29
Levels of Abstraction in DBMS data • Many views , single conceptual (logical) schema and physical schema . Views describe how users see the data (possibly different data models for different views). Conceptual schema defines logical structure of entire data enterprise Schemas are defined using DDL; data is modified/queried using DML. Physical Schema Conceptual Schema View 1 View 2 View 3

Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Embed Size (px)

Citation preview

Page 1: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Levels of Abstraction in DBMS data

• Many views, single conceptual (logical) schema and physical schema.– Views describe how users see the

data (possibly different data models for different views).

– Conceptual schema defines logical structure of entire data enterprise

– Physical schema describes the underlying files and indexes used.

– Called ANSI schema model Schemas are defined using DDL; data is modified/queried using DML.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Page 2: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Structure of a DBMS

• A typical DBMS has a layered architecture.

• The figure does not show the concurrency control and recovery components.

• This is one of several possible architectures; each system has its own variations.

Query Optimizationand Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layersmust considerconcurrencycontrol andrecovery

Page 3: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Overview of Database Design• Conceptual design: (ER Model is used at this stage.)

– What are the entities and relationships in the enterprise?– What information about these entities and relationships

should we store in the database?

– What integrity constraints or business rules hold? – A database `schema’ in the ER Model can be represented

pictorially (ER diagrams).

– Then we can map an ER diagram into a relational schema.

Page 4: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

ER Model Basics

• Entity: Real-world object distinguishable from other objects. An entity is described (in DB) using a set of attributes.

• Entity Set: A collection of similar entities. E.g., all employees. – All entities in an entity set have the same set of attributes.

(except when we consider ISA hierarchies, anyway!)– Each entity set has a key.(the chosen identifier attribute(s) )– Each attribute has a domain.(allowable value universe)

Employees

ssnname

lot

Page 5: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

ER Model Basics (Contd.)

• Relationship: Association among two or more entities. E.g., Jones works in Pharmacy department.

lot

dname

budgetdid

sincename

Works_In DepartmentsEmployees

ssn

Reports_To

lot

name

Employees

subor-dinate

super-visor

ssn

Degree=2 relationship between entities, Employees and Departments

Degree=2 relationship between entities,Employees and Employees.Must specify the “role” of each entity to distinguish them.

Page 6: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Key Constraints• (many-to-many) Consider

Works_In: An employee can work in many depts; a dept can have many employees.

• (1-many) In contrast, it may be required that each dept have at most one manager.

Many-to-Many1-to-1 1-to Many Many-to-1

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

lotdname

budgetdid

sincename

Works_In DepartmentsEmployees

ssn

Page 7: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Participation Constraints• Does every department have to have a manager?

– If so, this is a participation constraint: the participation of Departments in Manages is said to be total (vs. partial).

• Every did value in Departments table must appear in a row of the Manages table (with a non-null ssn value!)

lot

name dnamebudgetdid

sincename dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Page 8: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

ISA (`is a’) Hierarchies

Contract_Emps

namessn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

* Attributes are inherited.* If we declare A ISA B, every A entity is also considered to be a B entity (e.g., every Hourly_Emps and every Contract_Emps ISA Employees)

• Overlap constraints: Can Joe be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed)

• Covering constraints: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

• Reasons for using ISA: – To add descriptive attributes specific to a subclass (e.g.,

Hourly_Emps have hourly_wages but Contract_Emps don’t)

Page 9: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Conceptual Design Using the ER Model

• Design choices:– Should a concept be modeled as an entity or

an attribute?– Should a concept be modeled as an entity or

a relationship?

Page 10: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Why Study the Relational Model?

• Most widely used model.– Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.

A competitor: object-oriented model – ObjectStore, Versant, Ontos

– A synthesis emerging: object-relational model• Informix Universal Server, UniSQL, O2, Oracle, DB2

• Really just a more flexible relational model

Page 11: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Relational Database: Working Definitions

• Relational database: a set of relations• Relation: made up of 2 parts:

– Instance or occurrence : a table, with rows and columns. #Rows = cardinality, #fields = degree /

arity.– Schema or type : specifies name of relation,

plus name and type of each column/attribute.

• E.G. Students(sid: string, name: string, login: string, age: integer, gpa: real).

• Strictly speaking, a relation is a set of tuples but it is commonplace to think if it a table (sequence of rowsmade up of a sequence of attribute values)

Page 12: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Relational Query Languages

• A major strength of the relational model: supports simple, powerful querying of data.

• Queries can be written intuitively (what, not how), and the DBMS is responsible for efficient evaluation.– Allows the optimizer to extensively re-order operations,

and still ensure that the answer does not change.

Page 13: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

The SQL Query Language

• Developed by IBM (system R) in the 1970s

• Need for a standard since it is used by many vendors

• Standards: – SQL-86– SQL-89 (minor revision)– SQL-92 (major revision, current standard)– SQL-99 (major extensions)

– Procedural constructs (if-then-else, loops, procs)– OO constructs (inheritance, polymorphism,…)

Page 14: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

A look at the SQL Query Language• One of the simplest languages on earth

(compared to C++ or JAVA or…)

• Find all 18 year old students, we can write:

SELECT *FROM Students SWHERE S.age=18

•To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

Page 15: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Querying Multiple Relations

• What does the following query produce?SELECT S.name, E.cidFROM Students S, Enrolled EWHERE S.sid=E.sid AND E.grade=“A”

S.name E.cid

Smith Topology112

sid cid grade53831 Carnatic101 C53831 Reggae203 B53650 Topology112 A53666 History105 B

we get:

Page 16: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Creating Relations in SQL

• Creates the Students relation. Observe that the type (domain) of each field is specified, and enforced by the DBMS whenever tuples are added or modified.

• As another example, the Enrolled table holds information about courses that students take.

CREATE TABLE Students(sid: CHAR(20), name: CHAR(20), login: CHAR(10), age: INTEGER, gpa: REAL)

CREATE TABLE Enrolled(sid: CHAR(20), cid: CHAR(20), grade:

CHAR(2))

Page 17: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Destroying and Altering Relations

• Destroys the relation Students. The schema information and the tuples are deleted.

DROP TABLE Students

The schema of Students is altered by adding a new field; every tuple in the current instance is extended with a null value in the new field.

ALTER TABLE Students ADD COLUMN Year: integer

Page 18: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Adding and Deleting Tuples

• Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

Can delete all tuples satisfying some condition (e.g., name = Smith):

DELETE FROM Students SWHERE S.name = ‘Smith’

Powerful variants of these commands are available!

Page 19: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Integrity Constraints (ICs)

• IC: condition that must be true for any instance of the database; e.g., domain constraints.– ICs are specified when schema is defined.– ICs are checked when relations are modified.

• A legal instance of a relation is one that satisfies all specified ICs. – DBMS should not allow illegal instances.

• If the DBMS checks ICs, stored data is more faithful to real-world meaning.– Avoids data entry errors, too!

Page 20: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Primary Key Constraints• A set of fields is a key (strictly: candidate key) for a

relation if :1. (Uniqueness) No two distinct tuples can have same

values in the key field (all key fields if composite), and

2. (Minimality) This is not true for any subset of a composite key.

– If Part 2 is false, it’s called a superkey (superset of a key)– There’s always >1 key for a relation, one of the keys is

chosen (by DBA) to be the primary key.

• E.g., sid is a key for Students. The set {sid, gpa} is a superkey.

Page 21: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Entity integrity

• No column of the primary key can contain a null value.

Page 22: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Foreign Keys, Referential Integrity

• Foreign key : Set of fields in one relation that is used to `refer’ to a tuple in another relation. (Must correspond to primary key of the second relation.) Like a `logical pointer’.

• E.g. sid is a foreign key referring to Students in Enrolled(sid: string, cid: string, grade: string)– If all foreign key constraints are enforced, referential

integrity is achieved, i.e., no dangling references.– That is, an Enrolled record cannot have an sid that is not

present in Students

Page 23: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Foreign Keys in SQL

• Only students listed in the Students relation should be allowed to enroll for courses.

CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid,cid), FOREIGN KEY (sid) REFERENCES Students )

sid name login age gpa

53666 Jones jones@cs 18 3.453688 Smith smith@eecs 18 3.253650 Smith smith@math 19 3.8

sid cid grade53666 Carnatic101 C53666 Reggae203 B53650 Topology112 A53666 History105 B

EnrolledStudents

Page 24: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Enforcing Referential Integrity• Consider Students and Enrolled; sid in Enrolled is

a foreign key that references Students.• What should be done if an Enrolled tuple with a

non-existent student id is inserted? (Reject it!)• What should be done if a Students tuple is deleted?

– Also delete all Enrolled tuples that refer to it.– Disallow deletion of a Students tuple that is referred to.– Set sid in Enrolled tuples that refer to it to a default sid.– (In SQL, also: Set sid in Enrolled tuples that refer to it to

a special value null, denoting `unknown’ or `inapplicable’.)

• Similar if primary key of Students tuple is updated.

Page 25: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Referential Integrity in SQL/92

• SQL/92 supports all 4 options on deletes and updates.– Default is NO ACTION

(delete/update is rejected)– CASCADE (also delete all

tuples that refer to deleted tuple)

– SET NULL / SET DEFAULT

(sets foreign key value of referencing tuple)

CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid,cid), FOREIGN KEY (sid) REFERENCES Students

ON DELETE CASCADEON UPDATE SET DEFAULT )

Page 26: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Where do ICs Come From?• ICs are based upon the semantics of the real-world

enterprise that is being described in the database relations (I.e., users decide, not DB experts!).

• We can check a database instance to see if an IC is violated, but we can NEVER infer that an IC is true by looking at the instances.– An IC is a statement about all possible instances! It is

not a statement that can be inferred from the set of existing instances.

• Key and foreign key ICs are the most common; more general ICs supported too.

Page 27: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Views• A view is just a relation, but we store a definition,

rather than a set of tuples.CREATE VIEW YoungActiveStudents (name, grade)

AS SELECT S.name, E.gradeFROM Students S, Enrolled EWHERE S.sid = E.sid and S.age<21

Views can be dropped using the DROP VIEW

command. How to handle DROP TABLE if there’s a view on the

table? DROP TABLE command has options to let user

specify this.• Views can be used to present necessary information (or a summary),

while hiding details in underlying relation(s).– Given YoungStudents, but not Students or Enrolled, we can find

students s who have are enrolled, but not the cid’s of the courses they are enrolled in.

Page 28: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

Who decides what the primary key is? (and other design choices?)

The Database design expert? NO! - not in isolation anyway.

Someone from the enterprise who understands

the data and the procedures should be consulted.

The following story illustrates this point.

CAST: Mr. Goodwrench = MG (parts manager); Database Expert = DE

DE: I've looked at your data, and I have decided Part Number (P#) will be designated the primary key for the relation, PARTS(P#, COLOR, WT, TIME-OF-ARRIVAL).

MG: You're the expert, but I think we should use the weight (WT)!

DE: Well, according to textbooks P# should be the primary key,

because it is the main lookup attribute!

. . . later

Page 29: Levels of Abstraction in DBMS data Many views, single conceptual (logical) schema and physical schema. – Views describe how users see the data (possibly

MG: Why is the system so slow?

DE: Do store parts in the stock room ordered by P#?

MG: No. We store by weight. When a shipment comes in, I take each

part into the back room and throw it as far as I can. The lighter

ones go further than the heavy ones so they get ordered by weight!

DE: But weight doesn't have Uniqueness property!

Parts with the same weight end up together in a pile!

MG: No they don't. I tire quickly, so the first one goes furthest, etc.

DE: Then use composite primary key, (weight, TIME-OF-ARRIVAL).

MG: OK.

The point: This conversation should have taken place during the 1st meeting.