29
“Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto de Meteorología, Cuba Winter College on Optics: Light: a bridge between Earth and Space The Abdus Salam International Centre for Theoretical Physics February,16 th 2015

“Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

Embed Size (px)

Citation preview

Page 1: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

“Lidar applications to atmospheric studies. "

Dr. Juan Carlos Antuña Marrero

Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC),

Instituto de Meteorología, Cuba

Winter College on Optics: Light: a bridge between Earth and Space

The Abdus Salam

International Centre for Theoretical Physics

February,16th 2015

Page 2: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

Summary

1. Brief Lidar history2. Lidar equation & solutions3. Lidar applications:

• Stratospheric aerosols• Cirrus clouds

4. Space Lidars• LITE• CALIPSO

Conference:Lidar applications to atmospheric studies.

Winter College on Optics

Light: a bridge between Earth and SpaceThe Abdus Salam International Centre for Theoretical Physics

Page 3: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

1. Brief Lidar history

Page 4: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

Radar: RAdio Detection And Ranging

Electromagnetic

Spectra

1887: Heinrich Herzt began experiments with radio waves

1920 – 1930: Renew efforts for creating an emitter-receptor

WW II: Accelerated military applications (Because clouds Interference)

From 1945 Development of the Meteorological Radar

Range = C * (time/2) C: Light speed

Page 5: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

In the 30’s began efforts to measure density profiles in the high atmosphere using dispersed signals from searchlights

Synge, E. H. Phil. Mag. 9, 1014, 1930.

1938: Cloud base measured by 1st time using pulsed lightBureau, R. La Meteorologie, 3, 292, 1946.

Acronym LIDAR coined in 1953Middleton W.E.K. and A.F. Spilhaus, Meteorological Instruments (University of Toronto Press), Toronto 1953.

Between 40’s & 50’s renewed efforts using searchlights to measure high atmosphere density, temperature and aerosols profiles

Elterman, L. , Seasonal trends of temperature, density and pressure to 67.6 km obtained with the searchlight probing technique. J. Geophys. Res., Vol. 59(3), pp. 351-358, 1954.

Ruby laser invented in 1960: a better emission source

Lidar atmospheric studies phases:

1960s – 1970s: Innovation (many pioneering demonstration experiments)1970s – today : Development (improved lasers, hardware and theory)1970s – today : Application (many lidar developed and working getting important and often unique data)

Page 6: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto
Page 7: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

What is a Lidar?

LIght Detection And Ranging

Simple Lidar design

Lidar Systems• Laser System • Optical System • Register System (Detection)• Control &

Operation System

Page 8: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

Main laser features:Monochromatic: Only one wavelengthCollimated: Beam of light which has a low beam divergence, so that the beam radius does not undergo significant changesCoherent: Constant relative phases between radio wave pulses

LASER: Light Amplification by the Stimulated Emission of Radiation

Solid state laserActive Medium: Cristal YAG (Yttrium Aluminum Garnet)

Y2Al5O12

Dopant YAG: Nd Y+3 ions replaced by Nd+3 ions Emission Wavelength: 1064nm

Nd:Yag Laser

Page 9: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

2. Lidar equation & its solutions.

Page 10: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

Lidar Equation (Simplest form):

r

02 )dr'α(r'2β(r)exprC

P(r)

C: Calibration constant (depends on laser power, laser pulse with, receiver area, instrument optical transmission and detector efficiency)

Considering the aerosol and molecular components of the atmosphere:

(r) = par(r) + mol(r) and (r) = par(r) + mol(r)

P(r): Received power(r): Volume backscatter coefficient at range r(r): Volume extinction coefficient at range r

EXTINCTION-BACKSCATTER RATE (LIDAR RATE)

rβrα

rLR

Unlike and , LR doesn’t depend on aerosol amount, but only on aerosol typeExamples: ~ 10 sr (ice crystals); ~ 20-30 sr (maritime aerosols);

~ 60-70 sr (urban aerosol) ~ 100 sr (heavy polluted air)

parameter strongly related to the microphysical aerosols properties

- aerosol type - size distribution relative humidity

Processing Algorithms :

1. Slope Method 2. Total Integrated Backscatter3. Inverse Modeling 4. Analytical Inversion An important simplification: no multiple scattering accounted for

Page 11: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

Slope Method:

Based on the assumption of a homogeneous atmosphere: (r)

Calculating the logarithm of the range corrected backscatter signal Z:

r

0

2 )dr'α(r'2CβlnP(r)rlnZ(r)

The extinction coefficient = par + mol can be derived from the gradient:

dr

dlnβ

dr

dZ

2

1α Because of the initial assumption could be

calculated from the slope of the range corrected signal Z

Total Integrated Backscatter:

Requires calibrated lidar system and information about the backscatter/extinction ratio k= 1/LR. The total integrated backscatter signal (U) is defined as:

dr'Pr'U(r)r

0

2 It can be shown that: dr

dU

Ck2U

1Ck

Page 12: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

Inverse Modeling:

Well known method for retrieving physical parameters in remote sensing.Main idea: make use of a forward model to model the observed signal, depending on a set of parameters, to be retrieved.

The difference between observed and modeled parameters is minimized in general using iterative procedures. Two particular methods are: Iterative algorithm (Kästner, 1987)

Information-theoretic method (Yee,1989)Analytical Inversion:

Most frequently used method because it is the exact mathematical solution of the lidar inversion problem.

It could be performed in two ways: forward and backward integration.Considers the existence of the lidar ratio (LR)

Algorithm known as refined scattering ratio (Russell et al, 1979: Methodology for error analysis and simulation of lidar aerosol measurements. App. Opt., 18, pp. 3783-3797).

Page 13: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

Forward Integration Method

Advantages Disadvantages References

Boundary value can be replaced by lidar calibration constant

Unstable in turbid atmosphereNear-end boundary value or calibration necessary

Fernald et al., 1972Fernald, 1984Kovalev & Moosmüller, 1994

Backward Integration Method

Advantages Disadvantages References

Stable in turbid atmosphere

Far-end boundary value generally can not be determined

Klett, 1981; 1983; 1985Sasano & Nakane, 1984Fernald, 1984Kovalev and Moosmüller, 1994

Page 14: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

3. Lidar applications:• Stratospheric aerosols• Cirrus clouds

Page 15: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto
Page 16: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

Mt. Pinatubo stratospheric aerosols

tropopau

se

Page 17: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

“Cirrus clouds lidar measurements”

Page 18: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

4. Space Lidars

Page 19: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

Space Based Lidars Functionality

2006

2016

Page 20: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

LITE : LIdar Technology Experiment

LITE on board STS-64 Discovery mission

September 9-20 1994

First sucesful mission using a lidar for atmospheric research

Aerosols and clouds measured

Tomado de: http://www-lite.larc.nasa.gov/

Page 21: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

5 minutes LITE measurementSahara overpass September 18, 1994.

Mount Atlas separate dense aerosols mass east of a clear west

More west over the desert a complex massmass of aerosols reaching 5km altitude

Mount Atlas

Page 22: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

Tomado de: http://www-calipso.larc.nasa.gov/

CALIPSO: Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation

PICASO-CENA:Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations– Climatologie Etendue des Nuages et des Aerosols

Mission for measuring clouds and aerosols

Designed for 3 years

Operative 2006 to the present

Page 23: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

Tomado de: http://www-calipso.larc.nasa.gov/

CALIPSO

Page 24: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

                                                                        

Sistemas de Control y Operación del CALIPSO

Page 25: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto
Page 27: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto
Page 28: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto
Page 29: “Lidar applications to atmospheric studies. " Dr. Juan Carlos Antuña Marrero Senior Researcher, Grupo de Óptica Atmosférica de Camagüey (GOAC), Instituto

Muchas Gracias.