7
LIFTING LUG CALC(VERTICAL VESSEL) ( Ref: Compress & Pressure Vessel Handbook by Dennis Moss). 1.0 LIFTING LUG CALCULATION 1.1 Geometry Inputs Lifting Lug Material : Length of Lifting Lug, L = mm Width of Lifting Lug, B = mm Thickness of Lifting Lug, t = mm Pin Hole Diameter, d = mm = cm Lug Diameter at Pin, D = mm = cm Weld Size, t w = mm Weld Length, b 1 = mm Weld Length, d 2 = mm Collar Thickness, t c = mm Collar Diameter, D c = mm Width of Pad, B p = mm Length of Pad, L p = mm Pad Thickness, t p = mm Pad Weld Size, t wp = mm Weld Length, L 3 = mm Length to Brace Plate, L 1 = mm = cm MSET ENGINEERING CORPORATION SDN BHD DATE : 10/04/2013 DOC. REF. NO.: MSETe/M2-228/L4-104C SUBJECT: LIFTING LUG CALC DOCUMENT TITLE: DESIGN CALCULATION REVISION: C JOB NO: M2-228 Figure 1: Lifting Lug Detail 642 300 30 55 300 12 125 SA 36 5.50 32.50 30.00 150 400 200 15.88 12 150 325 50 16 Page 2

Lifting Lug Calc_vertical

Embed Size (px)

DESCRIPTION

AASWWE csadf wed dasdasdasdqw erqaw dasd asfd asdasdeaweawrara

Citation preview

  • LIFTING LUG CALC(VERTICAL VESSEL)( Ref: Compress & Pressure Vessel Handbook by Dennis Moss).

    1.0 LIFTING LUG CALCULATION

    1.1 Geometry Inputs

    Lifting Lug Material :

    Length of Lifting Lug, L = mm

    Width of Lifting Lug, B = mm

    Thickness of Lifting Lug, t = mm

    Pin Hole Diameter, d = mm = cm

    Lug Diameter at Pin, D = mm = cmWeld Size, tw = mm

    Weld Length, b1 = mm

    Weld Length, d2 = mm

    Collar Thickness, tc = mm

    Collar Diameter, Dc = mm

    Width of Pad, Bp = mm

    Length of Pad, Lp = mm

    Pad Thickness, tp = mm

    Pad Weld Size, twp = mm

    Weld Length, L3 = mm

    Length to Brace Plate, L1 = mm = cm

    MSET ENGINEERING CORPORATION SDN BHDDATE : 10/04/2013

    DOC. REF. NO.: MSETe/M2-228/L4-104C

    SUBJECT: LIFTING LUG CALC

    DOCUMENT TITLE: DESIGN CALCULATION

    REVISION: C

    JOB NO: M2-228

    Figure 1: Lifting Lug Detail

    642300

    3055

    30012

    125

    SA 36

    5.50

    32.50

    30.00

    150400200

    15.8812

    150325

    5016

    Page 2

  • Vessel Empty Weight = kg

    Load Factor =

    Design Lift Weight, W = kgDist. from C.O.G to Lifting Lug,l1 = mm

    Dist. from C.O.G to Tailing Lug,l2 = mm

    Dist. from Vessel C.L to Tailing Lug,l3 = mm

    Yield Stress at amb Temp.,Sy = kg/cm2

    Allow.Tensile Stress, t =0.6Sy = kg/cm2

    Allow. Shear Stress, s = 0.4Sy = kg/cm2

    Allow. Bearing Stress, p =0.9Sy = kg/cm2

    Allow. Bending Stress, b =0.66Sy = kg/cm2

    Allow. Weld Shear Stress,allow. = kg/cm2

    1.2 Lift Forces

    Lift force on lifting & tailing lug during rotational lift (0o 90

    o)

    2*Ftop = [W* ((l2*cos) +(l3*sin))] / [((l1*cos) + (l2*cos) + (l3*sin))]

    Ftail = W - (2*Ftop)

    FT = Ftop cos

    FL = Ftop sin

    o

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    7354

    8076

    8773

    9451

    10123

    10815

    11579

    12535

    14004

    3103

    2210

    1225

    17210

    172109594

    Table 1: Lifting Load at Various Lift Angle,

    3936

    (rad)

    0

    0.0873

    0.1745

    0.2618

    FT(top) (kgf)

    1476.400

    FL(top) (kgf)

    9548

    9594

    1517.2921011.528

    8327

    7872

    7354

    6777

    6143

    5457

    4720

    229461.5

    3441933434166

    940

    2528.82

    2275.9381669.0212

    10165

    10276

    10400

    10542

    10710

    9566

    9463

    Figure 2: Lifting & Tailing Force-Loading Diagram

    0

    839

    1687

    2536

    Ftop (kgf)

    9548

    9631

    9713

    9796

    5831

    6605

    0.3491

    0.4363

    9286

    9036

    8716

    3380

    4214

    5032

    9882

    9970

    11988

    12729

    14058

    0.5236

    0.6109

    0.6981

    0.7854

    0.8727

    0.9599

    1.0472

    1.1345

    1.2217

    1.3963

    1.4835

    10064

    10913

    11169

    11509

    1.3090

    17210 01.5708

    Max Force (kgf) 17210

    Page 3

  • Max. Lifting Load, Fv = kgf

    1.3 Lifting Lug Stress Calculation

    1.3.1 Lug Pin Diameter based on Shear Stress.

    Pin Hole Required Diameter, dreqd : (2*Fv /(*s))0.5

    = cm = mm

    Pin Hole Required Dia. less than Geometry Input, So Pin Hole Dia. is Sufficient

    Pin Hole Area (on 2 Lifting Lug), A : 2*((/4)*d2)

    = mm2

    = cm2

    Shear Stress Required, reqd : Fv /A

    = kg/cm2

    Shear Stress Required less than Allowable Shear Stress, Stress on Hole is Sufficient

    1.3.2 Lug Thickness based on Tensile Stress.

    Lifting Lug Thickness Required, treqd : Fv /(D*t)= cm = mm

    Thickness Required are less than Geometry Input, Thickness used is Sufficient

    Lifting Lug Area, A : D*t= mm

    2= cm

    2

    Tensile Stress Required, reqd : Fv /A= kg/cm

    2

    Tensile Stress Required less than Allowable Tensile Stress, Stress on Lug is Sufficient

    1.3.3 Lug Thickness based on Bearing Stress.

    Lifting Lug Thickness (Including Collar Plate)

    T : t + (2*tc)= mm

    Lifting Lug Thickness Required, Treqd : Fv /(d*p)= cm = mm

    Thickness Required are less than Geometry Input, Thickness used is Sufficient

    Collar Required Thickness, tc reqd : max(0, 0.5*(Treqd -t))

    = mm

    Collar Thick. Required less than Geometry Input, Thickness used is Sufficient

    Bearing Area, Abearing : (d*(t+2tc))

    = mm2

    = cm2

    Bearing Stress Required, reqd : Fv /Abearing= kg/cm

    2

    Bearing Stress Required less than Allowable Bearing Stress, Stress on Lug is Sufficient

    47.52

    62.0

    9000

    0.47

    3.093

    0.227 2.27

    90.00

    191.217

    2.687 26.87

    34.10

    504.677

    30.93

    3410.00

    4751.659

    362.179

    17210

    Page 4

  • 1.3.4 Lug Thickness based on Shear Stress.

    ( Ref: Pressure Vessel Design Manual Handbook by Dennis Moss pg 417).

    Net Section at top of Lug(2 lugs), An : 2[t(D-d/2)] + [2tc (Dc-d/2)]

    = mm2

    = cm2

    Shear Stress at top of lug, s : FT(top)/An

    = kg/cm2

    Shear Stress Required less than Allowable Shear Stress, Stress on Lug is Sufficient

    1.3.5 Weak Axis Bending Stress

    Section Modulus of Lug, Z : B*t2

    /6

    = mm3

    = cm3

    Bending Stress, b : M/Z

    = Fsin *L1 /Z , Where F = 0.5W/cos

    b = 0.5W(sin/cos)*L1/Z ,Where sin/cos = tan

    Max. lift cable angle from Vertical, = arctan((b*Z)/(0.5WL1))

    = rad

    = deg

    1.4 Weld Stress Calculation

    Maximum weld shear stress occurs at lift angle,

    = deg = radFrom Table 1, lift force,FL(TOP) = kgf

    Lifting Lug Weld Area, Aweld : A1 + A2 + A3 + A4(Brace Plate)

    = 0.707*tw[(d1+b1)+(2d2+b2)+(d3+b3) + L1]

    = mm2

    = cm2

    Max. weld Shear Stress, t : FL(TOP) cos/ A weld

    = kgcm2

    Max. weld Shear Stress, s : FL(TOP)/ A weld

    = kgcm2

    1.5708

    197.90

    90.0017209.50

    86.96

    0.00

    45.00

    10390.00

    10.38

    92.341

    45000.00

    103.90

    Figure 3: Lifting Lug Weld Area.

    8696.10

    0.18

    Page 5

  • 1.4.1 Torsional Shear:

    Weld Centrod:

    Weld Areas, Ai : 0.707 *tw*Li

    (Weld at Brace Plate)

    Weld Centroid Location:x1 = mm y1 = mm

    x2 = mm y2 = mm

    x3 = mm y3 = mm

    x4 = mm y4 = mm

    x5 = mm y5 = mm

    x6 = mm y6 = mm

    x7 = mm y7 = mm

    x8 = mm y8 = mm (Location at Brace)

    Xbar : (Ai*Xi)/Ai Ybar : (Ai*Yi)/Ai

    = mm = mm

    Radius to Centroid Locations, ri : sqrt((Xbar -xi)2 +(Ybar-yi)

    2)

    r1 = mm

    r2 = mm

    r3 = mm

    r4 = mm

    r5 = mm

    r6 = mm

    r7 = mm

    r8 = mm

    Polar Moment Area, Ji : 0.707 *tw*(Li3)/12

    J1 = mm4

    J2 = mm4

    J3 = mm4

    J4 = mm4

    J5 = mm4

    J6 = mm4

    J7 = mm4

    J8 = mm4

    Parrallel axis theorem, J : (Ji + Ai*ri2)

    = mm4

    Location

    A1A2A3A4A5A6A7

    Area(mm2)

    1272.60

    1060.5

    424.20

    424.20

    424.20

    1060.50

    1272.60

    2545.20

    50.00

    A8

    Ai (mm2)

    25.00

    150.00 50.00

    175.00 25.00

    237.50 0.00

    75.00

    62.50 0.00

    8484.00

    Table 2: Weld Torsion Area

    0.00

    300.00 75.00

    150.00 467.00

    146.25 167.60

    173.10

    187.36

    172.04

    117.66

    145.47

    190.83

    179.48

    299.42

    2386125.00

    1380859.38

    88375.00

    88375.00

    88375.00

    1380859.38

    2386125.00

    19089000.00

    437455918

    Page 6

  • Radial distance from centroid to weld:

    r : sqrt(Xbar2 +((L3+L-L1)- Ybar)

    2)

    = mm

    r : arctan(((L3+L-L1)-Ybar)/Xbar)

    = rad

    = deg

    2 : M*r/J

    = (Fr*cos*(L+L3-Ybar))*r/J

    = kg/mm2

    = kg/cm2

    total : sqrt[(t +2sinr)2 + (s + 2cosr)

    2]

    = kg/cm2

    Weld Shear Stress Reqd. less than Allow. Weld Shear Stress. So, Stress is Sufficient

    1.4.2 Collar Weld Stress:

    Collar Weld Area, Aweld : 2Dc*0.707tw

    = mm2

    = cm2

    Collar Weld Stress, c : Fv/Aweld= kg/cm

    2

    Collar Weld Shear Stress Required less than Allow. Weld Shear Stress. So, Stress is Sufficient

    1.4.3 Pad Weld Stress:

    Direct Shear:

    Pad Weld Area, Aweld : 0.707twp * (2Lp +Bp)= mm

    2= cm

    2

    Max. weld Shear Stress, t : FT(TOP) cos/ A weld

    = kgcm2

    Max. weld Shear Stress, s : FT(TOP) sin/ A weld

    = kgcm2

    6787.20 67.87

    0.00

    253.56

    333.21

    1.12

    63.97

    0.00

    0.00

    79.96

    215.23

    Figure 4: Pad Weld Area.

    197.90

    7995.98

    Page 7

  • 1.4.4 Torsional Shear:

    Weld Centrod:

    Weld Areas, Ai : 0.707 *twp*Li

    Weld Centroid Location:x1 = mm y1 = mm

    x2 = mm y2 = mm

    x3 = mm y3 = mm

    Xbarp : (Ai*Xi)/Ai Ybarp : (Ai*Yi)/Ai

    = mm = mm

    Radius to Centroid Locations, ri : sqrt((Xbar -xi)2 +(Ybar-yi)

    2)

    r1 = mm

    r2 = mm

    r3 = mm

    Polar Moment Area, Ji : 0.707 *twp*(Li3)/12

    J1 = mm4

    J2 = mm4

    J3 = mm4

    Parrallel axis theorem, J : (Ji + Ai*ri2)

    = mm4

    Radial distance from centroid to weld:

    r : sqrt(Xbarp2 +((Lp- Ybarp)

    2)

    = mm

    r : arctan(((Lp)-Ybar)/Xbar)

    = rad

    = deg

    2 : M*rp/Jp

    = (Fr*cos*(L+Lp-Ybarp))*rp/Jp

    = kg/mm2

    = kg/cm2

    total : sqrt[(t +2sinr)2 + (s + 2cosr)

    2]

    = kg/cm2

    Weld Shear Stress Reqd. less than Allow. Weld Shear Stress. So, Stress is Sufficient

    36.87

    0.00

    0.00

    253.56

    206.16

    50.00

    206.16

    5656000

    45248000.00

    5656000

    209272000

    250.00

    0.64

    Table 3: Weld Torsion Area

    0.00 100.00

    200.00 0.00

    400.00 100.00

    200.00 50.00

    Location Area(mm2)

    A1 1696.80

    A2 3393.6

    A3 1696.80

    Ai (mm2) 6787.20

    Page 8