23
Lignocellulose Feedstock (LCF) for Material Development Margit Schulze Hochschule Bonn-Rhein Sieg, Department of Natural Sciences, 53359 Rheinbach NRW GI/FG Ressourcen Leverkusen November 6, 2018 1

Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

Lignocellulose Feedstock (LCF) for Material Development

Margit Schulze

Hochschule Bonn-Rhein Sieg Department of Natural Sciences 53359 Rheinbach

NRW GIFG Ressourcen Leverkusen November 6 2018

1

LCF for Material Development

Lignocellulose Feedstock (LCF) ndash a Renewable Resource for Energy and Material Development Cellulose (C) Hemicellulose (HC) Lignin (L)

Kamm et al (2006) In Biorefineries ndash Industrial Processes and ProductsWiley-VCH

El Khaldi-Hansen et al (2016) In Analytical Techniques and Methods for BiomassSpringer

Alzagameem et al (2018) In Biomass and Green Chemistry Springer

Biomass Pulping Purification Analysis Modification Application

bull Demethylation

bull Depolymerisation

bull Wood

bull Grass

bull Kraft

bull Organosolv

bull SEC NMR

bull SAXSWAXS CT-EM

2

Biobased Polymers for Construction and Packaging

bull Lignin-based Polymers for Construction Applictions

BMBF (2014-18) University Bonn Innovatec GmbH DLR Koumlln

Henkel AGampCoKG Dynea Erkner GmbH

bull Miscanthus Cascade Utilization

BioSC SEED (201516) University BonnCKA RWTH Aachen

bull Biobased Materials EFRE Programme (EUNRW 2017-20)

Coordination University BonnCKA (gt 25 regional SME)

bull Submitted to BMBF FHprofUnt (Spectral Service AG Uni WellingtonNZ)

Polymer Analysis via 2D NMR amp Multivariate Analysis

bull Submitted to BMBF Bioeconomy (RWTH Aachen DLR Cologne WOOD Kplus Linz)

Lignin Depolymerization to Tailored Components

Biocompatible Polymers for Drug Release and Tissue Regeneration

bull Optimization of Optimaixreg for Tissue Engineering

EUZiel2NRW (2012-16) Matricel GmbH Herzogenrath University Heidelberg

bull Personalised Cell-based Implantates for Bone Defects of Critical Size

BMBF (2015-19) Uni Duumlsseldorf DKFZUni Heidelberg Uni Jena Uniklinikum Muumlnster

Zellwerk GmbH Berlin botiss biomaterials GmbH Berlin (straumann group)

bull Hybrid-Materials for Bone Regeneration

BMBF (2019-22) Uni Jena Uni Bonn Artoss GmbH Spectral Service AG

H-BRS and University BonnCampus Klein-Altendorf (180 ha)

City of Rheinbach

bio innovation park Rheinland

4

Campus Klein-Altendorf Field Lab University Bonn

Cultivation of gt 30 Miscanthus genotypes

Miscanthus

bull low input crop recycles nutrients stored in roots

little to no fertilizer after being established

bull C4 plant ca 5 of earths plant biomass

30 of terrestrial carbon fixation

(oxaloacetates versus D-3-phosphoglycerat)

bull high photosynthesis yield at arid condition

assisting CO2 sequestration

bull perennial plant saving production costs

decreasing environmental impact

no tillage less soil compactionerosion

bull Miscanthus cascade utilization project

5

Lignocellulose Feedstock

Pude R et al GCB Bioenergy (2017) 9 274ndash279

Lignin

Calorific

value kWhkg

Ash

Moisture

Density

kgmsup3

Miscanthus X

giganteus

19 49 15-35 lt 20 120

Wood pellet

(spruce)

22 51 2-3 gt 32 250

Miscanthus versus Wood Pellets

Miscanthus sachariflorus Miscanthus sinensis

Miscanthus x giganteus originally cultivated in Asia

hybrid of Miscanthus sachariflorus sinensis

2013 ca 67500 t Miscanthus in Germany

ca 4500 ha (15 t ha)

85 energy recovery (wood chips pellets) Harvesting in Sept Jan andor April

Variation of plant constitutionwater content

6

Biomass Sources

Kraska T et al (2018) Scientia Horticulturae 235 205ndash213

Alfeld (SAPPI) Mg sulphite 130000

Ehingen (SAPPI) Mg sulphite 130000

Mannheim (SCA) Mg sulphite 220000

Stockstadt (SAPPI) Mg sulphite 140000

Blankenstein (Mercer) Kraft 300000

Stendal (Mercer) Kraft 600000

Company Pulping Process Capacity (ta)

Lignocellulose Feedstock

7

Global annual availability ca 70 Mio t Annual growth rate of 2 until 2023

Increasing total market size US$ 904 Mio in 2017 to US$ 1021 Mio in 2023

Benchmark energetic use of blak liquor

Lignin Market - Forecasts from 2018 to 2023 ID 4479455 Report February 2018

Lignin Composition amp 3D Structure

bull ether bonds szlig-O-4rsquo α-O-4rsquo 4-O-5rsquo

bull more complex linkages

bull C-C-bonds szlig-szligrsquo szlig-1rsquo 5-5rsquo

Approaches in lignin research

1 Exploitation of unmodified lignin

and improve access to functional group

(via optimizing the isolation process)

2 Chemical modification of lignin

functionalization versus depolymerization

Soft wood G units

Hart wood GS units

Grasses HGS units

Alzagameem A et al (2018) Molecules 23 2664

doi103390molecules23102664

Target monomers andor oligomers of low polydispersity and appropriate functionality for polymer synthesis

Parameter temperature pH reaction time catalyst ozon concentration flow rate light source intensity

photofragmentation via 1O2 oxidative fragmentation via O3

Ozonolysis of lignin model compounds (Sonntag 2009) Photolysis of lignin model compounds (Kansal 2008)

9

Do et al Preprints 2017 2017100128 doi1020944preprints2017100128v1)

Lignin Depolymerization

0 20 40 60 80 100 120

90

95

100

105

110

115

120

125

130

0 1 2 3 4 5 6

pH

-val

ue

[-]

Time [h]

ozonolysis versus photolysis

pH decrease indicating mineralization for ozonolysis

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

000075150225300375

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

0

8

24

32

48

56

72

80

96

104

UV absorbance at 280 nm

decreases during ozonolysis but

stays approximately constant in photolysis

Lignin for Energy Storage

10

ozonolysis

photolysis

MeO

O

OMe

O

CH3

O

O

O O

Xyl

OH

OH

Xyl

Carbohydrate fragmentPhenolics fragment

Lignin fragment

Pulping process AFEX NH3

H2O steam

explosion

Organosolv

methanol

Sulfonate

Lignin ww 25 52 94 71

Sugar ww 5 21 none 12

Solubility low low high low

Tg (degC DSC) 87 75 123 113

Td (degC DSC) 341 367 346 374

MW (SEC) gmol asymp 1500 asymp 2000 asymp 2000 asymp 15000

H G S unit 207010 134245 324919 17758

Lignin surface pulping with without acidic catalysts Pulping process with influences on monolignol ratio linkages

numbernature of functional groups morphology molecular weight

polydispersity surface polarity and topography

Lignin structure as function of

bull plant type (cultivation harvesting conditions)

bull pulping process (solvent temperature pressure catalysts)

Pulping Process and Lignin Structure

Hansen et al (2016) J Polym Environ 24 85-95

doi101007s10924-015-0746-3

11

Beech M giganteus

2012

M giganteus

2014

M robustus M sinensis

Mw

[gmol]

1553 1075 1004 943 934

Mn

[gmol]

533 700 675 646 637

PDI 292 154 149 146 147

bull Lignin MW and Polydispersity

bull Biomass source beech versus miscanthus

bull Monolignol content via HSQC NMR

Miscanthus X giganteus

bull H highest in leaves and early harvest

bull S highest in stem and late harvest

12

Witzler et al (2018) Molecules 231885 doi103390molecules23081885

Biomass Influence on Lignin

Amount and Structure

ISO 149002001(E) 31P NMR

Acetylation Phosphorylation

OH Number of Lignins

Kraft

lignin

Yield

[g100 g black liq]

Mw

[gmol]

OH number

[mmolg]

Tg

[degC]

pH 2 2140 1885 481 1479

pH 3 1465 1797 502 1472

pH 4 1353 1731 565 1425

pH 5 1295 1504 600 1340

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 2: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

LCF for Material Development

Lignocellulose Feedstock (LCF) ndash a Renewable Resource for Energy and Material Development Cellulose (C) Hemicellulose (HC) Lignin (L)

Kamm et al (2006) In Biorefineries ndash Industrial Processes and ProductsWiley-VCH

El Khaldi-Hansen et al (2016) In Analytical Techniques and Methods for BiomassSpringer

Alzagameem et al (2018) In Biomass and Green Chemistry Springer

Biomass Pulping Purification Analysis Modification Application

bull Demethylation

bull Depolymerisation

bull Wood

bull Grass

bull Kraft

bull Organosolv

bull SEC NMR

bull SAXSWAXS CT-EM

2

Biobased Polymers for Construction and Packaging

bull Lignin-based Polymers for Construction Applictions

BMBF (2014-18) University Bonn Innovatec GmbH DLR Koumlln

Henkel AGampCoKG Dynea Erkner GmbH

bull Miscanthus Cascade Utilization

BioSC SEED (201516) University BonnCKA RWTH Aachen

bull Biobased Materials EFRE Programme (EUNRW 2017-20)

Coordination University BonnCKA (gt 25 regional SME)

bull Submitted to BMBF FHprofUnt (Spectral Service AG Uni WellingtonNZ)

Polymer Analysis via 2D NMR amp Multivariate Analysis

bull Submitted to BMBF Bioeconomy (RWTH Aachen DLR Cologne WOOD Kplus Linz)

Lignin Depolymerization to Tailored Components

Biocompatible Polymers for Drug Release and Tissue Regeneration

bull Optimization of Optimaixreg for Tissue Engineering

EUZiel2NRW (2012-16) Matricel GmbH Herzogenrath University Heidelberg

bull Personalised Cell-based Implantates for Bone Defects of Critical Size

BMBF (2015-19) Uni Duumlsseldorf DKFZUni Heidelberg Uni Jena Uniklinikum Muumlnster

Zellwerk GmbH Berlin botiss biomaterials GmbH Berlin (straumann group)

bull Hybrid-Materials for Bone Regeneration

BMBF (2019-22) Uni Jena Uni Bonn Artoss GmbH Spectral Service AG

H-BRS and University BonnCampus Klein-Altendorf (180 ha)

City of Rheinbach

bio innovation park Rheinland

4

Campus Klein-Altendorf Field Lab University Bonn

Cultivation of gt 30 Miscanthus genotypes

Miscanthus

bull low input crop recycles nutrients stored in roots

little to no fertilizer after being established

bull C4 plant ca 5 of earths plant biomass

30 of terrestrial carbon fixation

(oxaloacetates versus D-3-phosphoglycerat)

bull high photosynthesis yield at arid condition

assisting CO2 sequestration

bull perennial plant saving production costs

decreasing environmental impact

no tillage less soil compactionerosion

bull Miscanthus cascade utilization project

5

Lignocellulose Feedstock

Pude R et al GCB Bioenergy (2017) 9 274ndash279

Lignin

Calorific

value kWhkg

Ash

Moisture

Density

kgmsup3

Miscanthus X

giganteus

19 49 15-35 lt 20 120

Wood pellet

(spruce)

22 51 2-3 gt 32 250

Miscanthus versus Wood Pellets

Miscanthus sachariflorus Miscanthus sinensis

Miscanthus x giganteus originally cultivated in Asia

hybrid of Miscanthus sachariflorus sinensis

2013 ca 67500 t Miscanthus in Germany

ca 4500 ha (15 t ha)

85 energy recovery (wood chips pellets) Harvesting in Sept Jan andor April

Variation of plant constitutionwater content

6

Biomass Sources

Kraska T et al (2018) Scientia Horticulturae 235 205ndash213

Alfeld (SAPPI) Mg sulphite 130000

Ehingen (SAPPI) Mg sulphite 130000

Mannheim (SCA) Mg sulphite 220000

Stockstadt (SAPPI) Mg sulphite 140000

Blankenstein (Mercer) Kraft 300000

Stendal (Mercer) Kraft 600000

Company Pulping Process Capacity (ta)

Lignocellulose Feedstock

7

Global annual availability ca 70 Mio t Annual growth rate of 2 until 2023

Increasing total market size US$ 904 Mio in 2017 to US$ 1021 Mio in 2023

Benchmark energetic use of blak liquor

Lignin Market - Forecasts from 2018 to 2023 ID 4479455 Report February 2018

Lignin Composition amp 3D Structure

bull ether bonds szlig-O-4rsquo α-O-4rsquo 4-O-5rsquo

bull more complex linkages

bull C-C-bonds szlig-szligrsquo szlig-1rsquo 5-5rsquo

Approaches in lignin research

1 Exploitation of unmodified lignin

and improve access to functional group

(via optimizing the isolation process)

2 Chemical modification of lignin

functionalization versus depolymerization

Soft wood G units

Hart wood GS units

Grasses HGS units

Alzagameem A et al (2018) Molecules 23 2664

doi103390molecules23102664

Target monomers andor oligomers of low polydispersity and appropriate functionality for polymer synthesis

Parameter temperature pH reaction time catalyst ozon concentration flow rate light source intensity

photofragmentation via 1O2 oxidative fragmentation via O3

Ozonolysis of lignin model compounds (Sonntag 2009) Photolysis of lignin model compounds (Kansal 2008)

9

Do et al Preprints 2017 2017100128 doi1020944preprints2017100128v1)

Lignin Depolymerization

0 20 40 60 80 100 120

90

95

100

105

110

115

120

125

130

0 1 2 3 4 5 6

pH

-val

ue

[-]

Time [h]

ozonolysis versus photolysis

pH decrease indicating mineralization for ozonolysis

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

000075150225300375

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

0

8

24

32

48

56

72

80

96

104

UV absorbance at 280 nm

decreases during ozonolysis but

stays approximately constant in photolysis

Lignin for Energy Storage

10

ozonolysis

photolysis

MeO

O

OMe

O

CH3

O

O

O O

Xyl

OH

OH

Xyl

Carbohydrate fragmentPhenolics fragment

Lignin fragment

Pulping process AFEX NH3

H2O steam

explosion

Organosolv

methanol

Sulfonate

Lignin ww 25 52 94 71

Sugar ww 5 21 none 12

Solubility low low high low

Tg (degC DSC) 87 75 123 113

Td (degC DSC) 341 367 346 374

MW (SEC) gmol asymp 1500 asymp 2000 asymp 2000 asymp 15000

H G S unit 207010 134245 324919 17758

Lignin surface pulping with without acidic catalysts Pulping process with influences on monolignol ratio linkages

numbernature of functional groups morphology molecular weight

polydispersity surface polarity and topography

Lignin structure as function of

bull plant type (cultivation harvesting conditions)

bull pulping process (solvent temperature pressure catalysts)

Pulping Process and Lignin Structure

Hansen et al (2016) J Polym Environ 24 85-95

doi101007s10924-015-0746-3

11

Beech M giganteus

2012

M giganteus

2014

M robustus M sinensis

Mw

[gmol]

1553 1075 1004 943 934

Mn

[gmol]

533 700 675 646 637

PDI 292 154 149 146 147

bull Lignin MW and Polydispersity

bull Biomass source beech versus miscanthus

bull Monolignol content via HSQC NMR

Miscanthus X giganteus

bull H highest in leaves and early harvest

bull S highest in stem and late harvest

12

Witzler et al (2018) Molecules 231885 doi103390molecules23081885

Biomass Influence on Lignin

Amount and Structure

ISO 149002001(E) 31P NMR

Acetylation Phosphorylation

OH Number of Lignins

Kraft

lignin

Yield

[g100 g black liq]

Mw

[gmol]

OH number

[mmolg]

Tg

[degC]

pH 2 2140 1885 481 1479

pH 3 1465 1797 502 1472

pH 4 1353 1731 565 1425

pH 5 1295 1504 600 1340

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 3: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

Biobased Polymers for Construction and Packaging

bull Lignin-based Polymers for Construction Applictions

BMBF (2014-18) University Bonn Innovatec GmbH DLR Koumlln

Henkel AGampCoKG Dynea Erkner GmbH

bull Miscanthus Cascade Utilization

BioSC SEED (201516) University BonnCKA RWTH Aachen

bull Biobased Materials EFRE Programme (EUNRW 2017-20)

Coordination University BonnCKA (gt 25 regional SME)

bull Submitted to BMBF FHprofUnt (Spectral Service AG Uni WellingtonNZ)

Polymer Analysis via 2D NMR amp Multivariate Analysis

bull Submitted to BMBF Bioeconomy (RWTH Aachen DLR Cologne WOOD Kplus Linz)

Lignin Depolymerization to Tailored Components

Biocompatible Polymers for Drug Release and Tissue Regeneration

bull Optimization of Optimaixreg for Tissue Engineering

EUZiel2NRW (2012-16) Matricel GmbH Herzogenrath University Heidelberg

bull Personalised Cell-based Implantates for Bone Defects of Critical Size

BMBF (2015-19) Uni Duumlsseldorf DKFZUni Heidelberg Uni Jena Uniklinikum Muumlnster

Zellwerk GmbH Berlin botiss biomaterials GmbH Berlin (straumann group)

bull Hybrid-Materials for Bone Regeneration

BMBF (2019-22) Uni Jena Uni Bonn Artoss GmbH Spectral Service AG

H-BRS and University BonnCampus Klein-Altendorf (180 ha)

City of Rheinbach

bio innovation park Rheinland

4

Campus Klein-Altendorf Field Lab University Bonn

Cultivation of gt 30 Miscanthus genotypes

Miscanthus

bull low input crop recycles nutrients stored in roots

little to no fertilizer after being established

bull C4 plant ca 5 of earths plant biomass

30 of terrestrial carbon fixation

(oxaloacetates versus D-3-phosphoglycerat)

bull high photosynthesis yield at arid condition

assisting CO2 sequestration

bull perennial plant saving production costs

decreasing environmental impact

no tillage less soil compactionerosion

bull Miscanthus cascade utilization project

5

Lignocellulose Feedstock

Pude R et al GCB Bioenergy (2017) 9 274ndash279

Lignin

Calorific

value kWhkg

Ash

Moisture

Density

kgmsup3

Miscanthus X

giganteus

19 49 15-35 lt 20 120

Wood pellet

(spruce)

22 51 2-3 gt 32 250

Miscanthus versus Wood Pellets

Miscanthus sachariflorus Miscanthus sinensis

Miscanthus x giganteus originally cultivated in Asia

hybrid of Miscanthus sachariflorus sinensis

2013 ca 67500 t Miscanthus in Germany

ca 4500 ha (15 t ha)

85 energy recovery (wood chips pellets) Harvesting in Sept Jan andor April

Variation of plant constitutionwater content

6

Biomass Sources

Kraska T et al (2018) Scientia Horticulturae 235 205ndash213

Alfeld (SAPPI) Mg sulphite 130000

Ehingen (SAPPI) Mg sulphite 130000

Mannheim (SCA) Mg sulphite 220000

Stockstadt (SAPPI) Mg sulphite 140000

Blankenstein (Mercer) Kraft 300000

Stendal (Mercer) Kraft 600000

Company Pulping Process Capacity (ta)

Lignocellulose Feedstock

7

Global annual availability ca 70 Mio t Annual growth rate of 2 until 2023

Increasing total market size US$ 904 Mio in 2017 to US$ 1021 Mio in 2023

Benchmark energetic use of blak liquor

Lignin Market - Forecasts from 2018 to 2023 ID 4479455 Report February 2018

Lignin Composition amp 3D Structure

bull ether bonds szlig-O-4rsquo α-O-4rsquo 4-O-5rsquo

bull more complex linkages

bull C-C-bonds szlig-szligrsquo szlig-1rsquo 5-5rsquo

Approaches in lignin research

1 Exploitation of unmodified lignin

and improve access to functional group

(via optimizing the isolation process)

2 Chemical modification of lignin

functionalization versus depolymerization

Soft wood G units

Hart wood GS units

Grasses HGS units

Alzagameem A et al (2018) Molecules 23 2664

doi103390molecules23102664

Target monomers andor oligomers of low polydispersity and appropriate functionality for polymer synthesis

Parameter temperature pH reaction time catalyst ozon concentration flow rate light source intensity

photofragmentation via 1O2 oxidative fragmentation via O3

Ozonolysis of lignin model compounds (Sonntag 2009) Photolysis of lignin model compounds (Kansal 2008)

9

Do et al Preprints 2017 2017100128 doi1020944preprints2017100128v1)

Lignin Depolymerization

0 20 40 60 80 100 120

90

95

100

105

110

115

120

125

130

0 1 2 3 4 5 6

pH

-val

ue

[-]

Time [h]

ozonolysis versus photolysis

pH decrease indicating mineralization for ozonolysis

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

000075150225300375

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

0

8

24

32

48

56

72

80

96

104

UV absorbance at 280 nm

decreases during ozonolysis but

stays approximately constant in photolysis

Lignin for Energy Storage

10

ozonolysis

photolysis

MeO

O

OMe

O

CH3

O

O

O O

Xyl

OH

OH

Xyl

Carbohydrate fragmentPhenolics fragment

Lignin fragment

Pulping process AFEX NH3

H2O steam

explosion

Organosolv

methanol

Sulfonate

Lignin ww 25 52 94 71

Sugar ww 5 21 none 12

Solubility low low high low

Tg (degC DSC) 87 75 123 113

Td (degC DSC) 341 367 346 374

MW (SEC) gmol asymp 1500 asymp 2000 asymp 2000 asymp 15000

H G S unit 207010 134245 324919 17758

Lignin surface pulping with without acidic catalysts Pulping process with influences on monolignol ratio linkages

numbernature of functional groups morphology molecular weight

polydispersity surface polarity and topography

Lignin structure as function of

bull plant type (cultivation harvesting conditions)

bull pulping process (solvent temperature pressure catalysts)

Pulping Process and Lignin Structure

Hansen et al (2016) J Polym Environ 24 85-95

doi101007s10924-015-0746-3

11

Beech M giganteus

2012

M giganteus

2014

M robustus M sinensis

Mw

[gmol]

1553 1075 1004 943 934

Mn

[gmol]

533 700 675 646 637

PDI 292 154 149 146 147

bull Lignin MW and Polydispersity

bull Biomass source beech versus miscanthus

bull Monolignol content via HSQC NMR

Miscanthus X giganteus

bull H highest in leaves and early harvest

bull S highest in stem and late harvest

12

Witzler et al (2018) Molecules 231885 doi103390molecules23081885

Biomass Influence on Lignin

Amount and Structure

ISO 149002001(E) 31P NMR

Acetylation Phosphorylation

OH Number of Lignins

Kraft

lignin

Yield

[g100 g black liq]

Mw

[gmol]

OH number

[mmolg]

Tg

[degC]

pH 2 2140 1885 481 1479

pH 3 1465 1797 502 1472

pH 4 1353 1731 565 1425

pH 5 1295 1504 600 1340

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 4: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

H-BRS and University BonnCampus Klein-Altendorf (180 ha)

City of Rheinbach

bio innovation park Rheinland

4

Campus Klein-Altendorf Field Lab University Bonn

Cultivation of gt 30 Miscanthus genotypes

Miscanthus

bull low input crop recycles nutrients stored in roots

little to no fertilizer after being established

bull C4 plant ca 5 of earths plant biomass

30 of terrestrial carbon fixation

(oxaloacetates versus D-3-phosphoglycerat)

bull high photosynthesis yield at arid condition

assisting CO2 sequestration

bull perennial plant saving production costs

decreasing environmental impact

no tillage less soil compactionerosion

bull Miscanthus cascade utilization project

5

Lignocellulose Feedstock

Pude R et al GCB Bioenergy (2017) 9 274ndash279

Lignin

Calorific

value kWhkg

Ash

Moisture

Density

kgmsup3

Miscanthus X

giganteus

19 49 15-35 lt 20 120

Wood pellet

(spruce)

22 51 2-3 gt 32 250

Miscanthus versus Wood Pellets

Miscanthus sachariflorus Miscanthus sinensis

Miscanthus x giganteus originally cultivated in Asia

hybrid of Miscanthus sachariflorus sinensis

2013 ca 67500 t Miscanthus in Germany

ca 4500 ha (15 t ha)

85 energy recovery (wood chips pellets) Harvesting in Sept Jan andor April

Variation of plant constitutionwater content

6

Biomass Sources

Kraska T et al (2018) Scientia Horticulturae 235 205ndash213

Alfeld (SAPPI) Mg sulphite 130000

Ehingen (SAPPI) Mg sulphite 130000

Mannheim (SCA) Mg sulphite 220000

Stockstadt (SAPPI) Mg sulphite 140000

Blankenstein (Mercer) Kraft 300000

Stendal (Mercer) Kraft 600000

Company Pulping Process Capacity (ta)

Lignocellulose Feedstock

7

Global annual availability ca 70 Mio t Annual growth rate of 2 until 2023

Increasing total market size US$ 904 Mio in 2017 to US$ 1021 Mio in 2023

Benchmark energetic use of blak liquor

Lignin Market - Forecasts from 2018 to 2023 ID 4479455 Report February 2018

Lignin Composition amp 3D Structure

bull ether bonds szlig-O-4rsquo α-O-4rsquo 4-O-5rsquo

bull more complex linkages

bull C-C-bonds szlig-szligrsquo szlig-1rsquo 5-5rsquo

Approaches in lignin research

1 Exploitation of unmodified lignin

and improve access to functional group

(via optimizing the isolation process)

2 Chemical modification of lignin

functionalization versus depolymerization

Soft wood G units

Hart wood GS units

Grasses HGS units

Alzagameem A et al (2018) Molecules 23 2664

doi103390molecules23102664

Target monomers andor oligomers of low polydispersity and appropriate functionality for polymer synthesis

Parameter temperature pH reaction time catalyst ozon concentration flow rate light source intensity

photofragmentation via 1O2 oxidative fragmentation via O3

Ozonolysis of lignin model compounds (Sonntag 2009) Photolysis of lignin model compounds (Kansal 2008)

9

Do et al Preprints 2017 2017100128 doi1020944preprints2017100128v1)

Lignin Depolymerization

0 20 40 60 80 100 120

90

95

100

105

110

115

120

125

130

0 1 2 3 4 5 6

pH

-val

ue

[-]

Time [h]

ozonolysis versus photolysis

pH decrease indicating mineralization for ozonolysis

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

000075150225300375

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

0

8

24

32

48

56

72

80

96

104

UV absorbance at 280 nm

decreases during ozonolysis but

stays approximately constant in photolysis

Lignin for Energy Storage

10

ozonolysis

photolysis

MeO

O

OMe

O

CH3

O

O

O O

Xyl

OH

OH

Xyl

Carbohydrate fragmentPhenolics fragment

Lignin fragment

Pulping process AFEX NH3

H2O steam

explosion

Organosolv

methanol

Sulfonate

Lignin ww 25 52 94 71

Sugar ww 5 21 none 12

Solubility low low high low

Tg (degC DSC) 87 75 123 113

Td (degC DSC) 341 367 346 374

MW (SEC) gmol asymp 1500 asymp 2000 asymp 2000 asymp 15000

H G S unit 207010 134245 324919 17758

Lignin surface pulping with without acidic catalysts Pulping process with influences on monolignol ratio linkages

numbernature of functional groups morphology molecular weight

polydispersity surface polarity and topography

Lignin structure as function of

bull plant type (cultivation harvesting conditions)

bull pulping process (solvent temperature pressure catalysts)

Pulping Process and Lignin Structure

Hansen et al (2016) J Polym Environ 24 85-95

doi101007s10924-015-0746-3

11

Beech M giganteus

2012

M giganteus

2014

M robustus M sinensis

Mw

[gmol]

1553 1075 1004 943 934

Mn

[gmol]

533 700 675 646 637

PDI 292 154 149 146 147

bull Lignin MW and Polydispersity

bull Biomass source beech versus miscanthus

bull Monolignol content via HSQC NMR

Miscanthus X giganteus

bull H highest in leaves and early harvest

bull S highest in stem and late harvest

12

Witzler et al (2018) Molecules 231885 doi103390molecules23081885

Biomass Influence on Lignin

Amount and Structure

ISO 149002001(E) 31P NMR

Acetylation Phosphorylation

OH Number of Lignins

Kraft

lignin

Yield

[g100 g black liq]

Mw

[gmol]

OH number

[mmolg]

Tg

[degC]

pH 2 2140 1885 481 1479

pH 3 1465 1797 502 1472

pH 4 1353 1731 565 1425

pH 5 1295 1504 600 1340

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 5: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

Campus Klein-Altendorf Field Lab University Bonn

Cultivation of gt 30 Miscanthus genotypes

Miscanthus

bull low input crop recycles nutrients stored in roots

little to no fertilizer after being established

bull C4 plant ca 5 of earths plant biomass

30 of terrestrial carbon fixation

(oxaloacetates versus D-3-phosphoglycerat)

bull high photosynthesis yield at arid condition

assisting CO2 sequestration

bull perennial plant saving production costs

decreasing environmental impact

no tillage less soil compactionerosion

bull Miscanthus cascade utilization project

5

Lignocellulose Feedstock

Pude R et al GCB Bioenergy (2017) 9 274ndash279

Lignin

Calorific

value kWhkg

Ash

Moisture

Density

kgmsup3

Miscanthus X

giganteus

19 49 15-35 lt 20 120

Wood pellet

(spruce)

22 51 2-3 gt 32 250

Miscanthus versus Wood Pellets

Miscanthus sachariflorus Miscanthus sinensis

Miscanthus x giganteus originally cultivated in Asia

hybrid of Miscanthus sachariflorus sinensis

2013 ca 67500 t Miscanthus in Germany

ca 4500 ha (15 t ha)

85 energy recovery (wood chips pellets) Harvesting in Sept Jan andor April

Variation of plant constitutionwater content

6

Biomass Sources

Kraska T et al (2018) Scientia Horticulturae 235 205ndash213

Alfeld (SAPPI) Mg sulphite 130000

Ehingen (SAPPI) Mg sulphite 130000

Mannheim (SCA) Mg sulphite 220000

Stockstadt (SAPPI) Mg sulphite 140000

Blankenstein (Mercer) Kraft 300000

Stendal (Mercer) Kraft 600000

Company Pulping Process Capacity (ta)

Lignocellulose Feedstock

7

Global annual availability ca 70 Mio t Annual growth rate of 2 until 2023

Increasing total market size US$ 904 Mio in 2017 to US$ 1021 Mio in 2023

Benchmark energetic use of blak liquor

Lignin Market - Forecasts from 2018 to 2023 ID 4479455 Report February 2018

Lignin Composition amp 3D Structure

bull ether bonds szlig-O-4rsquo α-O-4rsquo 4-O-5rsquo

bull more complex linkages

bull C-C-bonds szlig-szligrsquo szlig-1rsquo 5-5rsquo

Approaches in lignin research

1 Exploitation of unmodified lignin

and improve access to functional group

(via optimizing the isolation process)

2 Chemical modification of lignin

functionalization versus depolymerization

Soft wood G units

Hart wood GS units

Grasses HGS units

Alzagameem A et al (2018) Molecules 23 2664

doi103390molecules23102664

Target monomers andor oligomers of low polydispersity and appropriate functionality for polymer synthesis

Parameter temperature pH reaction time catalyst ozon concentration flow rate light source intensity

photofragmentation via 1O2 oxidative fragmentation via O3

Ozonolysis of lignin model compounds (Sonntag 2009) Photolysis of lignin model compounds (Kansal 2008)

9

Do et al Preprints 2017 2017100128 doi1020944preprints2017100128v1)

Lignin Depolymerization

0 20 40 60 80 100 120

90

95

100

105

110

115

120

125

130

0 1 2 3 4 5 6

pH

-val

ue

[-]

Time [h]

ozonolysis versus photolysis

pH decrease indicating mineralization for ozonolysis

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

000075150225300375

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

0

8

24

32

48

56

72

80

96

104

UV absorbance at 280 nm

decreases during ozonolysis but

stays approximately constant in photolysis

Lignin for Energy Storage

10

ozonolysis

photolysis

MeO

O

OMe

O

CH3

O

O

O O

Xyl

OH

OH

Xyl

Carbohydrate fragmentPhenolics fragment

Lignin fragment

Pulping process AFEX NH3

H2O steam

explosion

Organosolv

methanol

Sulfonate

Lignin ww 25 52 94 71

Sugar ww 5 21 none 12

Solubility low low high low

Tg (degC DSC) 87 75 123 113

Td (degC DSC) 341 367 346 374

MW (SEC) gmol asymp 1500 asymp 2000 asymp 2000 asymp 15000

H G S unit 207010 134245 324919 17758

Lignin surface pulping with without acidic catalysts Pulping process with influences on monolignol ratio linkages

numbernature of functional groups morphology molecular weight

polydispersity surface polarity and topography

Lignin structure as function of

bull plant type (cultivation harvesting conditions)

bull pulping process (solvent temperature pressure catalysts)

Pulping Process and Lignin Structure

Hansen et al (2016) J Polym Environ 24 85-95

doi101007s10924-015-0746-3

11

Beech M giganteus

2012

M giganteus

2014

M robustus M sinensis

Mw

[gmol]

1553 1075 1004 943 934

Mn

[gmol]

533 700 675 646 637

PDI 292 154 149 146 147

bull Lignin MW and Polydispersity

bull Biomass source beech versus miscanthus

bull Monolignol content via HSQC NMR

Miscanthus X giganteus

bull H highest in leaves and early harvest

bull S highest in stem and late harvest

12

Witzler et al (2018) Molecules 231885 doi103390molecules23081885

Biomass Influence on Lignin

Amount and Structure

ISO 149002001(E) 31P NMR

Acetylation Phosphorylation

OH Number of Lignins

Kraft

lignin

Yield

[g100 g black liq]

Mw

[gmol]

OH number

[mmolg]

Tg

[degC]

pH 2 2140 1885 481 1479

pH 3 1465 1797 502 1472

pH 4 1353 1731 565 1425

pH 5 1295 1504 600 1340

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 6: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

Lignin

Calorific

value kWhkg

Ash

Moisture

Density

kgmsup3

Miscanthus X

giganteus

19 49 15-35 lt 20 120

Wood pellet

(spruce)

22 51 2-3 gt 32 250

Miscanthus versus Wood Pellets

Miscanthus sachariflorus Miscanthus sinensis

Miscanthus x giganteus originally cultivated in Asia

hybrid of Miscanthus sachariflorus sinensis

2013 ca 67500 t Miscanthus in Germany

ca 4500 ha (15 t ha)

85 energy recovery (wood chips pellets) Harvesting in Sept Jan andor April

Variation of plant constitutionwater content

6

Biomass Sources

Kraska T et al (2018) Scientia Horticulturae 235 205ndash213

Alfeld (SAPPI) Mg sulphite 130000

Ehingen (SAPPI) Mg sulphite 130000

Mannheim (SCA) Mg sulphite 220000

Stockstadt (SAPPI) Mg sulphite 140000

Blankenstein (Mercer) Kraft 300000

Stendal (Mercer) Kraft 600000

Company Pulping Process Capacity (ta)

Lignocellulose Feedstock

7

Global annual availability ca 70 Mio t Annual growth rate of 2 until 2023

Increasing total market size US$ 904 Mio in 2017 to US$ 1021 Mio in 2023

Benchmark energetic use of blak liquor

Lignin Market - Forecasts from 2018 to 2023 ID 4479455 Report February 2018

Lignin Composition amp 3D Structure

bull ether bonds szlig-O-4rsquo α-O-4rsquo 4-O-5rsquo

bull more complex linkages

bull C-C-bonds szlig-szligrsquo szlig-1rsquo 5-5rsquo

Approaches in lignin research

1 Exploitation of unmodified lignin

and improve access to functional group

(via optimizing the isolation process)

2 Chemical modification of lignin

functionalization versus depolymerization

Soft wood G units

Hart wood GS units

Grasses HGS units

Alzagameem A et al (2018) Molecules 23 2664

doi103390molecules23102664

Target monomers andor oligomers of low polydispersity and appropriate functionality for polymer synthesis

Parameter temperature pH reaction time catalyst ozon concentration flow rate light source intensity

photofragmentation via 1O2 oxidative fragmentation via O3

Ozonolysis of lignin model compounds (Sonntag 2009) Photolysis of lignin model compounds (Kansal 2008)

9

Do et al Preprints 2017 2017100128 doi1020944preprints2017100128v1)

Lignin Depolymerization

0 20 40 60 80 100 120

90

95

100

105

110

115

120

125

130

0 1 2 3 4 5 6

pH

-val

ue

[-]

Time [h]

ozonolysis versus photolysis

pH decrease indicating mineralization for ozonolysis

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

000075150225300375

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

0

8

24

32

48

56

72

80

96

104

UV absorbance at 280 nm

decreases during ozonolysis but

stays approximately constant in photolysis

Lignin for Energy Storage

10

ozonolysis

photolysis

MeO

O

OMe

O

CH3

O

O

O O

Xyl

OH

OH

Xyl

Carbohydrate fragmentPhenolics fragment

Lignin fragment

Pulping process AFEX NH3

H2O steam

explosion

Organosolv

methanol

Sulfonate

Lignin ww 25 52 94 71

Sugar ww 5 21 none 12

Solubility low low high low

Tg (degC DSC) 87 75 123 113

Td (degC DSC) 341 367 346 374

MW (SEC) gmol asymp 1500 asymp 2000 asymp 2000 asymp 15000

H G S unit 207010 134245 324919 17758

Lignin surface pulping with without acidic catalysts Pulping process with influences on monolignol ratio linkages

numbernature of functional groups morphology molecular weight

polydispersity surface polarity and topography

Lignin structure as function of

bull plant type (cultivation harvesting conditions)

bull pulping process (solvent temperature pressure catalysts)

Pulping Process and Lignin Structure

Hansen et al (2016) J Polym Environ 24 85-95

doi101007s10924-015-0746-3

11

Beech M giganteus

2012

M giganteus

2014

M robustus M sinensis

Mw

[gmol]

1553 1075 1004 943 934

Mn

[gmol]

533 700 675 646 637

PDI 292 154 149 146 147

bull Lignin MW and Polydispersity

bull Biomass source beech versus miscanthus

bull Monolignol content via HSQC NMR

Miscanthus X giganteus

bull H highest in leaves and early harvest

bull S highest in stem and late harvest

12

Witzler et al (2018) Molecules 231885 doi103390molecules23081885

Biomass Influence on Lignin

Amount and Structure

ISO 149002001(E) 31P NMR

Acetylation Phosphorylation

OH Number of Lignins

Kraft

lignin

Yield

[g100 g black liq]

Mw

[gmol]

OH number

[mmolg]

Tg

[degC]

pH 2 2140 1885 481 1479

pH 3 1465 1797 502 1472

pH 4 1353 1731 565 1425

pH 5 1295 1504 600 1340

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 7: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

Alfeld (SAPPI) Mg sulphite 130000

Ehingen (SAPPI) Mg sulphite 130000

Mannheim (SCA) Mg sulphite 220000

Stockstadt (SAPPI) Mg sulphite 140000

Blankenstein (Mercer) Kraft 300000

Stendal (Mercer) Kraft 600000

Company Pulping Process Capacity (ta)

Lignocellulose Feedstock

7

Global annual availability ca 70 Mio t Annual growth rate of 2 until 2023

Increasing total market size US$ 904 Mio in 2017 to US$ 1021 Mio in 2023

Benchmark energetic use of blak liquor

Lignin Market - Forecasts from 2018 to 2023 ID 4479455 Report February 2018

Lignin Composition amp 3D Structure

bull ether bonds szlig-O-4rsquo α-O-4rsquo 4-O-5rsquo

bull more complex linkages

bull C-C-bonds szlig-szligrsquo szlig-1rsquo 5-5rsquo

Approaches in lignin research

1 Exploitation of unmodified lignin

and improve access to functional group

(via optimizing the isolation process)

2 Chemical modification of lignin

functionalization versus depolymerization

Soft wood G units

Hart wood GS units

Grasses HGS units

Alzagameem A et al (2018) Molecules 23 2664

doi103390molecules23102664

Target monomers andor oligomers of low polydispersity and appropriate functionality for polymer synthesis

Parameter temperature pH reaction time catalyst ozon concentration flow rate light source intensity

photofragmentation via 1O2 oxidative fragmentation via O3

Ozonolysis of lignin model compounds (Sonntag 2009) Photolysis of lignin model compounds (Kansal 2008)

9

Do et al Preprints 2017 2017100128 doi1020944preprints2017100128v1)

Lignin Depolymerization

0 20 40 60 80 100 120

90

95

100

105

110

115

120

125

130

0 1 2 3 4 5 6

pH

-val

ue

[-]

Time [h]

ozonolysis versus photolysis

pH decrease indicating mineralization for ozonolysis

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

000075150225300375

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

0

8

24

32

48

56

72

80

96

104

UV absorbance at 280 nm

decreases during ozonolysis but

stays approximately constant in photolysis

Lignin for Energy Storage

10

ozonolysis

photolysis

MeO

O

OMe

O

CH3

O

O

O O

Xyl

OH

OH

Xyl

Carbohydrate fragmentPhenolics fragment

Lignin fragment

Pulping process AFEX NH3

H2O steam

explosion

Organosolv

methanol

Sulfonate

Lignin ww 25 52 94 71

Sugar ww 5 21 none 12

Solubility low low high low

Tg (degC DSC) 87 75 123 113

Td (degC DSC) 341 367 346 374

MW (SEC) gmol asymp 1500 asymp 2000 asymp 2000 asymp 15000

H G S unit 207010 134245 324919 17758

Lignin surface pulping with without acidic catalysts Pulping process with influences on monolignol ratio linkages

numbernature of functional groups morphology molecular weight

polydispersity surface polarity and topography

Lignin structure as function of

bull plant type (cultivation harvesting conditions)

bull pulping process (solvent temperature pressure catalysts)

Pulping Process and Lignin Structure

Hansen et al (2016) J Polym Environ 24 85-95

doi101007s10924-015-0746-3

11

Beech M giganteus

2012

M giganteus

2014

M robustus M sinensis

Mw

[gmol]

1553 1075 1004 943 934

Mn

[gmol]

533 700 675 646 637

PDI 292 154 149 146 147

bull Lignin MW and Polydispersity

bull Biomass source beech versus miscanthus

bull Monolignol content via HSQC NMR

Miscanthus X giganteus

bull H highest in leaves and early harvest

bull S highest in stem and late harvest

12

Witzler et al (2018) Molecules 231885 doi103390molecules23081885

Biomass Influence on Lignin

Amount and Structure

ISO 149002001(E) 31P NMR

Acetylation Phosphorylation

OH Number of Lignins

Kraft

lignin

Yield

[g100 g black liq]

Mw

[gmol]

OH number

[mmolg]

Tg

[degC]

pH 2 2140 1885 481 1479

pH 3 1465 1797 502 1472

pH 4 1353 1731 565 1425

pH 5 1295 1504 600 1340

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 8: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

Lignin Composition amp 3D Structure

bull ether bonds szlig-O-4rsquo α-O-4rsquo 4-O-5rsquo

bull more complex linkages

bull C-C-bonds szlig-szligrsquo szlig-1rsquo 5-5rsquo

Approaches in lignin research

1 Exploitation of unmodified lignin

and improve access to functional group

(via optimizing the isolation process)

2 Chemical modification of lignin

functionalization versus depolymerization

Soft wood G units

Hart wood GS units

Grasses HGS units

Alzagameem A et al (2018) Molecules 23 2664

doi103390molecules23102664

Target monomers andor oligomers of low polydispersity and appropriate functionality for polymer synthesis

Parameter temperature pH reaction time catalyst ozon concentration flow rate light source intensity

photofragmentation via 1O2 oxidative fragmentation via O3

Ozonolysis of lignin model compounds (Sonntag 2009) Photolysis of lignin model compounds (Kansal 2008)

9

Do et al Preprints 2017 2017100128 doi1020944preprints2017100128v1)

Lignin Depolymerization

0 20 40 60 80 100 120

90

95

100

105

110

115

120

125

130

0 1 2 3 4 5 6

pH

-val

ue

[-]

Time [h]

ozonolysis versus photolysis

pH decrease indicating mineralization for ozonolysis

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

000075150225300375

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

0

8

24

32

48

56

72

80

96

104

UV absorbance at 280 nm

decreases during ozonolysis but

stays approximately constant in photolysis

Lignin for Energy Storage

10

ozonolysis

photolysis

MeO

O

OMe

O

CH3

O

O

O O

Xyl

OH

OH

Xyl

Carbohydrate fragmentPhenolics fragment

Lignin fragment

Pulping process AFEX NH3

H2O steam

explosion

Organosolv

methanol

Sulfonate

Lignin ww 25 52 94 71

Sugar ww 5 21 none 12

Solubility low low high low

Tg (degC DSC) 87 75 123 113

Td (degC DSC) 341 367 346 374

MW (SEC) gmol asymp 1500 asymp 2000 asymp 2000 asymp 15000

H G S unit 207010 134245 324919 17758

Lignin surface pulping with without acidic catalysts Pulping process with influences on monolignol ratio linkages

numbernature of functional groups morphology molecular weight

polydispersity surface polarity and topography

Lignin structure as function of

bull plant type (cultivation harvesting conditions)

bull pulping process (solvent temperature pressure catalysts)

Pulping Process and Lignin Structure

Hansen et al (2016) J Polym Environ 24 85-95

doi101007s10924-015-0746-3

11

Beech M giganteus

2012

M giganteus

2014

M robustus M sinensis

Mw

[gmol]

1553 1075 1004 943 934

Mn

[gmol]

533 700 675 646 637

PDI 292 154 149 146 147

bull Lignin MW and Polydispersity

bull Biomass source beech versus miscanthus

bull Monolignol content via HSQC NMR

Miscanthus X giganteus

bull H highest in leaves and early harvest

bull S highest in stem and late harvest

12

Witzler et al (2018) Molecules 231885 doi103390molecules23081885

Biomass Influence on Lignin

Amount and Structure

ISO 149002001(E) 31P NMR

Acetylation Phosphorylation

OH Number of Lignins

Kraft

lignin

Yield

[g100 g black liq]

Mw

[gmol]

OH number

[mmolg]

Tg

[degC]

pH 2 2140 1885 481 1479

pH 3 1465 1797 502 1472

pH 4 1353 1731 565 1425

pH 5 1295 1504 600 1340

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 9: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

Target monomers andor oligomers of low polydispersity and appropriate functionality for polymer synthesis

Parameter temperature pH reaction time catalyst ozon concentration flow rate light source intensity

photofragmentation via 1O2 oxidative fragmentation via O3

Ozonolysis of lignin model compounds (Sonntag 2009) Photolysis of lignin model compounds (Kansal 2008)

9

Do et al Preprints 2017 2017100128 doi1020944preprints2017100128v1)

Lignin Depolymerization

0 20 40 60 80 100 120

90

95

100

105

110

115

120

125

130

0 1 2 3 4 5 6

pH

-val

ue

[-]

Time [h]

ozonolysis versus photolysis

pH decrease indicating mineralization for ozonolysis

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

000075150225300375

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

0

8

24

32

48

56

72

80

96

104

UV absorbance at 280 nm

decreases during ozonolysis but

stays approximately constant in photolysis

Lignin for Energy Storage

10

ozonolysis

photolysis

MeO

O

OMe

O

CH3

O

O

O O

Xyl

OH

OH

Xyl

Carbohydrate fragmentPhenolics fragment

Lignin fragment

Pulping process AFEX NH3

H2O steam

explosion

Organosolv

methanol

Sulfonate

Lignin ww 25 52 94 71

Sugar ww 5 21 none 12

Solubility low low high low

Tg (degC DSC) 87 75 123 113

Td (degC DSC) 341 367 346 374

MW (SEC) gmol asymp 1500 asymp 2000 asymp 2000 asymp 15000

H G S unit 207010 134245 324919 17758

Lignin surface pulping with without acidic catalysts Pulping process with influences on monolignol ratio linkages

numbernature of functional groups morphology molecular weight

polydispersity surface polarity and topography

Lignin structure as function of

bull plant type (cultivation harvesting conditions)

bull pulping process (solvent temperature pressure catalysts)

Pulping Process and Lignin Structure

Hansen et al (2016) J Polym Environ 24 85-95

doi101007s10924-015-0746-3

11

Beech M giganteus

2012

M giganteus

2014

M robustus M sinensis

Mw

[gmol]

1553 1075 1004 943 934

Mn

[gmol]

533 700 675 646 637

PDI 292 154 149 146 147

bull Lignin MW and Polydispersity

bull Biomass source beech versus miscanthus

bull Monolignol content via HSQC NMR

Miscanthus X giganteus

bull H highest in leaves and early harvest

bull S highest in stem and late harvest

12

Witzler et al (2018) Molecules 231885 doi103390molecules23081885

Biomass Influence on Lignin

Amount and Structure

ISO 149002001(E) 31P NMR

Acetylation Phosphorylation

OH Number of Lignins

Kraft

lignin

Yield

[g100 g black liq]

Mw

[gmol]

OH number

[mmolg]

Tg

[degC]

pH 2 2140 1885 481 1479

pH 3 1465 1797 502 1472

pH 4 1353 1731 565 1425

pH 5 1295 1504 600 1340

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 10: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

0 20 40 60 80 100 120

90

95

100

105

110

115

120

125

130

0 1 2 3 4 5 6

pH

-val

ue

[-]

Time [h]

ozonolysis versus photolysis

pH decrease indicating mineralization for ozonolysis

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

000075150225300375

00

05

10

15

20

25

200 250 300 350 400

Ab

sorb

ance

[-]

Wavelength [nm]

0

8

24

32

48

56

72

80

96

104

UV absorbance at 280 nm

decreases during ozonolysis but

stays approximately constant in photolysis

Lignin for Energy Storage

10

ozonolysis

photolysis

MeO

O

OMe

O

CH3

O

O

O O

Xyl

OH

OH

Xyl

Carbohydrate fragmentPhenolics fragment

Lignin fragment

Pulping process AFEX NH3

H2O steam

explosion

Organosolv

methanol

Sulfonate

Lignin ww 25 52 94 71

Sugar ww 5 21 none 12

Solubility low low high low

Tg (degC DSC) 87 75 123 113

Td (degC DSC) 341 367 346 374

MW (SEC) gmol asymp 1500 asymp 2000 asymp 2000 asymp 15000

H G S unit 207010 134245 324919 17758

Lignin surface pulping with without acidic catalysts Pulping process with influences on monolignol ratio linkages

numbernature of functional groups morphology molecular weight

polydispersity surface polarity and topography

Lignin structure as function of

bull plant type (cultivation harvesting conditions)

bull pulping process (solvent temperature pressure catalysts)

Pulping Process and Lignin Structure

Hansen et al (2016) J Polym Environ 24 85-95

doi101007s10924-015-0746-3

11

Beech M giganteus

2012

M giganteus

2014

M robustus M sinensis

Mw

[gmol]

1553 1075 1004 943 934

Mn

[gmol]

533 700 675 646 637

PDI 292 154 149 146 147

bull Lignin MW and Polydispersity

bull Biomass source beech versus miscanthus

bull Monolignol content via HSQC NMR

Miscanthus X giganteus

bull H highest in leaves and early harvest

bull S highest in stem and late harvest

12

Witzler et al (2018) Molecules 231885 doi103390molecules23081885

Biomass Influence on Lignin

Amount and Structure

ISO 149002001(E) 31P NMR

Acetylation Phosphorylation

OH Number of Lignins

Kraft

lignin

Yield

[g100 g black liq]

Mw

[gmol]

OH number

[mmolg]

Tg

[degC]

pH 2 2140 1885 481 1479

pH 3 1465 1797 502 1472

pH 4 1353 1731 565 1425

pH 5 1295 1504 600 1340

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 11: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

MeO

O

OMe

O

CH3

O

O

O O

Xyl

OH

OH

Xyl

Carbohydrate fragmentPhenolics fragment

Lignin fragment

Pulping process AFEX NH3

H2O steam

explosion

Organosolv

methanol

Sulfonate

Lignin ww 25 52 94 71

Sugar ww 5 21 none 12

Solubility low low high low

Tg (degC DSC) 87 75 123 113

Td (degC DSC) 341 367 346 374

MW (SEC) gmol asymp 1500 asymp 2000 asymp 2000 asymp 15000

H G S unit 207010 134245 324919 17758

Lignin surface pulping with without acidic catalysts Pulping process with influences on monolignol ratio linkages

numbernature of functional groups morphology molecular weight

polydispersity surface polarity and topography

Lignin structure as function of

bull plant type (cultivation harvesting conditions)

bull pulping process (solvent temperature pressure catalysts)

Pulping Process and Lignin Structure

Hansen et al (2016) J Polym Environ 24 85-95

doi101007s10924-015-0746-3

11

Beech M giganteus

2012

M giganteus

2014

M robustus M sinensis

Mw

[gmol]

1553 1075 1004 943 934

Mn

[gmol]

533 700 675 646 637

PDI 292 154 149 146 147

bull Lignin MW and Polydispersity

bull Biomass source beech versus miscanthus

bull Monolignol content via HSQC NMR

Miscanthus X giganteus

bull H highest in leaves and early harvest

bull S highest in stem and late harvest

12

Witzler et al (2018) Molecules 231885 doi103390molecules23081885

Biomass Influence on Lignin

Amount and Structure

ISO 149002001(E) 31P NMR

Acetylation Phosphorylation

OH Number of Lignins

Kraft

lignin

Yield

[g100 g black liq]

Mw

[gmol]

OH number

[mmolg]

Tg

[degC]

pH 2 2140 1885 481 1479

pH 3 1465 1797 502 1472

pH 4 1353 1731 565 1425

pH 5 1295 1504 600 1340

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 12: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

Beech M giganteus

2012

M giganteus

2014

M robustus M sinensis

Mw

[gmol]

1553 1075 1004 943 934

Mn

[gmol]

533 700 675 646 637

PDI 292 154 149 146 147

bull Lignin MW and Polydispersity

bull Biomass source beech versus miscanthus

bull Monolignol content via HSQC NMR

Miscanthus X giganteus

bull H highest in leaves and early harvest

bull S highest in stem and late harvest

12

Witzler et al (2018) Molecules 231885 doi103390molecules23081885

Biomass Influence on Lignin

Amount and Structure

ISO 149002001(E) 31P NMR

Acetylation Phosphorylation

OH Number of Lignins

Kraft

lignin

Yield

[g100 g black liq]

Mw

[gmol]

OH number

[mmolg]

Tg

[degC]

pH 2 2140 1885 481 1479

pH 3 1465 1797 502 1472

pH 4 1353 1731 565 1425

pH 5 1295 1504 600 1340

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 13: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

ISO 149002001(E) 31P NMR

Acetylation Phosphorylation

OH Number of Lignins

Kraft

lignin

Yield

[g100 g black liq]

Mw

[gmol]

OH number

[mmolg]

Tg

[degC]

pH 2 2140 1885 481 1479

pH 3 1465 1797 502 1472

pH 4 1353 1731 565 1425

pH 5 1295 1504 600 1340

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 14: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

homogeneous transparent

flexible spin coat films

Lignin-based PU Coatings

color modification (dyes carbon)

average thickness 160 microm

lignin content

increased up to 80

14

Klein et al (2018)

Manuscript ID RA-ART-10-2018-008579

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 15: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

Fraction Mn (g mol minus1) Mw (gmolminus1) PD

L1 720 2108 29

L2 706 2226 32

L3 757 1816 24

L4 1043 1690 16

0

02

04

06

08

1

12

14

10000 100000 1000000

W(l

og

M)

Mw (Da)

L1

L2

L3

L4

SEC of Kraacuteft Lignin Fractions L1 to L4

Lignin-based Drug Release

Lignin-based films with hydroxypropyl methylcellulose (HPMC)

From left to right 5 10 15 20 25 and 30 weight lignin

Alzagameem et al (2018) Molecules 232664

doi103390molecules23102664

15

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 16: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

Witzleben et al ST (2015) J Chem Chem Eng 9494-499

doi 10172651934-7375201508002

Morphology Analysis via Xray Diffraction

Bruker D8 diffractometer

2 D detector Vantec 500

micro-source Incoatec Microsource IμS

Anton-Paar DHS 1100 Temperature Dome

WAXS SAXS morphology analysis of lignin-based PU

bull decreasing size of crystalline domains

bull significant temperature dependency (T 30-130degC)

16

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 17: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

-30-40-50-60-70-80-90-1 00-1 1 0-1 20

0

-5

-1 0

-1 5

-20

-25

-30

Komponente 1

Ko

mp

on

en

te 2

pH2 H2SO4

pH2 HCl

pH25 ruumlckgewaschen

pH30 ruumlckgewaschen

pH35 ruumlckgewaschen

pH4 HCl

pH40 ruumlckgewaschen

pH6 HCl

Gruppe

A

020100-01-02-03-04-05-06-07

050

025

000

-025

-050

Erste Komponente

Zw

eit

e K

om

po

nen

te

31154383

329575

1715371317047648

15977349

15138466

14627422

12178269

1147437811242962

108187

103172988157415

B

Multivariate Data Analysis

Principal Component Analysis

3600 3900 4200 4500 4800

3600

3900

4200

4500

4800 Porcine

Ovine

Mo

lecu

lar

we

igh

t N

MR

-MR

Molecular weight GPC

Outlook access to lignin specifications

bull Reproducibility of isolation (FTIR PCA)

bull GPCDOSY NMR and PCA

bull GPC standards via ozonolysisphotolysis

bull Comparison to Fenton (Wessling et al RWTH)

Monakhova et al (2018) J Pharm Biomed Anal 149 128-132

doiorg101016jjpba201711016

Principal Component Aanalysis of FTIR data

Above Groups of precipitated lignins at different pH

Below FTIR wavenumber of corresponding signals 17

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 18: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

Biomaterials for Bone Regeneration

Liposuction (AT cells) Bone chips (BC cells) Dental follicle

Schulze amp Tobiasch (2012) In Tissue Engineering III Springer

Leiendecker et al (2016) Curr Stem Cells Res Therapy 12103-123 18

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 19: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

Commercial Inorganic Scaffolds

19

Hansen et al (2017) In eBook series Frontiers in Stem Cell and Regenerative Medicine Research

Attaur-Rahman Shazia Anjum (Eds) p 130-178 Bentham eBooks

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 20: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

AgaroseHydroxyapatite Hybrids

SEM of lyophilized agarose (ac) AG33HA67 composite

(bd) supercritically dried samples Scale bar is 1 microm

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 21: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

swelling amp release morphology biocompatibility

Hybrid Scaffolds for Guided Osteogenesis

hydrogel formation composition

ATSCs Pre-Osteoblast Osteoblast

P2X5

P2Y2

P2Y4 P2Y14 P2X6 P2Y1 Progenitor

P2X5

P2X7

21

Gericke M et al Functional Agarose Hydrogels and Composite Hydrogels

ACS Spring Meeting March 18-22 2018 in New Orleans

Ottensmeyer P et al Small Molecules Enhance Scaffold-based Bone Grafts 2 via Purinergic Receptor Signaling in Stem Cells

Submitted to Int J Mol Sci Manuscript ID ijms-367947

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 22: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

Lignin for Energy Storage

22

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP

Page 23: Lignocellulose Feedstock (LCF) for Material Development · 2018-12-07 · LCF for Material Development Lignocellulose Feedstock (LCF) – a Renewable Resource for Energy and Material

THANKS

Contact

Hochschule Bonn-Rhein-Sieg

Prof Dr Margit Schulze

margitschulzeh-brsde

wwwh-brsde

THANKS

Prof Dr Ralf Pude Uni Bonn

Prof Dr Matthias Rehahn TU Darmstadt

Prof Dr Thomas Heinze Uni Jena

Prof Dr Bernd Diehl

Prof Dr Yulia Monakhova

Spectral Service AG

Prof Dr Edda Tobiasch (HBRS)

Prof Dr Steffen Witzleben (HBRS)

Postdoc PhDs

Dr Basma Hansen

Abla Alzagameem

Michel Bergs

Dominik Buumlchner

Xuan Tung Do

Stephanie Klein

Jessica Rumpf

Markus Witzler

Students Scholars

Sandra Bruumlck

Soumlnke Martienszligen

Linda Wiedemann

Christopher Konow US

Michael Larkins US

Maddie Picket US

Collaboration amp Partners

FKZ 03FH012PB2 FKZ z1112fh012

FKZ 54669218 BMBF-AIF FKZ 1720X06

DAAD RISE for CK ML MP