5
LIFT LUG CALCULATION DATA: Vessel erection weight (lb) W = 38,025 Lift lug hole to tail lug hole (in) L1 = 759.00 COG to tail lug hole (in) L2 = 382.00 Lift lug hole to COG (in) L3 = 377.00 Tail lug hole to vessel Axis L4 = 32 Impact factor (eg. 1.25, 1.50, 1.75, 2.0 etc.) for Lug Eye IF1 = 1.80 Tensile strength of lug material (psi) TSL = 70,000 Yield strength of lug material (psi) YSL = 38,000 Yield strength of shell material (psi) YSS = 38,000 Consumable Tensil Strength (psi) CST 70,000 Lug hole diameter (in) Dh = 1.750 Tearout radius (in) r = 4.000 Distance, center of lug hole to top of weld (in) L8 = 13.100 Distance, top of weld to bottom of lug (in) L9 = 6.750 Length of inner welds (in) L10 = 0.000 Width of lift lug (in) B = 9.000 Width of inner weld (in) B2 = 0.000 Thickness of lift lug (in) TL = 1.250 Thickness of lug reinforcement washers (in) Tw = 0.000 OK Fillet weld leg size, lug-to-shell (in) Lw = 0.375 Fillet weld leg size req'd, reinf. washer-lug =2Tw/3 (in) Lr = 0.000 Actual fillet weld leg size, washer-lug (in) Lp = 0.000 OK Washer OD = 2(r - LP -.125) (in) Dw = 7.750 CALCULATE DESIGN LOAD @ EACH LUG (VERTICAL): Design load @ lug = W/2 x IF1 (lb) Fv = 34,223 Shackle rating (tons) Crosby G2130 = 17 OK Shackle pin diameter (in) Dp = 1.630 CALCULATE DESIGN LOAD @ EACH LUG (HORIZONTAL): Force @ lug in horiz position = W/2*L2/L1 (lb) fh = 9,569 Design load @ shell = fh x IF1 (lb) Fh = 17,224 Page 1 Lift Lug Rev 3.xls

Lifting Lug

Embed Size (px)

Citation preview

Page 1: Lifting Lug

LIFT LUG CALCULATION

DATA:Vessel erection weight (lb) W = 38,025Lift lug hole to tail lug hole (in) L1 = 759.00COG to tail lug hole (in) L2 = 382.00Lift lug hole to COG (in) L3 = 377.00Tail lug hole to vessel Axis L4 = 32Impact factor (eg. 1.25, 1.50, 1.75, 2.0 etc.) for Lug Eye IF1 = 1.80

Tensile strength of lug material (psi) TSL = 70,000Yield strength of lug material (psi) YSL = 38,000Yield strength of shell material (psi) YSS = 38,000Consumable Tensil Strength (psi) CST 70,000Lug hole diameter (in) Dh = 1.750Tearout radius (in) r = 4.000Distance, center of lug hole to top of weld (in) L8 = 13.100Distance, top of weld to bottom of lug (in) L9 = 6.750Length of inner welds (in) L10 = 0.000Width of lift lug (in) B = 9.000Width of inner weld (in) B2 = 0.000Thickness of lift lug (in) TL = 1.250Thickness of lug reinforcement washers (in) Tw = 0.000 OKFillet weld leg size, lug-to-shell (in) Lw = 0.375Fillet weld leg size req'd, reinf. washer-lug =2Tw/3 (in) Lr = 0.000Actual fillet weld leg size, washer-lug (in) Lp = 0.000 OKWasher OD = 2(r - LP -.125) (in) Dw = 7.750

CALCULATE DESIGN LOAD @ EACH LUG (VERTICAL):Design load @ lug = W/2 x IF1 (lb) Fv = 34,223Shackle rating (tons) Crosby G2130 = 17 OKShackle pin diameter (in) Dp = 1.630

CALCULATE DESIGN LOAD @ EACH LUG (HORIZONTAL):Force @ lug in horiz position = W/2*L2/L1 (lb) fh = 9,569Design load @ shell = fh x IF1 (lb) Fh = 17,224

Page 1 Lift Lug Rev 3.xls

Page 2: Lifting Lug

CALCULATE BENDING AND AXIAL STRESS IN LUG BODY:

Ft = ( W * L3 * COS(φ) ) / ( L1 * COS(φ) + L4 * SIN(φ) )

Fl = (W - Ft)/2 - Load per Lug with out impact Factor

Axial Stress Sa = FL / (TL * B) where FL = Fl * IF1 * SIN(φ)

Bending Stress Sb = (6 * FR * L8) / (TL * B2) where FR = Fl * IF1 * COS(φ)

Lift Angle Fl FL FR Sb Sa Sc(deg) (Lbs) (Lbs) (Lbs) (psi) (psi) (psi)

0 9,569 0 17,224 13,371 0 13,371 5 9,604 1,507 17,221 13,368 134 13,502 10 9,639 3,013 17,086 13,264 268 13,531 15 9,674 4,507 16,820 13,058 401 13,458 20 9,712 5,979 16,427 12,752 531 13,283 25 9,751 7,418 15,907 12,349 659 13,008 30 9,793 8,814 15,266 11,851 783 12,635 35 9,840 10,159 14,508 11,263 903 12,166 40 9,892 11,445 13,639 10,588 1,017 11,605 45 9,951 12,665 12,665 9,832 1,126 10,958 50 10,021 13,817 11,594 9,000 1,228 10,229 55 10,105 14,900 10,433 8,099 1,324 9,424 60 10,212 15,918 9,190 7,134 1,415 8,549 65 10,352 16,888 7,875 6,113 1,501 7,614 70 10,549 17,843 6,494 5,042 1,586 6,628 75 10,853 18,869 5,056 3,925 1,677 5,602 80 11,391 20,193 3,561 2,764 1,795 4,559 85 12,640 22,665 1,983 1,539 2,015 3,554 90 19,013 34,223 0 0 3,042 3,042

Maximum Bending Stress = 13,371 psiMaximum Axial Stress = 3,042 psi

Maximum Combined Stress = 13,531 psiAllowable stress = 0.6*YSL = Sa = 22,800 Okay

CALCULATE SHEAR STRESS IN LUG BODY (HORIZONTAL):Shear stress = Fh/(2TL*r) (psi) Ss = 1,722 Allowable shear stress = 0.5Sa (psi) Ssa = 11,400 OK

Page 2 Lift Lug Rev 3.xls

Page 3: Lifting Lug

CALCULATE STRESSES IN LUG-TO-SHELL WELDS: Weld throat = 0.7071 x Lw (in) tw = 0.27Locate N.A. of weld group:(L92 + L102 + B2*L10)/(B + 2L9 + 2L10) (in) = X = 2.03Distance to extreme weld point C:SQRT((L9 - X)2 +(B/2)2)) (in) = Y = 6.53Eccentricity of weld group = L9+L8-X (in) E = 17.83Polar moment of intertia (PMI) of weld group:r12 = (.5L9 - X)2 + (.5B)2 (in2) r12 = 22.1PMI of L9 welds = 2L9*tw*(L92/12 + r12) (in4) J1 = 93r22 = (.5L10 - X)2 + (.5B2)2 (in2) r22 = 4.1PMI of L10 welds = 2L10*tw*(L102/12 + r22) (in4) J2 = 0.0B1 = .5(B - B2) (in) B1 = 5r32 = (.5B1 + .5B2)2 + X2 (in2) r32 = 9.2PMI of B1 welds = 2B1*tw*(B12/12 + r32) (in4) J3 = 26r42 = |(L10 - X)2| (in2) r42 = 4.1PMI of B2 weld = B2*tw*(B22 + r42) (in4) J4 = 0.0Polar moment of inertia = J1+J2+J3+J4 (in4) J = 118Torsional shear stress = Fh1 x E x Y/J (psi) St = 16,906

Angle of rotation for St = arctan (.5B/(L9-X) (rad) ø = 0.761Horizontal component of St1 = St*sinø (psi) St1 = 11,659Vertical component of St2 = St*cosø (psi) St2 = 12,242

Direct shear stress due to Fh1 = Fh1/(tw(B + 2L9 + 2L10)) (psi) Ssh = 2,887Allow. shear stress = 0.3CST per AISC 9th Edition = 21,000 OK

Max. shear stress (torsional + direct) - horizontal @ point C:((Ssh + St2)2 + St12)0.5 (psi) Sm = 19,100Allow. shear stress = 0.3*CST per AISC 9th Edition = 21,000 OK

Direct shear stress (vert) = Fv/(tw(B + 2L9 + 2L10)) (psi) Ssv = 5,736Allow. shear stress = 0.3*CST - per AISC 9th Edition = 21,000 OK

Check weld size based on leg welded to shell or Lift Lug

Torsional shear stress Sts = St*tw/lw (psi) Sts = 11,954

Angle of rotation for Sts = arctan (.5B/(L9-X) (rad) ø = 0.761Horizontal component of Sts1 = Sts*sinø (psi) Sts1 = 8,244Vertical component of Sts2 = Sts*cosø (psi) Sts2 = 2,041

Weld Area based on weld Leg = Lw*(2*L9 + 2*L10 + B) in^2 = Warea = 8.4

Direct Shear stress (vert) = Fv/Warea = Ssv1 = 4,056Allowable = .3*YSL or 0.3*YSS (smaller) = 11,400Safety Factor = YSS*IF1/Ssv1 per ANSI B30.20 Safety Factor = 17

Page 3 Lift Lug Rev 3.xls

Page 4: Lifting Lug

Direct shear stress due to Fh1 = Fh1/(Lw(B + 2L9 + 2L10)) (psi) Ssh1 = 2,041Allow shear stress = 0.3*YSL or 0.3*YSS = 11,400Safety Factor = (YSS * IF1)/Ssh1 per ANSI B30.20 Safety Factor = 34

Max. shear stress (torsional + direct) - horizontal @ point C:((Ssh1 + Sts2))2 + (Sts1)^2)0.5 (psi) = 13,506Allow Shear Stress = 0.4*YSL or 0.4*YSS = 15,200Safety Factor = (YSS * IF1)/(Max shear stress compared to yield) = 5.1 per ANSI B30.20

CALCULATE STRESSES IN LUG (Curved beam analysis):Minimum radius of lug = 1.5 x hole dia. (in) rmin = 2.625Actual radius (in) r = 4.000 OKH1 = r - Dh/2 (in) H1 = 3.125H2 = 0.5(Dw - Dh) (in) H2 = 3.000C = H1/2 (in) C = 1.563R = (H1 + Dh)/2 (in) R = 2.438z = -1 + (R/H1) x LN ((R + C)/(R-C)) z = 0.18546409

Moment = 0.5Fv x R(2/((π x (1+z)) -1) (in.lb.) MA = -19,310

Calculate stress A @ Y = -H1/2 (in) Y = -1.563SA*A = Fv/2 + MA/R(1+Y/(z(R+Y))) ((lbf) SA*A = 85,466Min section area = SA*A/Sa (in2) Amin = 3.75Required washer thickness = 0.5(Amin-(TL x H1))/H2 (in) Twr = -0.026Actual washer thickness (in) Tw = 0.000 OKStress A = SA*A/(TL x H1 + 2Tw x H2) (psi) SA = 21,879Allowable stress (psi) Sa = 22,800 OKSafety Factor compared to yield per ANSI B30.20 = YSL*IF1/SA Safety Factor = 3.13

Calculate stress B @ Y = -H/2 (in) Y = -1.563Stress B = | (MA+.5Fv*R)/((TL*H1+2Tw*H2)*R) * (1+(Y/(z(R+Y)))) | (psi) SB = 20,297Allowable stress (psi) Sa = 22,800 OKSafety Factor compared to yield per ANSI B30.20 = YSL*IF1/SB 3.4

Combined section thickness = TL + 2Tw (in) Tc = 1.25

Tearout stress = Fv/(2H2 x Tc) (psi) ST = 4,563Allowable Tearout stress (psi) = Sa/2 Sta = 11,400 OK

Bearing stress = Fv/(Tc*Dp) (psi) Sbr = 16,796Allowable bearing stress = 0.85YSL (psi) Sba = 32,300 OK

CALCULATE STRESSES IN REINFORCEMENT WASHER FILLET WELDS:Load on washer = Tw/Tc x Fv (lb) Fw = 0Shear stress = Fw/(Dw x ¶ x Lp) (psi) Ssw = #DIV/0!Allowable shear stress = Sa/2 (psi) = 11,400 #DIV/0!

Page 4 Lift Lug Rev 3.xls

Page 5: Lifting Lug

SUMMARY OF STRESSES

LOCATION DESCRIPTION CALC'D ALLOWABLE

Lug body Bending stress (psi) (horiz.) 13,371 22,800 OK

Axial Stress (psi) (vert.) 3,042 22,800 OK

Combined Bending and Axial Stress (psi) 13,531 22,800 OK

Shear stress (psi) (horiz) 1,722 11,400 OK

Lug-shell welds Direct shear (horiz) (psi) 2,887 21,000 OK

Maximum shear (horiz) (psi) 19,100 21,000 OK

Direct shear (vert) (psi) 5,736 21,000 OK

Lug Circ stress SA (psi) 21,879 22,800 OK

Circ stress SB (psi) 20,297 22,800 OK

Tearout stress (psi) 4,563 11,400 OK

Bearing stress (psi) 16,796 32,300 OKWasher filletwelds Shear stress (psi) #DIV/0! 11,400 #DIV/0!

Page 5 Lift Lug Rev 3.xls