-Inst P

olym

erforsch

un

g

Dept. of Transportation

Carlos Carrillo (Rojas/Saloni)

Bioactive surfaces and click chemistry NCBC, National Center for Food Protection and Defense, TEKES

Nafisa Islam (Carbonell/Rojas)

Molecular assembly , ultra thin films & adhesion TEKEs &Academy of Finalnd

Laura Nyfors

Prof. X.Turon, Univ Ramon Llull D. J. Silva, Univ. Sao Paulo Prof. J. Song, Univ. Nanjing C. Jeong, Samsung Prof. Fredy Ysambert, Univ. Zulia Dr. J. Kim, Samsung Dr. Y. Habibi MS. N. Wu Dr. G. Hu

Dr. Mariko Ago

Lignocellulosics as Precursors of Biopolymer Structures Tokushima Bunri University,

Fulbright Commission

Dr.

Jo

se M

. Car

baj

o, U

niv

. Co

mp

lute

nse

D

r. Y

ou

ng-

Jun

Lee

, Han

sol,

Ko

rea

Ta

kash

i Yam

agu

chi,

Nip

po

n P

aper

M

aria

Val

lejo

s, U

niv

Mis

ion

es,

Arg

enti

na

Polyampholytes

Julio Arboleda (Lucia/Rojas)

Carlos Salas (Rojas/Lucia)

Cellulose nanocrystals & Nanofibrillar cellulose Forest Products Labs

25 °C

Dis

sip

ati

on

(x10

6)

PN

IPA

M b

rus

he

s

1.4

1.6

1.8

2.0

2.2

2.4

0 100 200 300 400

Time, s

100mM NaCl

20mM NaCl

Dr. Ilari Filpponen

Abdelrahman Abdelgawad (Hudson/Rojas)

Dr. Ingrid Hoeger

Junyeong Park (Park/Rojas)

Sugar Surfactants USDA

Generation of Organic Films on Surfaces Nonwovens Institute

Kiran Goli Genzer (COE)/Rojas

Surface modification with proteins and polysaccharides assemblies United Soy Board and USDA

João Vinícios Wirbitzki

Egbe Ene

Dr. Tiina Nypelo

Shuai Li

Dr. Yanxia Zhang

Dr. Raquel Martin

Cellulose assemblies/

sensors & enzymes

Novel Lignocellulose Structures

Thin films

Bioactive surfaces

Surface activity & Surface Modification

Biomass impregnation & Complex fluids

Stimuli-responsive materials, Lignin

NPs and emulsions

Colloids and Interfaces Group www4.ncsu.edu/~ojrojas

Protein adsorption & composites

Oriol Cusola UPC

24.5.2013

3

Bicomponent films

Electro- Spinning Porous

structures

NFC QCM

degradation Enzymes

SPR Chitosan

Films Biomolecule

binding

NFC Lignin

Mechanical properties

Soy proteins CMC

Nano-particles

Click chem. Click chem. Conductive

fibers

Lignin-

cellulose blends Enzyme activity

Elisabet Quintana

UPC

Laura Taajamaa

Aalto

Hannes Orelma Aalto

Dr. Maria S. Peresin

VTT

Xiaomeng Liu

Singenta

Ingrid Hoeger

NCSU/FPL

Dr. Ilari Filponnen

Aalto

Raquel Martin

Complutense

Justin Zoppe Aalto

Stimuli-responsive

CNCs

Ana Ferrer Univ.

Cordoba

NFC from EFB

Raquel Martin

INIA

Enzyme inhibition

Tiina Nypelo NCSU

Magnetic CNCs

Cristina Castro

Univ. Pontificia

Julio Arboleda

NCSU

Bacterial cellulose

Soy proteins aerogels

Bio modification

Oriol Cusola

UPC

May 2011-present

Presentations 1. Introduction and general report

(Orlando Rojas)

2. NFC from residual biomass (OR/Ana Ferrer)

3. Composites with bacterial cellulose (OR/Cristina Castro)

4. Click chemistries (Ilari Filpponen)

5. SP Aerogels (Julio Arboleda)

6. Enzyme Activities (Raquel Martin)

7. Bicomponent Films (Laura Taajamaa)

8. Bio-modification (Oriol Cusola)

24.5.2013

4

Presentations 1. Introduction and general report

(Orlando Rojas)

2. NFC from residual biomass (OR/Ana Ferrer)

3. Composites with bacterial cellulose (OR/Cristina Castro)

4. Click chemistries (Ilari Filpponen)

5. SP Aerogels (Julio Arboleda)

6. Enzyme Activities (Raquel Martin)

7. Biocomponent Films (Laura Taajamaa)

8. Bio-modification (Oriol Cusola)

24.5.2013

5

1. Taajamaa, L., Laine, J., Kontturi. E., Rojas, O.J., Bicomponent fibre mats with adhesive ultra-hydrophobicity tailored with cellulose derivatives J. Mater. Chem., DOI:10.1039/C2JM30572K.

2. Zoppe, J.O., Venditti, R.A., Rojas, O.J. Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. Journal of Colloid and Interface Science, 369 202–209 (2012)

3. Goli, K., Rojas, O. J., Ozcam, A., Genzer, J. Generation of functional coatings on hydrophobic surfaces through deposition of denatured proteins followed by grafting from polymerization, Biomacromolecules, In press, DOI: 10.1021/bm300075u

4. Castro, C., Zuluaga, R., Álvarez, C., Putaux, J-L., Caro, G., Rojas, O.J. Mondragon, I., Gañán, P. Bacterial cellulose produced by a novel acid-resistant strain Gluconacetobacter medellensis, Carbohydrate Polymers, In press, DOI: 10.1016/j.carbpol.2012.03.045

5. Ago, M., Okajima, K., Jakes, J.E., Park, S., Rojas, O.J., Lignin-based biomimetic electrospun nanofibers reinforced with cellulose nanocrystals, Biomacromolecules, 13: 918–926 (2012)

6. Salas, Carlos, Rojas, O. J., Lucia, L. Hubbe, M.A., Genzer, J. Adsorption of glycinin and ß-conglycinin on silica and cellulose:surface interactions as a function of denaturation, pH, and electrolytes, Biomacromolecules, 13: 387-396 (2012)

7. Li, Y., Rojas, O.J., Hinestroza, J.P., Boundary Lubrication of PEO-PPO-PEO Triblock Copolymer Physisorbed on Polypropylene, Polyethylene, and Cellulose Surfaces, Ind. Eng. Chem. Res. , 51: 2931-2940 (2012)

8. Liu, X., He, F., Salas, C., Pasquinelli, M., Genzer, J., Rojas, O.J. Experimental and Computational Study of the Effect of Alcohols on the Solution and Adsorption Properties of a Nonionic Symmetric Triblock Copolymer, Journal of Physical Chemistry B, 116: 1289–1298 (2012).

9. Liu, H., Li, Y., Krause, W., Rojas, O.J., Pasquinelli, M. The Soft-Confined Method for Creating Molecular Models Amorphous Polymer Surfaces, The Journal of Physical Chemistry B, 116: 1570–1578 (2012)

10. Li, Y., Rojas, O.J., Hinestroza, J.P., Boundary Lubrication of PEO-PPO-PEO Tri-block Copolymer Physisorbed on Polypropylene, Polyethylene and Cellulose surfaces, Industrial & Engineering Chemistry Research

11. Liu, H., Li, Y., Krause, W., Pasquinelli, M., Rojas, O.J. Mesoscopic Simulations of the Phase Behavior of Aqueous EO19PO29EO19 Solutions Confined and Sheared by Hydrophobic and Hydrophilic Surfaces, ACS Applied Materials & Interfaces, 4: 87-95(2012)

12. Orelma, O., Filpponen, I., Johansson, L-S, Laine, J., Rojas, O.J. Modification of Cellulose Films by Adsorption of CMC and Chitosan for Controlled Attachment of Biomolecules Biomacromolecules, 12(12): 4311–4318(2011).

13. Taajamaa, L., Rojas, O.J., Laine, J, Kontturi. E. Phase-specific pore growth in ultrathin bicomponent films from cellulose-based polysaccharides, Soft Matter, 7: 10386-10394 (2011)

14. Hoeger, I., Rojas, O.J., Efimenko, K., Velev, O.D., Kelley, S.S. Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties Soft Matter, 7 (5), 1957-1967 (2011)

15. Csoka, L., Hoeger, I., Peralta, P., Peszlen, I., Rojas, O.J. Dielectrophoresis of cellulose nanocrystals and their alignment in ultrathin films by electric field-assisted shear assembly, Journal of Colloid and Interface Science, 363(1):206-12 (2011).

16. Spence, K.L., Venditti, R.A., Rojas, O.J., Pawlak, J.J., Hubbe, M.A., Water Vapor Barrier Properties of Microfibrillated Cellulose Films, Bioresources, 6(4):4370-4388 (2011).

17. Zoppe, J.O., Österberg, M., Venditti, R.A., Laine, J., Rojas, O.J. Surface Interaction Forces of Cellulose Nanocrystals Grafted with Thermo-responsive Polymer Brushes, Biomacromolecules, 12 (7): 2788–2796 (2011).

18. Liu, X., Vesterinen A-H., Genzer, J., Seppälä, J.V., Rojas, O.J. Adsorption of PEO−PPO−PEO Triblock Copolymers with End-Capped Cationic Chains of Poly(2-dimethylaminoethyl methacrylate), Langmuir, 27 (16), 9769–9780 (2011).

19. Martin-Sampedro, R., Capanema, E.A., Hoeger, I., Villar, J.C., Rojas, O.J. Lignin Changes after Steam Explosion and Laccase-Mediator Treatment of Eucalyptus Wood Chips, Journal of Agricultural and Food Chemistry, 59 (16): 8761–8769 (2011).

20. Li, Y., Liu, H., Song, J., Rojas, O.J., Hinestroza, J.P., Adsorption and Association of a Symmetric PEO-PPO-PEO Triblock Copolymer on Polypropylene, Polyethylene, and Cellulose Surfaces, ACS Applied Materials and Interfaces, 3 (7): 2349–2357 (2011)

21. Wu, N., Hubbe, M.A., Rojas, O.J., Park, S., Permeation of a Cationic Polyelectrolyte into Meso-porous Silica. Part 3, Colloids and Surfaces A, 381, 1-6 (2011).

22. Liu, X., Kiran, K., Genzer, J., Rojas, O.J. Multilayers of Weak Polyelectrolytes of Low and High Molecular Mass Assembled on Polypropylene and Self-assembled Hydrophobic Surfaces, Langmuir 27 (8), 4541–4550 (2011)

23. Spence, K.L., Venditti, R.A., Rojas, O.J., Habibi, Y., Pawlak, J.P. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods, Cellulose, 18:1097–1111 (2011).

24. Wang, Z., Hauser, P., Rojas, O.J., Multilayers of low-charge-density polyelectrolytes on thin films of carboxymethylated and cationic cellulose, Journal of Adhesion Science and Technology, 25 (6-7), 643-660 (2011)

25. Álvarez, C., Rojano, B., Almaza, O.,Rojas, O.J., Gañán, P., Self-bonding boards from plantain fiber bundles after enzymatic treatment, Journal of Polymers and the Environment, 19(1), 182-188 (2011).

26. Silva, D.J., Rojas, O.J., Hubbe, M.A., Park, S.W. Enzymatic treatment as a pre-step to remove cellulose films in from sensors, Macromolecular Symposia, 299/300, 107–112 (2011).

24.5.2013

6

1. Ingrid C Hoeger, Ilari Filpponen, Raquel Martin-Sampeo, Leena-Sisko Johansson, Monika Österberg, Janne Laine, Stephen Kelley, Orlando J Rojas, Bicomponent biosensors to study lignocellulose hydrolysis , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

2. Junyeong Park, Kwang Hun Lim, Orlando J. Rojas, Sunkyu Park Evolution of aromatic structures of lignin during thermal treatment of biomass , , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

3. Sunkyu Park, Jiajia Meng, Junyeong Park, Kwang H Lim, David C Tilotta, Sushil Adhikari, Orlando J Rojas, Properties of pyrolysis bio-oil produced from torrefied biomass , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

4. Julio C Arboleda, Orlando J Rojas, Lucian A Lucia, Janne Laine, Colloidal characterization of soy peptides, 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

5. Carlos L Salas, Julio Arboleda, Haoyu Jin, Lucian A Lucia, Orlando J Rojas, Improvement of fiber adhesion and other uses of soy-derived proteins , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

6. Carlos Alberto Carrillo, Orlando Rojas, Lucian Lucia, Daniel Saloni, Using surfactant-based complex fluids to flood the capillary structure of wood , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

7. Carlos L Salas, Orlando J. Rojas, Martin A. Hubbe, Jan Genzer, Surface modification of cellulose and lignin by adsorption of soy proteins , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

8. Hannes Orelma, Ilari Filpponen, Leena-Sisko Johansson, Orlando Rojas, Janne Laine,Development of cellulose based biointerface for diagnostic and affinity filtration applications , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

9. Orlando J. Rojas, Interfacial interactions in novel materials from cellulose, lignin and their derivatives , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

10. Ana Ferrer, Elisabeth Quintana, Ilari Filpponen, Janne Laine, Teresa Vidal, Luis Jiménez, Alejano Roíguez, Orlando J. Rojas, Effect of lignin in the properties of nanofibrillated cellulose (NFC) from birch pulp , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

11. Mir AAR Quddus, Orlando J Rojas, Melissa A Pasquinelli, Molecular dynamics simulations of the thermal stability of oleic acid films on a crystalline cellulose surface , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

12. Ilari Filpponen, Xiaomeng Liu, Janne Laine, Orlando J Rojas, Electrically conductive cellulose , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

24.5.2013

7

13. Nafisa Islam, Fei Shen, Patrick V Gurgel, Orland J Rojas, Ruben G Carbonell, Equilibrium and dynamics of human IgG adsorption to novel peptide affinity ligands using Surface Plasmon Resonance , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

14. Cristina Isabel Castro, Robin Zuluaga, Jean Luc Putaux, Iñaqui Mondragon, Orlando Rojas, Piedad Gañan, Effect of physical and chemical crosslinking in the properties of composites after in-situ growth of bacterial cellulose in the presence of poly(vinyl alcohol) , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

15. Karoliina Junka, Ilari Filpponen, Eero Kontturi, Orlando Rojas, Janne Laine, Surface modification of cellulose by using functionalized polysaccharide and click chemistry , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

16. Abdelrahman M Abdelgawad, Samuel M Hudson, Orlando J Rojas, Wound dressing materials with synergistic antibacterial activity from electrospun tri-component (chitosan/silver-NPs/polyvinyl alcohol) fiber mats , 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

17. João V. W. Silveira, Ana L. G. Millás, Louise F. Tessarolli, Edison Bittencourt, Mariko Ago, Orlando J. Rojas, Production of electrospun cellulose acetate fiber mats as carriers of citronella essential oil, 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

18. Mariko Ago, Michael Lo, Khoren Sahagian, Roshan Shetty, João Silveira, Kunihiko Okajima Okajima, Sunkyu Park, Orlando J. Rojas, Molecular interactions in bi- and tri- component fibers after electrospinning from lignin solutions, 243rd ACS Spring National Meeting, San Diego, CA, March 25-29, 2012

19. Quddus, M., Pasquinelli, M., Rojas, O.J. MD Study of Surface Chemistry Effects in Oil Adhesion by Crystalline Cellulose, 2011 Tappi International Conference on Nanotechnology of Renewable Materials, Arlington, VA, June 6-8, 2011.

20. Salas, C., Peresin, M.S., Lucia, L., Rojas, O.J. Interactions of soy proteins with cellulose, 2011 Tappi International Conference on Nanotechnology of Renewable Materials, Arlington, VA, June 6-8, 2011.

21. Rojas, O.J. Cellulose nanocrystals and self-assembly at interfaces, 2011 Tappi International Conference on Nanotechnology of Renewable Materials, Arlington, VA, June 6-8, 2011.

22. Zoppe, J.O., Rojas, O.J., Venditti, R.A., Österberg, M., Laine, J. Thermo-responsive Polymer Brushes Grafted from Cellulose Nanocrystals and their Interfacial Behavior, 2011 Tappi International Conference on Nanotechnology of Renewable Materials, Arlington, VA, June 6-8, 2011.

23. Levente Csoka, Ingrid Hoeger, Orlando J. Rojas, Cellulose nanocrystal dielectrophoresis and microfluidic systems, ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

24. Xiaomeng Liu, Orlando J. Rojas, Genzer Jan , Surface modification of textile- and paper-related surfaces by adsorption of polymeric surfactants, ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

25. Kelley Spence, Richard Venditti, Orlando Rojas, Joel Pawlak , Effects of lignin on processing and properties of microfibrillated cellulose, ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

26. Carlos L Salas, Orlando J Rojas, Lucian Lucia, Adsorption of soy glycinin onto silica and ultrathin cellulosic films studied by quartz crystal microgravimetry, ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

27. Kiran K Goli, Orlando J. Rojas, Behnam Pourdeyhimi, Jan Genzer , Functional coatings based on denaturation-adsorption of proteins, ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

28. Maria E Vallejos, Maria S Peresin, Orlando J Rojas, Electrospun cellulose acetate nano and micro fibers reinforced with cellulose nanocrystals, ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

29. Mir AAR Quddus, Orlando J Rojas, Melissa A Pasquinelli, Reduction of contamination of cellulose surfaces and its impact on energy conservation, ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

30. Maria S Peresin, Carlos Salas, Orlando J. Rojas, Monika Osterberg, Janne Laine, Green composites based on nanofibrillated cellulose , ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

31. Ingrid C Hoeger, Orlando J Rojas, Stephen Kelley, Sunkyu Park, Binding behavior of cellulosic enzymes on thin films of mill wood lignin, ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

32. Sunkyu Park, Jiajia Meng, Junyeong Park, David Tilotta, Orlando Rojas, Chemical properties of pyrolysis bio-oil produced from torrefied biomass, ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

33. Orlando J Rojas, Ingrid Hoeger, Levente Csoka, Steve S. Kelley, Nanoparticles and self-assembly of polysaccharides, ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

34. Ilari Filpponen, Eero Kontturi, Sami Nummelin, Henna Rosilo, Laura Taajamaa, Orlando J Rojas, Olli Ikkala, Janne Laine, Activation of cellulosic substrates via surface modifications, ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

35. Laura Taajamaa, Janne Laine, Eero Kontturi, Orlando Rojas, Non-woven fiber mats from cellulose derivatives blends, ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

36. Maria S Peresin, Arja H Vesterinen, Youssef Habibi, Orlando J Rojas, Joel J Pawlak, Effect of cellulose nanocrystals as reinforcing agent on poly vinyl alcohol membranes, ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

37. Arja-Helena Vesterinen, Orlando J Rojas., Jaana Rich., Jukka V Seppala, Modification of fiber surface with amphiphilic polymers containing poly([2-(methacryloyloxy)ethyl] trimethyl ammonium iodide) , ACS Natl. Meeting, March 27-31, 2011, Anaheim, CA (2011).

24.5.2013

8

Presentations 1. Introduction and general report

(Orlando Rojas)

2. NFC from residual biomass (OR/Ana Ferrer)

3. Composites with bacterial cellulose (OR/Cristina Castro)

4. Click chemistries (Ilari Filpponen)

5. SP Aerogels (Julio Arboleda)

6. Enzyme Activities (Raquel Martin)

7. Biocomponent Films (Laura Taajamaa)

8. Bio-modification (Oriol Cusola)

5x5 mm

1x1 mm

BioResources, 3, 929 (2008)

Bioresource Technol, 101, 596 (2010) Cellulose, 17, 835 (2010)

100% cellulose

Transparency: 71.6%

CTE< 8.5 ppmK-1

Density:1.53 gcm-3

Young Modulus: 13 GPa

Strength: 223 MPa

Nogi et al., Adv. Materials, 21, 1595, 2009

Fibrilar structures with ultra-high strength and many unique properties

Develop material alternatives using lignocellulose:

Minimize waste in landfills

Americans dispose of 2.5 million plastic

bottles every hour

Annual world consumption of plastic:

approaching 100 million tons

Natural and renewable

High strength and modulus

High surface area

Dimension stability

Thermal stability

Moisture absorption

Biodegradable

Biocompatible

24.5.2013

9

NFC - Production

Microfluidization

• 0.7% K

• 10, 20, 30 kpsi

• 200, 390, 630 kJ/kg (pp)

Grinding

Masuko Super Masscolloider

• 0.7% K

• 25 Hz

• 350 kJ/kg (per pass)

Homogenization

• 0.7% K

• 550 bar

• 5940 kJ/kg (per pass)

Unbleached Ox. Delignified Tot. bleached

Mikael Ankerfors, STFI-Packforsk

Pääkkö et al. 2007

Note: Industrial deployment

Birch

Rheology modifiers (food, paints,

pharmaceutical)

Functional coatings

Lighter-weight products

Biomedical, wound dressing, drug

carrier

Structural materials

Paper modification

Packaging, Barrier & Filtration

Aerogels, Composites,Foams

KN pulp KN NFC Viscosity NFC

(mL/g) DP NFC

High lignin 17.6±0.4 18.6±0.8 589±3 1492±10

Medium lignin 12.8±0.5 13.7±0.1 530±2 1300±8

Low lignin <2 <2 451±20 1051±60

ISO Brightness Density

(g/cm3) Thickness (µm)

Air Permeability

(mL/min) Porosity (%)

High lignin 24.6±1.2 0.849±0.045 53.8±0.8 1.0±0.3 43.4±1.2

Medium

lignin 34.2±0.9 0.822±0.067 57.5±0.9 3.7±0.7 45.2±0.9

Low lignin 53.9±0.9 0.807±0.017 61.2±0.7 11.1±1.2 46.2±1.3

24.5.2013

10

-5

0

5

10

15

20

25

30

35

-0,5 0 0,5 1 1,5 2 2,5

Loa

d (

N)

Extension (mm)

ToT Bl. OxBl InL

oad

(N

)

Extension (mm)

With lignin

Without lignin

10x10 µm²

High lignin Medium lignin Low lignin

8.135 nm

-50

0

50

0 1 2 3 4 5

nm

µm

13.411 nm

-50

0

50

0 1 2 3 4 5

nm

µm

17.082 nm

-50

0

50

0 1 2 3 4 5

nm

µm

10x10 µm² 10x10 µm²

24.5.2013

11

High lignin Medium lignin Low lignin

0

5

10

15

20

25

UN OD FB

24.6 23.1

17.1

Wate

r ab

so

rbed

(g

/m2)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 5000 10000 15000

Time, s

No

rma

lize

d w

eig

ht

ga

in, g

/g High lignin

Medium lignin

Low lignin

High Medium Low lignin

1) Indonesia

2) Malaysia

20.25 million ton

17.76 million ton

38.01

million ton

85% worldwide

production

Empty Fruit Bunches (EFB) FOR NFC PRODUCTION

1 ton of palm oil = 1,07 ton of EFB

Before refining KN % Desv.

NaOH-AQ 12.8 1.1

Milox 39.7 0.5

FoOH 52.8 1.0

Soda-anthraquinone (NaOH-AQ): 15 % NaOH; 1 % AQ; 30 min; 170 ºC Formic and hydrochloric acid (FoOH, Formosolv): 92.5 % FoOH; 0.075 % HCl; 60 min; 100 ºC Formic plus hydroxide peroxide (Milox): 53 % FoOH; 3 % H2O2; 165 min; 80 ºC

24.5.2013

12

After refining and fluidization process

Average value

(mL/g)

NaOH-AQ (sheets) 959

NaOH-AQ (NFC´s films) 676

Milox (sheets) 364

Milox (NFC´s films) 259

FoOH (sheets) 676

FoOH (NFC´s films) 428

Viscosity

NFC Bulk

(cm³/g) Density (g/cm³)

Basis weight (g/m²)

Thickness (µm)

Sheet pile Thickness (µm)

Permeability (mL/min)

NaOH-AQ 1,04 0,960 59,40 61,88 249,40 ± 10,29 1,15 ± 0,47

Milox 1,08 0,924 63,30 68,50 326,50 ± 13,86 8,32 ± 1,64

FoOH 1,06 0,943 58,90 62,44 302,50 ± 9,77 2,15 ± 0,65

0

10

20

30

40

50

60

70

80

Wat

er

con

tact

An

gle

(º)

0

20

40

60

80

100

120

140

160

Swe

llin

g (%

)

Fmax (N) Strength (KNm/Kg) Stretch (%) Work (J/Kg) Stiffness (MNm/Kg)

NaOH-AQ

1 76,040 86,430 4,650 3086,000 8,263

2 71,210 80,950 3,700 2293,000 8,481

3 76,010 86,400 4,410 2939,000 8,841

4 78,880 89,660 4,830 3308,000 8,630

5 78,820 89,590 4,760 3234,000 8,537

6 72,340 82,230 3,610 2273,000 8,416

7 78,690 89,450 4,440 3058,000 8,679

8 75,120 85,390 3,440 2251,000 8,930

9 80,040 90,980 4,460 3130,000 8,697

10 75,240 85,530 3,640 2394,000 8,783

Average 76,239 86,661 4,194 2796,600 8,626

Desvest % 3,835 3,832 12,744 15,650 2,370

Milox

1 57,480 63,750 2,980 1455,000 7,214

2 54,270 60,190 2,870 1275,000 6,817

3 59,310 65,780 4,030 1917,000 6,915

4 58,360 64,730 2,500 1172,000 7,691

5 58,240 64,590 3,520 1730,000 7,084

6 56,750 62,940 3,420 1586,000 6,873

7 56,720 62,900 3,250 1524,000 6,995

8 53,050 58,840 3,500 1515,000 6,347

9 51,680 57,320 3,270 1299,000 6,494

10 51,400 57,010 3,340 1414,000 6,227

Average 55,726 61,805 3,268 1488,700 6,866

Desvest % 5,200 5,198 12,731 14,882 6,306

FoOH

1 35,780 48,210 1,060 314,00 6,689

2 35,200 47,430 1,700 571,80 5,931

3 27,750 37,390 0,770 158,40 6,033

4 34,770 46,850 1,510 479,50 5,970

5 33,420 45,040 1,080 294,10 6,258

6 37,090 49,980 1,150 362,10 6,725

7 34,710 46,770 1,800 555,30 5,855

8 39,470 53,190 1,380 490,60 6,943

9 36,780 49,570 1,370 446,10 6,430

10 38,100 51,340 1,450 498,00 6,343

Average 35,307 47,577 1,327 416,990 6,318

Desvest % 9,057 9,060 23,698 31,514 5,963

24.5.2013

13

NaO

H-A

Q

1µm 3µm 5µm 10µm Fo

OH

M

ilox

NaOH-AQ

FoOH

Milox

24.5.2013

14

Presentations 1. Introduction and general report

(Orlando Rojas)

2. NFC from residual biomass (OR/Ana Ferrer)

3. Composites with bacterial cellulose (OR/Cristina Castro)

4. Click chemistries (Ilari Filpponen)

5. SP Aerogels (Julio Arboleda)

6. Enzyme Activities (Raquel Martin)

7. Biocomponent Films (Laura Taajamaa)

8. Bio-modification (Oriol Cusola)

Long cellulose fibrils (very high aspect ratio)

Homogeneous, pure, free of plant polymers

Luminescence of an

OLED deposited onto

a transparent BC

nanocomposite (Nogi,

Yano 2008)

Flexible,

transparent

nanocomposite

reinforced with

BC (Yano, 2005)

Top-down: Nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC)

Main applications: • Wound dressing

• Bone graft material

scaffold for tissue engineering of cartilage and blood

vessels (Klemm 01, Svensson 05, Bodin 07)

• Nanocomposiyes (Nogi, Yano 05)

Artificial blood vessel (Gatenholm et al.,

BioNews, 2009)

Hierarchical assembly of cellulose nanofibrils from elemental fibrillar units.

Final fibril affected by the arrangement of the synthesizing complexes and co-crystallizing polymers

Bacterial Cellulose

Bottom-up

24.5.2013

15

PVA/BC nanocomposites

+ =

OH

n

Physical linking

Chemical crosslinking

Physical linking

• Cellulose production:

PVA viscosity

• Nanocomposites 10, 22, 30%

cellulose

Chemical crosslinking

• Cellulose production:

Glyoxal (Toxic)

PVA viscosity

• Nanocomposites 0.6, 6, 14%

cellulose

24.5.2013

16

Chemical crosslinking and physical linking

• The transparency of the matrix is not affected

• Increase of 600% and 50% Young's modulus and stress at break

• Thermal stability

b a c

24.5.2013

17

12/12/11

Presentations 1. Introduction and general report

(Orlando Rojas)

2. NFC from residual biomass (OR/Ana Ferrer)

3. Composites with bacterial cellulose (OR/Cristina Castro)

4. Click chemistry in Lignin systems (Ilari Filpponen)

5. SP Aerogels (Julio Arboleda)

6. Enzyme Activities (Raquel Martin)

7. Biocomponent Films (Laura Taajamaa)

8. Bio-modification (Oriol Cusola)

24.5.2013

18

Lignin - natural and renewable raw material

Most important by-product of the

paper industry and between 40 and

50 million tons per year are

produced worldwide mainly as a

non-commercialized waste product

Possible feedstock for producing

fine chemicals that traditionally

require the use of petroleum-based

chemicals

Lignin is highly functionalized

(hydroxyl and carboxyl moieties)

which allows the use of various

chemistries for modifying the

properties of core lignin polymer.

Lignin contains both hydrophilic and hydrophobic

groups. Specific treatments can strengthen either

characteristic for particular applications

Lignin-based Applications

24.5.2013

19

Reaction Toolbox

Due to the chemical functionality of lignin (bearing hydroxyl and/or

carboxylic acid groups) the esterification and etherification are the

most common approaches for the modification reactions of lignin

EDC/NHS coupling chemistry; amide linkage

CDI coupling chemistry; carbamate linkage

Click chemistry reaction; triazole ring

HN

O

O

L ig n in

R

HN

OL ig n in

R

NN N

R

HN

O

O

L ig n in

R

= a lk y n e o r a z id e = d es ir e d fu n c tio n a li ty

N

N N = t r ia zo le m o ie ty

Modification of Lignin – CDI Coupling Followed by Click Chemistry

CDI (carbonyldiimidazole) cross linking agent can be used for

OH- or COOH-funtionalization

CDI

Click

24.5.2013

20

Solubility Tests (commercial lignin from Lignol)

Solvent Solubility

Toluene ---

Acetone +++

Diethylether ---

Dioxane +++

Dimethylformamide (DMF) +++

Tetrahydrofuran (THF) +++

Methanol +++

Chloroform +++

CDI coupling conducted in a good solvent and the product

precipitated by using a poor solvent

CDI reactions have been conducted already; next step

will be characterization (FTIR, XPS, elemental analysis)

TEMPO-oxidation of Lignin

TEMPO-mediated oxidation Selective conversion of primary hydroxyl

groups to corresponding carboxylic acids

Created COOH groups versatile for CDI or NHS/EDC coupling

Phenolic groups may need protection before oxidation

24.5.2013

21

EDC/NHS Coupling

Oxidized lignin contains elevated amount of COOH groups

EDC/NHS or CDI coupling chemistries

Electrospun Lignin Fibers

Lignin-Based Electrospun Nanofibers Reinforced with Cellulose Nanocrystals

Mariko Ago, Kunihiko Okajima, Joseph E. Jakes, Sunkyu Park, and Orlando J. Rojas

Biomacromolecules 2012 13 (3), 918-926

Polymeric solution Electric field Polymer fibers (μm-nm)

Lignin/hemicellulose spun fibers

Lignin/starch spun fibers

24.5.2013

22

Future Plans

Coupling chemistries and click chemistry for

modifying lignin– virtually any functionality can

be achieved

Lignin-hemicellulose/starch/protein matrixes

will be created by using click chemistry

(electrospinning)

Lignin nanoparticles may also be produced by

steam explosion or simply by ultrasonication;

above modification chemistries still apply

Presentations 1. Introduction and general report

(Orlando Rojas)

2. NFC from residual biomass (OR/Ana Ferrer)

3. Composites with bacterial cellulose (OR/Cristina Castro)

4. Click chemistries (Ilari Filpponen)

5. SP Aerogels (Julio Arboleda)

4. Enzyme Activities (Raquel Martin)

5. Biocomponent Films (Laura Taajamaa)

6. Bio-modification (Oriol Cusola)

24.5.2013

23

• Introduction

• Hydrolysis

• Aerogels

Outline

1

Background

Soy proteins (SP): industrial uses (United Soybean Board Projects 490 and 426)

Related research: • Adsorption of soy protein on lignocellulose • Dry strength additives in papermaking • SP films reinforced with cellulose

nanocrystals • Chemical modification by acid hydrolysis,

emulsions and aerogels Soy protein adsorption on lignin films

2

24.5.2013

24

3

Soy beans have been used for centuries as the chief source of protein and as medicine for millions of people in the Orient. Nowadays, soy is mainly used to obtain soy oil. 5% of the proteins obtained are used for food. The rest are low value products.

2010 the world production 258.4 million mt USA production 90.6 million mt (35%) USA crop value $38.9 billion USA exports $23 billion

Relevance of soybean

American Soybean Association, Soy Stats 2011 World Initiative for soy in human health, Composition of Soy, 2011

Two globular proteins account for more than 70% of the protein composition

Property Glycinin (11S) β-conglycinin (7S)

Molecular weight 360 KDa 180 KDa

Concentration in soy protein ca. 40% ca. 30%

Sulfur-containing aminoacids Higher Lower

Attributes Better gel former Better emulsifier

Soy protein chemistry

4 Adachi, PNAS (100) 7395–7400, 2003 Tandang, Annu, Rev. Food Sci. Technol. (2) 59–73, 2011

24.5.2013

25

Hydrophobic residues ( 17.5 %)

Acidic residues (19.3 %)

Basic residues (12.1 %)

USDA National Nutrient Database for Standard Reference. Release 23, 2010

Amino acid composition

5

Hydrolysis improves the natural surface activity of soy proteins by:

• Increasing surface hydrophobicity • Improving solubility • Increasing molecular flexibility • Reducing molecular size • Improves emulsification and foaming characteristics

Soy proteins hydrolysis

There are three used hydrolysis procedures:

• Alkaline hydrolysis

• Acid hydrolysis

• Enzymatic hydrolysis

Low cost Low selectivity Degrades serine, threonine, arginine and cysteine (11% of soy protein)

Low cost Low selectivity Degrades tryptophan (0.8% of soy protein)

Expensive Higher selectivity

6 Wagner, J. of Agricultural and Food Chem (47) 2173-2180, 1999

24.5.2013

26

Major hydrolysis reactions in soybean proteins:

• Deamidation: Amide residues are degraded to their carboxylic acid form:

• Hydrolysis: The polymer chain is broken; as such, the molecular weight decreases.

• Degradation: Acid hydrolysis decomposes tryptophan (0.8% of soy protein)

Hydrolysis reactions

7

Hydrolysis reactions and peptide characterization

8

Hydrolysis reactions

1

1.1

1.2

1.3

1.4

1.5

1.6

0 2 4 6 8 10

Ch

arg

e d

em

an

d

(m

e-m

ol/

g)

Reaction time (h)

SDS PAGE

Streaming Current Titration

5% Soy Protein

10% Soy Protein

24.5.2013

27

Conclusions so far: • Hydrolysis reaction rate is

affected by the viscosity of the reacting mixture.

• Under specific conditions (temperature, concentration, pH) soy protein partially denatures, forming reversible hydrogels

Hydrolysis reactions

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

De

gre

e o

f h

ydro

lysi

s SD

S (%

)

Hydrolysis time (h)

Reduction of Mw during acid hydrolysis using HCl 0.1 N, T: 70 °C and different protein concentration

5% SPI

10% SPI

9

Under certain conditions (T and pH) Soy Protein denatures forming a viscous gel. The gel can be frozen and dried to form an aerogel

10

Aerogels

24.5.2013

28

Good: Forms 3-D large structures (shapes easily) Forms gels after slow freezing Rich in chemical functionalities (acidic and amino groups dominant) + hydrophobic sites for binding Reinforcing with NFC.

The good, the bad and the ugly

Bad: Brittleness (but stronger than expected)

Ugly: Formation of channel-like structures

11

Compression tests SP-MFC Aerogels

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 20 40 60 80

Stre

ss (

MP

a)

Strain (%)

0,085 g/cm^3

0,1 g/cm^3

Effect of density: As it could be expected, more dense materials have better mechanical properties

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 20 40 60 80

Stre

ss (

MP

a)

Strain (%)

Without reinforcement

Reinforced with NFC

Reinforcement: The mechanical properties may be improved using cellulose nano fibers as reinforcing elements (4,9% reinforcement)

12

24.5.2013

29

Compression tests SP-MFC Aerogels

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 20 40 60 80

Stre

ss (

MP

a)

Strain (%)

Frozen with dry ice

Frozen in refrigerator

Effect of freezing speed: Fast freezing prevents the formation of big water crystals, increasing the porosity of the aerogel and decreasing its mechanical strength. Temperature gradients throw the sample generate organized ice structures (channels). Fast freezing may generate deffects caused by the fast expansion of the material

Mechanical properties of 0.085 g/cm^3 soy protein aerogels

13

Water absorption

Soy Protein aerogels may absorb around 10 times its weight of water. It is expected that using NFC aerogels with lower density and higher water absorption capabilities may be produced.

14

24.5.2013

30

Future work

• Experiments with slow freezing to avoid channel formation

• Reinforcement with NFC with different concentration

• Use of anionic groups to grow metal nano particles

• Absorption of non polar liquids

• Study the effect of plasticizer on mechanical properties

15

Questions???

Thank you