5
https://doi.org/10.1038/s41586-019-0932-x Thermodynamic signatures of quantum criticality in cuprate superconductors B. Michon 1,2,3 , C. Girod 1,2,3 , S. Badoux 2 , J. Kačmarčík 4 , Q. Ma 5 , M. Dragomir 6 , H. A. Dabkowska 6 , B. D. Gaulin 5,6,7 , J.-S. Zhou 8 , S. Pyon 9 , T. Takayama 9 , H. Takagi 9 , S. Verret 2 , N. Doiron-Leyraud 2 , C. Marcenat 10 , L. Taillefer 2,7 * & T. Klein 1,3 * 1 Institut Néel, Université Grenoble Alpes, Grenoble, France. 2 Institut quantique, Département de physique and RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada. 3 CNRS, Institut Néel, Grenoble, France. 4 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia. 5 Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada. 6 Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada. 7 Canadian Institute for Advanced Research, Toronto, Ontario, Canada. 8 Materials Science and Engineering Program, Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA. 9 Department of Advanced Materials Science, University of Tokyo, Kashiwa, Japan. 10 Université Grenoble Alpes, CEA, INAC, PHELIQS, LATEQS, Grenoble, France. *e-mail: [email protected]; [email protected] N AT U R E | www.nature.com/nature SUPPLEMENTARY INFORMATION https://doi.org/10.1038/s41586-019-0932-x In the format provided by the authors and unedited.

Letter SUPPLeMeNtArY INFOrMAtION · 1 10 C el /T (mJ K-2 mol-1) p = 0.24 p = 0.21 p = 0.11 Eu-LSCO p = 0.16 b T (K) p = 0.08 Supplementary Fig. 1 | Specific heat data for all crystals

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Letter SUPPLeMeNtArY INFOrMAtION · 1 10 C el /T (mJ K-2 mol-1) p = 0.24 p = 0.21 p = 0.11 Eu-LSCO p = 0.16 b T (K) p = 0.08 Supplementary Fig. 1 | Specific heat data for all crystals

Letterhttps://doi.org/10.1038/s41586-019-0932-x

Thermodynamic signatures of quantum criticality in cuprate superconductorsB. Michon1,2,3, C. Girod1,2,3, S. Badoux2, J. Kačmarčík4, Q. Ma5, M. Dragomir6, H. A. Dabkowska6, B. D. Gaulin5,6,7, J.-S. Zhou8, S. Pyon9, t. takayama9, H. takagi9, S. Verret2, N. Doiron-Leyraud2, C. Marcenat10, L. taillefer2,7* & t. Klein1,3*

1Institut Néel, Université Grenoble Alpes, Grenoble, France. 2Institut quantique, Département de physique and RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada. 3CNRS, Institut Néel, Grenoble, France. 4Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia. 5Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada. 6Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada. 7Canadian Institute for Advanced Research, Toronto, Ontario, Canada. 8Materials Science and Engineering Program, Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA. 9Department of Advanced Materials Science, University of Tokyo, Kashiwa, Japan. 10Université Grenoble Alpes, CEA, INAC, PHELIQS, LATEQS, Grenoble, France. *e-mail: [email protected]; [email protected]

N A T U R E | www.nature.com/nature

SUPPLEMENTARY INFORMATIONhttps://doi.org/10.1038/s41586-019-0932-x

In the format provided by the authors and unedited.

Page 2: Letter SUPPLeMeNtArY INFOrMAtION · 1 10 C el /T (mJ K-2 mol-1) p = 0.24 p = 0.21 p = 0.11 Eu-LSCO p = 0.16 b T (K) p = 0.08 Supplementary Fig. 1 | Specific heat data for all crystals

SUPPLEMENTARYINFORMATION

Thermodynamic signatures of quantum criticality in cuprate superconductors

B.Michonetal.CONTENTSSupplementaryFigure1SupplementaryFigure2SupplementaryFigure3

Page 3: Letter SUPPLeMeNtArY INFOrMAtION · 1 10 C el /T (mJ K-2 mol-1) p = 0.24 p = 0.21 p = 0.11 Eu-LSCO p = 0.16 b T (K) p = 0.08 Supplementary Fig. 1 | Specific heat data for all crystals

0

10

20

30

40

0 2 4 6 8 10

C/T

(mJ K

-2m

ol-1

)

T (K)

H = 8 T

p = 0.24p = 0.21p = 0.16

Eu-LSCO

p = 0.11

a

p = 0.08

0

20

40

60

0 2 4 6 8 10

C/T

(mJ K

-2m

ol-1

)

T (K)

H = 8 T H = 18 T

p = 0.24

p = 0.22

p = 0.12

Nd-LSCO

p = 0.25

p = 0.20

c

p = 0.23

p = 0.15

0

5

10

15

20

25

1 10

Cel

/T (m

J K-2

mol

-1)

Nd-LSCOH = 8 T H = 18 T

T (K)

p = 0.24p = 0.25

p = 0.22p = 0.23

p = 0.15

p = 0.20

p = 0.12

d

0

5

10

15

20

25

1 10

Cel

/T (m

J K-2

mol

-1)

p = 0.24

p = 0.21

p = 0.11

Eu-LSCO

p = 0.16

b

T (K)

p = 0.08

Supplementary Fig. 1 | Specific heat data for all crystals of Eu-LSCO and Nd-LSCO.

a) Specific heat of our five Eu-LSCO crystals measured in a field H = 8 T, down to 0.4 K.

The rapid rise below 1 K is a nuclear Schottky anomaly (Cnuclear). b) Electronic specific heat

Cel(T) of those five Eu-LSCO crystals, plotted as Cel /T vs logT, from data at H = 8 T (p = 0.08,

0.11, 0.16, and 0.24) and at H = 18 T (p = 0.21). Cel(T) is defined as Cel(p; T) = C(p; T) –

C(p=0.16; T) + γ, where γ = 4.2 mJ /K2 mol is the residual linear term of the p = 0.16 reference

data (C / T = γ + βT 2, in Fig. 2a). Dashed lines are a linear extrapolation of the data (p = 0.21,

orange; p = 0.08, purple). c) Same as panel a, for our seven Nd-LSCO crystals (H = 8 T, below

the dashed line; H = 18 T, above the dashed line). d) Same as panel b, for those seven crystals,

using data at p = 0.12 as the reference curve for subtraction, with γ = 3.6 mJ /K2 mol (Fig. 2c).

Page 4: Letter SUPPLeMeNtArY INFOrMAtION · 1 10 C el /T (mJ K-2 mol-1) p = 0.24 p = 0.21 p = 0.11 Eu-LSCO p = 0.16 b T (K) p = 0.08 Supplementary Fig. 1 | Specific heat data for all crystals

T H

Cernox bare unit

Sample

Thermalbath

Tbath

Iac (ω)

Vac (3ω)

Idc

Vac (2ω)

HEATERTHERMOMETER

Ke/4

Ke/4

Ke/4

Ke/4

Supplementary Fig. 2 | Experimental setup for the measurement of heat capacity.

Sketch of our experimental setup, showing the bare Cernox chip (black square) suspended by

four PtW wires. A shallow groove is made with a wire saw to obtain two independent sides,

one for the heater (H, right side) and one for the thermometer (T, left side). The sample is glued

with a minute amount of Apiezon grease on the back of the sapphire substrate. An AC current

Iac at a frequency ω is applied across the heater to induce temperature oscillations of the small

platform (sample + Cernox). A DC current Idc is applied across the thermometer whose voltage

is demodulated at 2ω (see METHODS – Specific heat measurements).

Page 5: Letter SUPPLeMeNtArY INFOrMAtION · 1 10 C el /T (mJ K-2 mol-1) p = 0.24 p = 0.21 p = 0.11 Eu-LSCO p = 0.16 b T (K) p = 0.08 Supplementary Fig. 1 | Specific heat data for all crystals

0.9

0.95

1

1.05

1.1

0 2 4 6 8 10

Cex

p / C

NBS

T (K)

high-T Chip_1050

H = 0 tesla H = 18 tesla

Cu standard (6N)m = 0.94 mg

H = 8 teslaLow-T Chip_1010

H = 8 tesla

H = 0 tesla

Supplementary Fig. 3 | Test of our specific heat measurement on a Cu sample.

Specific heat Cexp of a sample of copper measured using the same setup and analysis as used for

our samples of Eu-LSCO and Nd-LSCO, plotted as Cexp / CNBS vs T, where CNBS is the standard

value of the specific heat of copper established by the National Bureau of Standards. The

measured data never deviate by more than 2-3 % from the standard, over the full temperature

range from 0.5 K to 10 K, whether taken in the 4He refrigerator at H = 0, 8 and 18 T (using a

Cernox 1050 thermometer) or the 3He refrigerator at H = 0 and 8 T (using a Cernox 1010

thermometer).