66
LES, HYBRID LES-RANS AND S CALE -ADAPTIVE S IMULATIONS (SAS) Lars Davidson, www.tfd.chalmers.se/˜lada

LES, Hybrid LES-RANS and Scale-Adaptive Simulations (SAS)lada/slides/slides_hybrid_sas.pdf · WAYS TO IMPROVE THE RANS-LES METHOD[5, 6, 7] The reason is that LES region is supplied

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • LES, HYBRID LES-RANS AND SCALE-ADAPTIVE

    SIMULATIONS (SAS)

    Lars Davidson, www.tfd.chalmers.se/˜lada

  • LARGE EDDY SIMULATIONS

    GS

    SGS

    SGS

    In LES, large (Grid) Scales (GS) are resolved and the small

    (Sub-Grid) Scales (SGS) are modelled.

    LES is suitable for bluff body flows where the flow is governed by

    large turbulent scales

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 2 / 58

  • BLUFF-BODY FLOW: SURFACE-MOUNTED CUBE[1]Krajnović & Davidson (AIAA J., 2002)

    Snapshots of large turbulent scales illustrated by Q = −∂ūi∂xj

    ∂ūj∂xi

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 3 / 58

  • BLUFF-BODY FLOW: FLOW AROUND A BUS[2]

    Krajnović & Davidson (JFE, 2003)

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 4 / 58

  • BLUFF-BODY FLOW: FLOW AROUND A CAR[3]

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 5 / 58

  • BLUFF-BODY FLOW: FLOW AROUND A TRAIN[4]

    Hem

    ida

    &K

    rajn

    ović

    ,2006

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 6 / 58

  • SEPARATING FLOWS

    Wall

    TIME-AVERAGED flow and INSTANTANEOUS flow

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 7 / 58

  • SEPARATING FLOWS

    Wall

    TIME-AVERAGED flow and INSTANTANEOUS flow

    In average there is backflow (negative velocities). Instantaneous,

    the negative velocities are often positive.

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 7 / 58

  • SEPARATING FLOWS

    Wall

    TIME-AVERAGED flow and INSTANTANEOUS flow

    In average there is backflow (negative velocities). Instantaneous,

    the negative velocities are often positive.

    How easy is it to model fluctuations that are as large as the mean

    flow?

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 7 / 58

  • SEPARATING FLOWS

    Wall

    TIME-AVERAGED flow and INSTANTANEOUS flow

    In average there is backflow (negative velocities). Instantaneous,

    the negative velocities are often positive.

    How easy is it to model fluctuations that are as large as the mean

    flow?

    Is it reasonable to require a turbulence model to fix this?

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 7 / 58

  • SEPARATING FLOWS

    Wall

    TIME-AVERAGED flow and INSTANTANEOUS flow

    In average there is backflow (negative velocities). Instantaneous,

    the negative velocities are often positive.

    How easy is it to model fluctuations that are as large as the mean

    flow?

    Is it reasonable to require a turbulence model to fix this?

    Isn’t it better to RESOLVE the large fluctuations?

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 7 / 58

  • NEAR-WALL TREATMENT

    Biggest problem with LES: near walls, it requires very fine mesh in

    all directions, not only in the near-wall direction.

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 8 / 58

  • NEAR-WALL TREATMENT

    Biggest problem with LES: near walls, it requires very fine mesh in

    all directions, not only in the near-wall direction.

    The reason: violent violent low-speed outward ejections and

    high-speed in-rushes must be resolved (often called streaks).

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 8 / 58

  • NEAR-WALL TREATMENT

    Biggest problem with LES: near walls, it requires very fine mesh in

    all directions, not only in the near-wall direction.

    The reason: violent violent low-speed outward ejections and

    high-speed in-rushes must be resolved (often called streaks).

    A resolved these structures in LES requires ∆x+ ≃ 100,∆y+min ≃ 1 and ∆z+ ≃ 30

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 8 / 58

  • NEAR-WALL TREATMENT

    Biggest problem with LES: near walls, it requires very fine mesh in

    all directions, not only in the near-wall direction.

    The reason: violent violent low-speed outward ejections and

    high-speed in-rushes must be resolved (often called streaks).

    A resolved these structures in LES requires ∆x+ ≃ 100,∆y+min ≃ 1 and ∆z+ ≃ 30

    The object is to develop a near-wall treatment which models the

    streaks (URANS) ⇒ much larger ∆x and ∆z

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 8 / 58

  • NEAR-WALL TREATMENT

    Biggest problem with LES: near walls, it requires very fine mesh in

    all directions, not only in the near-wall direction.

    The reason: violent violent low-speed outward ejections and

    high-speed in-rushes must be resolved (often called streaks).

    A resolved these structures in LES requires ∆x+ ≃ 100,∆y+min ≃ 1 and ∆z+ ≃ 30

    The object is to develop a near-wall treatment which models the

    streaks (URANS) ⇒ much larger ∆x and ∆z

    In the presentation we use Hybrid LES-RANS for which the grid

    requirements are much smaller than for LES

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 8 / 58

  • NEAR-WALL TREATMENT

    from Hinze (1975)

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 9 / 58

  • NEAR-WALL TREATMENT

    0 1 2 3 4 5 6

    Z

    0

    0.5

    1

    1.5

    x

    z

    Fluctuating streamwise velocity at y+ = 5. DNS of channel flow.

    We find that the structures in the spanwise direction are very

    small which requires a very fine mesh in z direction.

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 10 / 58

  • HYBRID LES-RANS

    Near walls: a RANS one-eq. k or a k − ω model.In core region: a LES one-eq. kSGS model.

    y

    x

    Interface

    wall

    wall

    URANS

    URANS

    LES

    y+ml

    • Location of interface either pre-defined or automatically computed

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 11 / 58

  • MOMENTUM EQUATIONS

    • The Navier-Stokes, time-averaged in the near-wall regions andfiltered in the core region, reads

    ∂ūi∂t

    +∂

    ∂xj

    (ūi ūj

    )= βδ1i −

    1

    ρ

    ∂p̄

    ∂xi+

    ∂xj

    [

    (ν + νT )∂ūi∂xj

    ]

    νT = νt , y ≤ yml

    νT = νsgs, y ≥ yml

    • The equation above: URANS or LES? Same boundary conditions ⇒same solution!

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 12 / 58

  • TURBULENCE MODEL

    • Use one-equation model in both URANS region and LES region.

    ∂kT∂t

    +∂

    ∂xj(ūjkT ) =

    ∂xj

    [

    (ν + νT )∂kT∂xj

    ]

    + PkT − Cεk

    3/2T

    PkT = 2νT S̄ij S̄ij , νT = Ckℓk1/2T

    LES-region: kT = ksgs, νT = νsgs, ℓ = ∆ = (δV )1/3

    URANS-region: kT = k , νT = νt ,ℓ ≡ ℓRANS = 2.5n[1 − exp(−Ak

    1/2y/ν)], Chen-Patel model (AIAAJ. 1988)

    Location of interface can be defined by min(0.65∆, y),∆ = max(∆x ,∆y ,∆z)

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 13 / 58

  • STANDARD HYBRID LES-RANS

    • Coarse mesh: ∆x+ = 2∆z+ = 785. δ/∆x ≃ 2.5, δ/∆z ≃ 5.

    101

    102

    103

    0

    5

    10

    15

    20

    25

    30

    y+

    U+

    0 0.5 1 1.5 20

    0.2

    0.4

    0.6

    0.8

    1

    x

    B(x)

    standard LES-RANS;

    DNS; LES

    ◦ 0.4 ln(y+) + 5.2B(x) =

    〈u(x0)u(x − x0)〉

    urmsurms

    • Too high velocity because too low shear stress

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 14 / 58

  • WAYS TO IMPROVE THE RANS-LES METHOD[5, 6, 7]

    The reason is that LES region is supplied with bad boundary (i.e.

    interface) conditions by the URANS region.

    The flow going from the RANS region into the LES region has no

    proper turbulent length or time scales

    New approach: Synthesized isotropic turbulent fluctuations are

    added as momentum sources at the interface.

    The superimposed fluctuations should be regarded as forcing

    functions rather than boundary conditions.

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 15 / 58

  • FORCING FLUCTUATIONS ADDED AT THE INTERFACE

    • Object: to trig the momentum equations into resolving large-scaleturbulence

    u′f , v′f , w

    ′f

    x

    y

    URANS region

    LES region

    wall

    interface

    y+ml

    • For more info, see Davidson at al. [5, 7]

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 16 / 58

  • IMPLEMENTATION

    u′f

    v ′f

    An Interface

    Control Volume

    LES

    URANS

    Fluctuations u′f , v′f ,w

    ′f are added as sources in all three

    momentum equations. The source is

    −γρu′i ,f u′2,f An = −γρu

    ′i ,f u

    ′2,f V/∆y (An=area, V=volume of the C.V.)

    The source is scaled with γ = kT/ksynt

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 17 / 58

  • INLET BOUNDARY CONDITIONS

    Uinlet constant in time; uinlet function of time.

    0 5 10 15 20 250

    0.2

    0.4

    0.6

    0.8

    1

    Uin(y)

    y

    U

    uin(y , t0)

    0 20 40 60 80 100

    u(x , y0, t0)

    x

    xE

    Left: Inlet boundary profiles

    Right: Evolution of u velocity depending of type of inlet B.C.

    • With steady inlet B.C., u gets turbulent first at x = xE .

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 18 / 58

  • EMBEDDED LES (BLUFF BODY FLOWS)

    Uin+u′i (t)

    Uout

    Uout

    Steady RANS

    Steady RANS

    LES

    Uin+u′i (t) used as B.C. for LES in the inner region.

    Examples of inner region: external mirror of a car; a flap/slat; a

    detail of a landing gear. Often in connection with aero-acoustics.

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 19 / 58

  • INLET BOUNDARY CONDITIONS VS. FORCING

    Inlet

    Ub(y)

    y

    u′(y , t)

    URANS region

    LES region

    x

    Ub(xi , t)u′(xi , t)

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 20 / 58

  • FULLY DEVELOPED CHANNEL FLOW (PERIODIC IN x )

    101

    102

    103

    0

    5

    10

    15

    20

    25

    30

    y+

    U+

    0 0.2 0.4 0.6 0.8 1−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    uv +

    y/h

    no forcing; forcing (isotropic fluctuations)

    ◦ 0.4 ln(y+) + 5.2

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 21 / 58

  • DIFFUSER[5]

    Instantaneous inlet data from channel DNS used.

    Domain: −8 ≤ x ≤ 48, 0 ≤ yinlet ≤ 1, 0 ≤ z ≤ 4.

    xmax = 40 gave return flow at the outlet

    Grid: 258 × 66 × 32.

    Re = UinH/ν = 18 000, angle 10o

    The grid is much too coarse for LES (in the inlet region

    ∆z+ ≃ 170)

    Matching plane fixed at yml at the inlet. In the diffuser it is located

    along the 2D instantaneous streamline corresponding to yml .

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 22 / 58

  • DIFFUSER GEOMETRY. Re = 18 000, ANGLE 10oH = 2δ

    7.9H

    21H

    29H

    4H

    4.7H

    periodicb.c.

    convective outlet b.c.

    no-slip b.c.

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 23 / 58

  • DIFFUSER: RESULTS WITH LES• Velocities. Markers: experiments by Buice & Eaton (1997)

    x = 3H 6 14 17 20 24H

    x/H = 27 30 34 40 47Hwww.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 24 / 58

  • DIFFUSER: RESULTS WITH NEW RANS-LESx = 3H 6 14 17 20 24H

    x/H = 27 30 34 40 47H

    forcing; no forcingwww.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 25 / 58

  • DIFFUSER: RESULTS WITH NEW RANS-LES

    0 0.5 1 1.5

    x = −H

    −0.5 0 0.5 1−0.5

    0

    0.5

    1

    x = 3H

    −0.5 0 0.5 1−1.5

    −1

    −0.5

    0

    0.5

    1

    x = 6H

    forcing; no forcing

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 26 / 58

  • SHEAR STRESSES (×2 IN LOWER HALF)x = 3H 6 13 19 23H

    x/H = 26 33 40 47H

    resolved; modelledwww.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 27 / 58

  • RANS-LES: νt/νx = 3H 6 14 17 20 24H

    x/H = 27 30 34 40 47H

    forcing; without forcing

    At x = 24H, νT ,max/ν ≃ 450

    At x = −7H νT ,max/ν ≃ 11

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 28 / 58

  • RANS-LES: LOCATION OF MATCHING LINE

    • Location of matching line. It is defined along 2D instantaneousstreamline (defined by mass flow).

    Ub,in,kyml ,in,k∆z =

    jml,i,k∑

    2

    (ūeAe,x + v̄eAe,y )

    This approach has successfully been used for asymmetric plane

    diffuser as well as 3D hill (Simpson & Byun)

    Other option: min(0.65∆, y), ∆ = max(∆x ,∆y ,∆z)

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 29 / 58

  • 3D-HILL

    3.2H

    L2

    W

    δ = 0.5H

    L1

    H

    outlet B.C.

    xz

    y

    Inlet B.C.

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 30 / 58

  • NUMERICAL METHOD

    Implicit, finite volume (collocated),

    Central differencing in space and time (Crank-Nicolson (α = 0.6))

    Efficient multigrid solver for the pressure Poisson equation

    CPU/time step 25 seconds on a single AMD Opteron 244

    Time step ∆tUin/H = 0.026. Mesh 160 × 80 × 128

    8 000 + 8 000 time steps for fully developed+averaging (10 + 10through flow or T ∗ = TUb/H = 200 + 200)

    One simulation (8 000 + 8 000) takes one week

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 31 / 58

  • SYMMETRY PLANE z = 0

    0 0.5 1 1.5 2

    0

    0.5

    1

    y/H

    x/H

    Exp

    eri

    me

    nts

    Hyb

    rid

    LE

    S-R

    AN

    S

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 32 / 58

  • 3D HILL: RANS

    X

    -1 0 1 2 3 4

    0

    1

    Exp

    eri

    me

    nts

    RA

    NS

    ,S

    ST

    • Similar results obtained with all other RANS models (k − ω, Low-ReRSM, EARSM, SA-model etc) [9].

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 33 / 58

  • STREAMWISE PROFILES AT x = 3.69H [8]

    0 0.5 10

    0.2

    0.4

    0.6

    0.8

    1

    U/Uin

    z/H = 0

    0 0.5 1

    −0.16

    0 0.5 1

    U/Uin

    −0.49

    0 0.5 1

    −0.81

    0 0.5 1

    U/Uin

    −1.14

    0 0.5 1

    −1.47

    0 0.5 1

    U/Uin

    −1.79

    Hybrid LES-RANS; ◦ Experiments

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 34 / 58

  • SECONDARY VELOCITY VECTORS AT x = 3.69H

    −2.5 −2 −1.5 −1 −0.5 00

    0.5

    1

    y/H

    Hybrid LES-RANS

    −2.5 −2 −1.5 −1 −0.5 00

    0.5

    1

    y/H

    z/H

    Expts

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 35 / 58

  • SECONDARY VELOCITY VECTORS AT x = 3.69H

    −2.5 −2 −1.5 −1 −0.5 00

    0.5

    1

    y/H

    RANS, SST

    −2.5 −2 −1.5 −1 −0.5 00

    0.5

    1

    y/H

    z/H

    Expts

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 36 / 58

  • RANS SST: STREAMWISE PROFILES AT x = 3.69H

    0 0.5 10

    0.2

    0.4

    0.6

    0.8

    1

    U/Uin

    yH

    z/H = 0

    0 0.5 1

    −0.16

    0 0.5 1

    U/Uin

    −0.49

    0 0.5 1

    −0.81

    0 0.5 1

    U/Uin

    −1.14

    0 0.5 1

    −1.47

    0 0.5 1

    U/Uin

    −1.79

    RANS-SST; ◦ Experiments

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 37 / 58

  • 3D HILL: SUMMARY

    All RANS models give a completely incorrect flow field

    LES and hybrid LES-RANS in good agreement with expts.

    Mesh sizesRANS 0.5 − 1.2 million (half of the domain)Hybrid LES-RANS 1.7 million

    CPU timesRANS, EARSM 1 − 2 days 1-CPU DEC-AlphaLES-RANS 1 week (10+10 T-F)∗ 1-CPU Opteron 244

    ∗ T-F=Through-Flows

    • Hybrid LES-RANS results in Ref. [8]

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 38 / 58

  • MODELLED DISSIPATION, εM• The unsteady Navier-Stokes reads

    ∂ūi∂t

    +∂

    ∂xj

    (ūi ūj

    )= −

    1

    ρ

    ∂p̄

    ∂xi+

    ∂xj

    [

    (ν + νT )

    (∂ūi∂xj

    +∂ūj∂xi

    )]

    The turbulent viscosity, νT , dampens the fluctuations, via the modelleddissipation, εM , which reads

    εM = −τij∂ūi∂xj

    = 〈2νT s̄ij s̄ij〉, τij = −2νt s̄ij +2

    3δijk , s̄ij = 0.5

    (∂ūi∂xj

    +∂ūj∂xi

    )

    2000 2050 2100 2150 2200 2250 2300−2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    time step number

    ū′=

    ū−

    〈ū〉

    low dissipation

    high dissipation

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 39 / 58

  • STEADY VS. UNSTEADY REGIONS

    ∂ūi∂t

    +∂

    ∂xj

    (ūi ūj

    )= −

    1

    ρ

    ∂p̄

    ∂xi+

    ∂xj

    [

    (ν + νT )

    (∂ūi∂xj

    +∂ūj∂xi

    )]

    • OBJECT:

    In regions of fine grid: turbulence resolved by ū′i , i.e.∂ūi∂t

    In regions of coarse grid: turbulence modelled by νT

    • PROBLEM: in fine-grid regions, νT increases too much which kills ū′i

    • SOLUTION: when ū′i starts to grow, reduce νT

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 40 / 58

  • VON KÁRMÁN LENGTH SCALE

    0 5 10 15 200

    0.2

    0.4

    0.6

    0.8

    1

    yLvk ,1D

    Lvk ,3D

    Lvk ,1D = κ∂〈ū〉/∂y

    ∂2〈ū〉/∂y2

    LvK ,3D = κs̄

    |U ′′|, s̄ = (2s̄ij s̄ij)

    1/2

    U ′′ =

    (∂2ūi∂xj∂xj

    ∂2ūi∂xj∂xj

    )0.5

    • The von Kármán detects unsteadiness (i.e. resolved turbulence, ū′i )and reduces the length scale

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 41 / 58

  • THE SAS TURBULENCE MODEL[10, 11, 12]

    Dk

    Dt−

    ∂xj

    [(

    ν +νtσk

    )∂k

    ∂xj

    ]

    = νt s̄2 − c1kω

    Dt−

    [(

    ν +νtσω

    )∂ω

    ∂xj

    ]

    ︸ ︷︷ ︸

    transport

    = c2s̄2 − c3ω

    2 + PSAS

    νt = c4k

    ω, PSAS = c5

    L

    LvK ,3D, LvK ,3D = c6

    U ′′

    • Fine grid ⇒ unsteadiness ⇒ small LvK ,3D ⇒ large PSAS ⇒ large ω ⇒small k and low νt

    • SAS: Scale-Adapated Simulation

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 42 / 58

  • SAS: EVALUATION FROM DNS CHANNEL DATA

    • Reτ = 500, ∆x+ = 50, ∆z+ = 12, y+min = 0.3

    0 0.2 0.4 0.6 0.8 10

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0 100 200 300 400 500

    y/δ

    y+

    κ〈s̄/U ′′〉 κ∣∣∣

    ∂〈U〉/∂y∂2〈U〉/∂y2

    ∣∣∣ (∆V )1/3 ◦ ∆y

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 43 / 58

  • DOMAIN, Reτ = uτδ/ν = 2000 (Reb ≃ 80 000)

    inle

    t

    ou

    tlet

    x

    y

    100δ

    • 256 × 64 × 32 (x , y , z) cells. zmax = 6.3δ, ∆x+ ≃ 785, ∆z+ ≃ 393.

    • δ/∆z ≃ 5, δ/∆x ≃ 2.5

    • MODELS: SAS and no SAS

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 44 / 58

  • CHANNEL WITH INLET-OUTLET

    • Synthesized inlet fluctuations (U ′)m, (V ′)m, (W ′)m with time scaleT = 0.2δ/uτ and length scale L = 0.1δ.

    • The streamwise fluctuations are superimposed to a mean profileobtained from 1D channel flow with k − ω model

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 45 / 58

  • MEAN VELOCITY

    101

    102

    103

    0

    5

    10

    15

    20

    25

    30

    y

    SAS

    101

    102

    103

    0

    5

    10

    15

    20

    25

    30

    no SAS

    y

    x = 3δ x = 23δ x = 98δ

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 46 / 58

  • RESOLVED URMS

    0 0.2 0.4 0.6 0.8 10

    1

    2

    3

    4

    y

    SAS

    0 0.2 0.4 0.6 0.8 10

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    no SAS

    y

    x = 3δ x = 23δ x = 98δ

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 47 / 58

  • PEAK RESOLVED FLUCTUATIONS

    0 20 40 60 80 100

    0

    1

    2

    3

    4

    5

    6

    x

    SAS

    0 20 40 60 80 100

    0

    1

    2

    3

    4

    5

    6

    no SAS

    x

    max {〈u′v ′〉} max {urms} max {wrms} ◦ max {vrms}

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 48 / 58

  • TURBULENT VISCOSITY 〈νt〉/ν

    0 0.2 0.4 0.6 0.8 10

    50

    100

    150

    200

    250

    300

    y

    SAS

    0 0.2 0.4 0.6 0.8 10

    50

    100

    150

    200

    250

    300

    no SAS

    y

    x = 3δ x = 23δ x = 98δ ▽ 1D k − ω

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 49 / 58

  • EVALUATION OF THE SECOND DERIVATIVE

    • Option I: (used) compute the first derivatives at the faces

    (∂u

    ∂y

    )

    j+1/2

    =uj+1 − uj

    ∆y,

    (∂u

    ∂y

    )

    j−1/2

    =uj − uj−1

    ∆y

    (∂2u

    ∂y2

    )

    j

    =uj+1 − 2uj + uj−1

    (∆y)2+

    (∆y)2

    12

    ∂4u

    ∂y4

    • Option II: compute the first derivatives at the centre

    (∂u

    ∂y

    )

    j+1

    =uj+2 − uj

    2∆y,

    (∂u

    ∂y

    )

    j−1

    =uj − uj−2

    2∆y

    (∂2u

    ∂y2

    )

    j

    =uj+2 − 2uj + uj−2

    4(∆y)2+

    (∆y)2

    3

    ∂4u

    ∂y4

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 50 / 58

  • SECOND DERIVATIVES

    0 20 40 60 80 100

    0

    1

    2

    3

    4

    5

    6

    x

    SAS: Option I

    0 20 40 60 80 100

    0

    1

    2

    3

    4

    5

    6

    SAS: Option II

    x

    max {〈u′v ′〉} max {urms} max {wrms} ◦ max {vrms}

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 51 / 58

  • SAS: CONCLUSIONS

    SAS: A model which controls the modelled dissipation, εM , hasbeen presented

    It detects unsteadiness and then reduces εM

    In this way the model let the equations resolve the turbulence

    instead of modelling it

    The results is improved accuracy because of less modelling

    More details in [13]

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 52 / 58

  • CONCLUSIONS

    Flows with large turbulence fluctuations difficult to model with

    RANS models because u′ ≃ ū

    Unsteady methods (URANS, DES, SAS, Hybrid LES-RANS, LES)

    are increasingly being used in universities as well as in industry

    LES is a suitable method for bluff body flows

    Methods based on a mixture of LES and RANS are likely to be the

    methods of the future

    For boundary layers (Rex → ∞) some kind of forcing neededwhen going from (U)RANS region to LES region

    Fluctuating inlet boundary conditions can be regarded as a

    special case of forcing

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 53 / 58

  • REFERENCES I

    S. Krajnović and L. Davidson.

    Large eddy simulation of the flow around a bluff body.

    AIAA Journal, 40(5):927–936, 2002.

    S. Krajnović and L. Davidson.

    Numerical study of the flow around the bus-shaped body.

    Journal of Fluids Engineering, 125:500–509, 2003.

    S. Krajnović and L. Davidson.

    Flow around a simplified car. part II: Understanding the flow.

    Journal of Fluids Engineering, 127(5):919–928, 2005.

    H. Hemida and S. Krajnović.

    LES study of the impact of the wake structures on the

    aerodynamics of a simplified ICE2 train subjected to a side wind.

    In Fourth International Conference on Computational Fluid

    Dynamics (ICCFD4), 10-14 July, Ghent, Belgium, 2006.

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 54 / 58

  • REFERENCES II

    L. Davidson and S. Dahlström.

    Hybrid LES-RANS: An approach to make LES applicable at high

    Reynolds number.

    International Journal of Computational Fluid Dynamics,

    19(6):415–427, 2005.

    S. Dahlström and L. Davidson.

    Hybrid RANS-LES with additional conditions at the matching

    region.

    In K. Hanjalić, Y. Nagano, and M. J. Tummers, editors, Turbulence

    Heat and Mass Transfer 4, pages 689–696, New York, Wallingford

    (UK), 2003. begell house, inc.

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 55 / 58

  • REFERENCES III

    L. Davidson and M. Billson.

    Hybrid LES/RANS using synthesized turbulent fluctuations for

    forcing in the interface region.

    International Journal of Heat and Fluid Flow, 27(6):1028–1042,

    2006.

    L. Davidson and S. Dahlström.

    Hybrid LES-RANS: Computation of the flow around a

    three-dimensional hill.

    In W. Rodi and M. Mulas, editors, Engineering Turbulence

    Modelling and Measurements 6, pages 319–328. Elsevier, 2005.

    W. Haase, B. Aupoix, U. Bunge, and D. Schwamborn, editors.

    FLOMANIA: Flow-Physics Modelling – An Integrated Approach,

    volume 94 of Notes on Numerical Fluid Mechanics and

    Multidisciplinary Design.

    Springer, 2006.

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 56 / 58

  • REFERENCES IV

    F. R. Menter, M. Kuntz, and R. Bender.

    A scale-adaptive simulation model for turbulent flow prediction.

    AIAA paper 2003–0767, Reno, NV, 2003.

    F. R. Menter and Y. Egorov.

    Revisiting the turbulent length scale equation.

    In IUTAM Symposium: One Hundred Years of Boundary Layer

    Research, Göttingen, 2004.

    F. R. Menter and Y. Egorov.

    A scale-adaptive simulation model using two-equation models.

    AIAA paper 2005–1095, Reno, NV, 2005.

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 57 / 58

  • REFERENCES V

    L. Davidson.

    Evaluation of the SST-SAS model: Channel flow, asymmetric

    diffuser and axi-symmetric hill.

    In ECCOMAS CFD 2006, September 5-8, 2006, Egmond aan Zee,

    The Netherlands, 2006.

    www.tfd.chalmers.se/˜lada LES course, 19-21 Oct 2009 58 / 58