Lecture9C(groundconvergencederivation)

Embed Size (px)

Citation preview

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    1/55

    1

    d r d r r r 111 )()(

    1sideonForceRadial

    ==

    d r d r r r 333 )()(

    3sideonForceRadial==

    )2

    ()()2

    sin()()(

    2sideonForceNormal

    2312

    d

    dr d

    r r ==

    )

    2

    ()()

    2

    sin()()(

    4sideonForce Normal

    4314

    d

    dr d

    r r ==

    [ ]dr r 2)(

    4sideonForceShear

    =

    [ ]dr r 4)(2sideonForcehear

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    2/55

    2

    direction)tangential(involumeunit per componentforce body

    direction)radial(involumeunit per componentforce body==

    S

    R

    directionradialinforceEquation of Equilibrium

    ( ) ( )[ ] 02

    )(2

    )()()(

    42

    4231

    =+

    +

    dr Rrd dr

    d dr

    d dr d r d r

    r r

    r r

    Divide both sides by drd

    [ ] ( ) ( )

    0)()(21)()( 42

    42

    31

    =+

    ++

    Rr d dr r r r r r r

    Area gets smallerto the limit

    d

    r r

    r r

    )(

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    3/55

    3

    [ ] ( ) ( ) 0)()(21)()( 42

    4231 =+++ Rr

    d dr r r r r r r

    0=++ Rr d

    r

    r r r r r

    r r

    r r

    r r

    r r

    +

    =

    +

    =

    )()(

    +

    r r

    r r

    Expand by product rule

    Divide the equation by r

    01 =++

    +

    R

    r r r

    r r r

    Similarly the equation of equilibrium in the tangential direction

    021 =++

    +

    S

    r r r

    r r

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    4/55

    4

    Differential equation of equilibrium in Polar Coordinate Differential equation of equilibrium in Cartesian Coordinate

    0=+

    +

    X y x xy x

    01

    =+

    +

    +

    Rr r r r r r

    021 =++

    +

    S

    r r r

    r r

    0=+

    +

    Y

    x y

    xy y

    Make use of Airy stress function to find the elastic stress distribution of a circular hole in aninfinite medium under isotropic stress condition

    o

    i P

    P

    PressureExternal

    PressureInternal

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    5/55

    5

    Differential equation of equilibrium in Cartesian Coordinate

    0=+

    +

    X

    y x

    xy x 0=+

    +

    Y

    x y

    xy y

    g =For no horizontal acceleration, X=0 Body force is simply the weight of the body

    0=++ g

    x y xy y 0=

    +

    y x xy x

    Also need the Compatibility Equations in terms of Stresses

    xu

    x =

    Differentiate twice w.r.t. y

    Components of Strain

    yv

    y =

    xv

    yu

    xy +

    =

    Differentiate twice w.r.t. x Differentiate w.r.t. x and then y

    Arrive the Compatibility Equation in terms of Strain

    y x x y xy y x

    =

    +

    2

    2

    2

    2

    2

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    6/55

    6

    Use Hooks Law to transform into Compatibility Equation in terms of Stress

    For Plane Stress Condition :

    )(1 y x x E = )(1 x y y E

    = xy xy xy E G )1(21 +==

    Substitute into the compatibility equation, we get:

    y x x y xy x y y x

    +=

    +

    2

    2

    2

    2

    2

    )1(2)()(

    Next, to differentiate the equilibrium equation

    0=

    +

    y x

    xy x

    0=+

    +

    g x y

    xy y

    Differentiate w.r.t. x

    Differentiate w.r.t. y and then add thetwo equations and it becomes:

    2

    2

    2

    22

    2 y x y x

    y x xy

    =

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    7/55

    7

    The Compatibility Equation in terms of Stresses is obtained by substituting

    back into

    y x x y xy x y y x

    +=

    +

    2

    2

    2

    2

    2

    )1(2)()(

    2

    2

    2

    22

    2 y x y x y x xy

    =

    )1()()(

    2

    2

    2

    2

    +=

    +

    x y

    x y y x )( 2

    2

    2

    2

    y x

    y x

    )1(22

    2

    2

    2

    2

    2

    2

    +=

    +

    x x y y x y y x )( 2

    2

    2

    2

    y x

    y x

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    y x y x x x y y y x y x x y y x

    =

    +

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    8/55

    8

    02

    2

    2

    2

    2

    2

    2

    2

    =

    +

    +

    +

    y x x y y x y x

    ( ) 022

    2

    2

    =+

    +

    y x y x The Compatibility Equation in terms of Stresses

    For Plane Stress Condition :

    The Compatibility Equation in terms of Stresses for Plane Stress Conditionincluding body forces are similarly derived and given as follows:

    ( ) ( )

    +

    +=+

    +

    yY

    x X

    y x y x 12

    2

    2

    2

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    9/55

    9

    For Plane Strain Condition :

    ( ) ( )[ ] y x x E += 111 2

    ( ) ( )[ ] x y y E += 111 2

    xy xy xy E G )1(21 +==

    ( ) 022

    2

    2

    =+

    +

    y x y x The Compatibility Equation in terms of Stresses

    For Plane Stress Condition also the same for

    Plane Strain Condition

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    10/55

    10

    The Compatibility Equation in terms of Stresses for any general case with body forces are similarly derived as follows:

    ( )

    +

    =+

    +

    yY

    x X

    y x y x

    11

    2

    2

    2

    2

    The usual method of solving both the equilibrium and compatibilityequations is to introduce a new stress function (introduced byAiry in 1862 , that is why call Airy Stress Function)

    0=

    + y x xy x

    0=+

    +

    g x y

    xy y

    For the equilibrium equations

    to be satisfied, it has been shown that the new stress function must also satisfy the following expressions for the stresscomponents :

    gy

    x y

    =2

    2

    gy y x

    =

    2

    2

    y x xy =

    2

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    11/55

    11

    y x xy =

    2Substitute these expressions

    into the equilibrium equation

    gy y x

    =

    2

    2

    gy x y

    =

    2

    2

    ( ) 022

    2

    2

    =+

    +

    y x y x

    The stress function must also satisfy the following expressions:

    024

    4

    22

    4

    4

    4

    =

    +

    +

    y y x x

    If this stress function can be satisfied, then the equilibriumequation and compatibility equation will also be satisfied .

    Thus, the solution of many 2D problems (including bodyforces) can be derived by finding a solution which satisfy thestress function incorporating the boundary conditions.

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    12/55

    12

    The stress function (without body force) in polar coordinatesmust also satisfy the following expressions for the stresscomponents:

    =

    =

    r r r r r r 111 2

    22

    2

    2

    11

    +

    =

    r r r r 22

    r =

    The Compatibility Equation in terms of Stresses in polar coordinates is:

    01111

    2

    2

    22

    2

    2

    2

    22

    2

    =

    +

    +

    +

    +

    r r r r r r r r

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    13/55

    13

    Stress Distribution Symmetrical about an Axis

    The Compatibility Equation in terms of Stresses in polar coordinates, when the Stress Function depends on r only, is:

    01111

    2

    2

    22

    2

    2

    2

    22

    2

    =

    +

    +

    +

    +

    r r r r r r r r

    011211

    32

    2

    23

    3

    4

    4

    2

    2

    2

    2

    =++=

    +

    +dr d

    r dr d

    r dr d

    r dr d

    dr d

    r dr d

    dr d

    r dr d

    Which is an ordinary differential equation , which can be reduced to a linear differential equation with constantcoefficients by introducing a new variable t such that

    The solution has four constants of integration, which must be determined from the boundary conditions.

    t

    er =

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    14/55

    14

    Assume the stress function to be in the form as:

    The corresponding stress function without body force is obtained:

    DCr r Br r A +++= 22 loglog

    2

    2

    2

    11

    +

    = r r r r C r Br A

    r r r 2)log21(1

    2 +++=

    =

    C r Br A

    2)log23(2 +++= 22

    r

    =

    =

    r r r

    10= r

    The solution becomes

    which may be used to represent the stress

    distribution in a hollow cylinder subjected touniform pressure on the inner and outer surfaces

    C r A

    r 22 += C r A

    22 += 0= B For

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    15/55

    15

    ( ) ( ) obr r iar r p p == == Apply the boundary conditions:

    C r A

    r 22 +=

    ir pC a

    A

    =+= 22 or pC b A

    =+= 22 From which,

    ( )22

    22

    ab

    p pba A io

    =22

    22

    2 ab

    b pa p

    C oi

    =

    C r A

    22 += C r A

    r 22 += and substitute back into the equation

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    16/55

    16

    ( )22

    22

    222

    22 1ab

    a pa pr ab

    p pba oiior

    +

    =

    ( )22

    22

    222

    22 1ab

    a pa pr ab

    p pba oiio+

    =

    r uor r u ==

    r E =

    To find the radial displacement, use

    For Plane Stress Condition

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    17/55

    17

    0112

    32

    2

    23

    3

    4

    4

    =++dr d

    r dr d

    r dr d

    r dr d

    check

    DCr r Br r A +++= 22 loglog DCr r A ++= 2log

    Cr r

    Adr d

    21 += C

    r A

    dr d

    21

    22

    2

    += 44

    4 16

    r A

    dr d =

    33

    3 12

    r A

    dr d =

    4

    16

    r A 3

    12

    2r

    Ar

    + )21(1 22 C r A

    r + 0)21(13 =++ Cr r

    Ar

    C r r

    A 211

    24 + 0121 24 =++ r

    C r

    A41

    6r

    A 41

    4r

    A+

    016 4 =+ r A416 r A

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    18/55

    18

    Derivation of Elasto-Plastic Solution to compute radial crown displacement of a tunnel under planestrain, homogeneous, isotropic stress condition for c and material

    er i p o pa

    o p

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    19/55

    19

    For soil under elastic stresses, use the equations of equilibrium and compatibility for a cylindricalhole in an infinite plate

    01 =++ r r r rr r rr

    Equations of equilibrium

    without body force

    021

    =+

    +

    r r r r r

    Equations of equilibrium

    without body force

    ( ) 011 22

    22

    2

    =+

    +

    +

    rr

    r r r r

    Equations of compatibility

    without body force

    ( ) 022

    2

    2

    =+

    +

    y x y x

    ( ) +=+ r y x

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    20/55

    20

    0=

    For no shear stress in the tangential directions

    0=+ r r rr rr

    ( ) 01

    2

    2

    =+

    +

    rr r r r

    r r

    k rr Ar =+

    ( ) 0122

    =+

    +

    rr r r r

    ( ) ( ) 222

    2

    2

    )1( ==+ k k

    rr r k Ak Ar r r ( ) ( ) 21111 ===+

    k k k rr Akr Akr r

    Ar r r r r

    Assumes that the equation takes the form of:

    and substitute into

    0=+ rr rr

    2

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    21/55

    21

    ( ) 0122

    =+

    +

    rr r r r

    0)(0)(

    22

    22

    ==+

    k Ar k k k Ar

    k

    k + 2)1( k r k Ak 02 =k Akr

    thereforeandzero bemust,zero becannotsince k A

    Arr =+

    0=+

    r r

    rr rr Substitute back into the equilibrium equation

    ( ) 0=+

    r

    Ar r

    rr rr rr

    02 =+

    r A

    r r rr rr

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    22/55

    22

    For a linear, first order differential equation, the solution is given as follows:

    For a linear, first order differential equation, which is expressed in the following form:

    ( ) ( ) xQ y x P dxdy =+

    += cdxQe ye Pdx Pdx

    r A

    r r rr rr =+

    2Analogy yrr

    ( ) x P r 2

    ( ) xQr A

    The solution by integration is from standard mathematics handbook:

    += C dr er A

    edr

    r dr

    r rr

    22

    dxr

    += C dr er A

    e r r rr )ln(2)ln(2

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    23/55

    23

    += C dr er A

    e r r rr )ln(2)ln(2

    += C Ardr r rr 2

    2)ln(2 r e r =

    C r

    Ar rr += 2

    22

    22 r C A

    rr +=

    Arr

    =+

    Ar

    C A

    =++ 22

    22 r C A =

    rerr e

    orr

    r r at pr

    ====

    ,, +=

    C A po 2 o p A 2=

    2e

    or r

    C pe +=

    The two boundary conditions: at

    ( ) 2rpC =

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    24/55

    24

    ( )( ) 2er o

    eor

    r pC

    r pC

    e

    e

    =

    =

    22 r C A

    rr += ( )2

    =r r

    p p er oorr e

    ( )2

    +=r r p p er oo e

    r

    uu

    r r +

    =

    1

    r u r =

    ( )( ) 01

    =+= rr zz zz E ( ) += rr zz

    which is the radialstress in the elasticzone

    22 r C A =

    The equations for expressing tangential strain is given as:

    For zero shear strain:

    For plane strain condition:

    In order to express displacement due to stress changes plus initial stresses

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    25/55

    25

    In order to express displacement due to stress changes plus initial stresses

    )(o

    p+

    )( orr rr p+

    ( )( ) zz rr E += 1 ( ) += rr zz

    ( )( )[ ] ++= rr rr E 1

    ( ) ( ) ( ) ( )( )( )[ ]oorr orr o p p p p E ++= 1

    ( )( ) ( )( )[ ]orr o p p E += 111 2

    r u r

    =

    r u r

    ( )( ) ( )( )[ ]orr o p p E += 111 2

    +1

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    26/55

    26

    ( )( ) ( )[ ]orr or p p E r u += 1

    1

    ( )2

    =r r

    p p er oorr e

    ( )2

    +=r r

    p p er oo e

    ( )2

    1

    +=r r p

    E r u e

    r or

    e which is the elastic radial displacement

    For the stresses in the plastic zone, needs to use the Mohr-Coulomb failure criterion

    cohesiontheiscwhere N c N rr 2+=

    cohesionresidual theis

    cwhere N c N r r rr r r

    2+=r

    r

    r

    N

    sin1

    sin1

    +=

    For Peak Strength

    For Residual Strength

    NN 2+=

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    27/55

    27

    0=+

    r r

    rr rr Substitute r r rr

    N c N r

    2+= into

    02

    =++

    r

    N c N

    r r r r rr rr rr

    ( )r

    N c

    r

    N

    r r r r rr rr

    21 =

    ( ) ( ) xQ y x P dxdy =+

    += cdxQe ye Pdx Pdx

    +=

    C dr er

    N cedr

    r

    N

    r

    dr r

    N

    rr

    r

    r

    r 11

    12

    ( ) ( ) += C dr er

    N ce r N

    r r N

    rr r

    r

    r ln1ln1 12

    1

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    28/55

    28

    += C dr r N cr r r r N r N rr

    1

    2)1(

    += C dr r N cr r

    r r

    N r N

    rr

    2)1(

    C r N

    N cr

    r

    r

    r r

    N r N

    rr ++= +

    1

    )1( 112

    ( ) ( ) C r N N cr r r

    r r N r N rr += 1)1( 1

    12

    1

    1

    r r x x dx C

    r

    +

    = ++

    ( ) C r N

    N cr

    r

    r

    r r

    N r N

    rr ++=

    1

    )1( 112

    par == To solve for C use the boundary conditions at

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    29/55

    29

    ( ) ( ) C r N N cr r r

    r r N r N rr

    += 1)1( 11

    2

    irr par ,

    ( ) ( ) C a N N ca p r r

    r r N r N i += 1)1( 1

    12

    ( ) ( )1)1( 112

    +=r

    r

    r r N r N i

    a N N c

    a pC

    To solve for C, use the boundary conditions at

    Substitute C into

    ( ) ( ) C r N N cr r r r r N r N rr +

    =

    1)1( 1

    12

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    30/55

    30

    ( ) ( ) +

    = 1)1(1

    12

    r

    r

    r r N r N rr

    r N

    N c

    r

    ( ) ( )11

    1

    12

    +r

    r

    r r N r N i

    a N

    N c

    a

    p

    ( )12

    )1(

    2)1(

    +

    =

    r

    r

    r

    r r

    N

    N c

    N

    N c

    par r r

    i

    N

    rr

    which is the radial stresses

    in the plastic zone

    r

    r r N

    sin1

    sin1+

    =( )( ) ( ) ( )

    r

    r

    r r

    r

    r r

    r r

    r

    r r

    N

    sin1cos

    sin1)sin1(sin1

    sin1)sin1(sin1)sin1(

    sin1sin1 2

    =

    =

    +=

    +=

    r

    r

    r

    r r

    r

    r r

    N

    sin1sin2

    sin1sin1)sin1(

    1sin1sin1

    1

    =

    ++=+=

    tN 22)1( NNN

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    31/55

    31

    ( ) 2cot

    sin2cos

    1r

    r

    r

    r

    r

    N

    N

    == and substitute back into

    to obtain the radial stress in the plastic zone

    ( )12

    )1(

    2)1(

    +

    =

    r

    r

    r

    r r

    N

    N c

    N

    N c p

    ar r r

    i

    N

    rr

    [ ] r r r r i N

    rr cc par r

    cotcot

    )1(

    +

    =

    which is the radial stressesin the plastic zone

    To locate the extent of the plastic zone , rewrite

    as follows: N c N rr 2+=

    cohesion peak iscand angle friction peak iswhere

    crr

    sin1cos

    2sin1sin1

    +

    +=

    Take r = r e2

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    32/55

    32

    Substitute into

    ( )2

    =r r

    p p er oorr e ( )2

    +=r r

    p p er oo e

    sin1cos

    2sin1sin1

    +

    += crr

    ( )ee r

    e

    er oorr r

    r p p =

    =

    2

    ( ) ( ee r oo

    e

    er oo p pr

    r p p +=

    +=

    2

    ( ) sin1 cos2sin1 sin1 ++=+ c p p ee r r oo

    sin1

    cos2

    sin1

    sin12

    +

    += c p

    ee r r o

    ee r r o c p

    sin1sin1

    sin1sin1

    sin1cos

    2+

    +=

    2cos r

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    33/55

    33

    sin1sin1cos

    2

    =

    er o c p

    ( )

    ( )

    cossin1

    sin1sin1

    cossin1

    c p

    c p

    or

    or

    e

    e

    =

    =

    which is the radial stress atthe elastic-plastic boundary

    [ ] r r r r i N

    err cc pa

    r r

    cotcot)1(

    +

    =

    ( ) cossin1 c por e ==

    Determine the plastic radius by substituting the above equation back into

    [ ]

    cos)sin1(cotcot)1(

    c pcc par

    or r r r i

    N e

    r

    =+

    [ ]

    cos)sin1(cotcot)1(

    cpccpr N e

    r

    =+

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    34/55

    34

    [ ] cos)sin1(cotcot c pcc pa or r r r i

    +

    2

    )1(

    cotcotcos)sin1(

    X c p

    cc par

    r r i

    r r o N

    er

    =+

    +=

    1)1( X N r =

    1

    cotcotcos)sin1(

    ln

    +

    +

    = r r r i

    r r o

    N

    c pcc p

    e aer

    2

    1

    X ar

    X

    e

    =

    21 lnln X ar

    X e

    =

    1

    2ln X X

    e aer =Plastic zone exist only when r e is greater than the radius a, thus:

    1

    2ln X X

    aea = 1ln

    1

    2

    =e X X

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    35/55

    35

    aea

    1

    0ln

    0ln

    1

    2

    2

    1

    2

    =

    ==

    X

    X

    X X

    e

    1

    cot

    cotcos)sin1(2 ==

    +

    + X

    c p

    cc p

    r r i

    r r o

    r r ir r o c pcc p crit cotcotcos)sin1( +=+

    cos)sin1( c p p oicrit = which is the critical internalsupport pressure

    For the plastic zone to form,crit ii p p p

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    36/55

    36

    Next is to find out the displacement in the plastic zone

    r u r =

    strainradial r u

    rr r

    =

    Strain is consisted of two parts: elastic and plastic E P

    P rr

    E rr

    r

    r u +=

    angledilationtheiswhere N

    sin1sin1

    +

    =

    Plasticity Rule is based on 3 assumptions:

    1 Th i ld it i (F) t d b f i th t

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    37/55

    37

    1. The yield criterion (F), represented by a surface in the stress space,at which plastic deformation may develop

    2. The hardening law (h being a hardening parameter), that governs the possible changes in shape, size and position of the yield surface withan increase in plastic strains

    3. The plastic flow rule governing the increment of the plastic strains

    For elasto-plastic materials undergoing infinitesimal deformation,Total strain increment = Elastic strain increment + Plastic strain increment

    pl el d d d += Plastic strains are irreversibleThe elastic strain component can be represented using the generalized Hooke's law:

    pl el d d D Dd d == D = Elastic Constitutive Modulus

    1st assumption in Plasticity Rule:

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    38/55

    38

    The yield criterion (F), represented by a surface in the stress space, atwhich plastic deformation may develop

    pl h F F ,=

    h is the vector of the hardening parameters governing the changes of the yield surface withincreasing plastic strains

    If F < 0 , material is elastic (stress state within the yield surface)

    If F = 0, material is in plastic equilibrium (stress state fulfills the yield criterion or stressstate at the yield surface)

    F > 0 Not Admissible (stress state cannot be outside the yield surface)

    2nd and 3 rd assumptions in Plasticity Rule:

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    39/55

    39

    2. The hardening law (h being a hardening parameter), that governs the possible changes in shape, size and position of the yield surface withan increase in plastic strains

    3. The plastic flow rule governing the increment of the plastic strains

    Plastic Flow Rule states that during the plastic strain increment along theyield surface, the plastic strain increment is proportional to the gradient ofthe Plastic Potential

    Plastic Potential pl hQQ ,=

    = Q

    d d pl

    d Plastic Multiplier IncrementThis means that the vector representing the plastic strain increment is directed as the

    outward normal vector at the point that corresponds to the current stress state.

    Plastic Flow Rule states that during the plastic strain increment along theyield surface, the plastic strain increment is proportional to the gradient of

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    40/55

    40

    the Plastic Potential

    Plastic Potential pl

    hQQ ,=

    = Qd d pl

    d Plastic Multiplier IncrementThis means that the vector representing the plastic strain increment is directed as the

    outward normal vector at the point that corresponds to the current stress state.

    The plastic potential is defined by Johnson and Mellor (1983) as follows:

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    41/55

    41

    ( ) ( ) 0sin =+= r r g

    sin1sin1

    += N

    ( ) 0sinsin == r r g ( ) ( ) 0sin1sin1 =+= r g

    ( )( ) ( )( ) 0sin1 sin1sin1 sin1 =+=

    r g

    ( )( ) 0sin1

    sin1

    =+

    =

    r g

    0== r N g

    Using the flow rule, the plastic strain increments may be determined as:

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    42/55

    42

    multiplier scalar negativenonais g

    d ij

    P ij

    = ,

    For the radial and tangential strain increments:

    ( )( )

    ( )( ) 0sin1

    sin1sin1

    sin1=

    +

    =

    r g [ ] sin1 =

    P r d

    sin1 =

    r

    g

    sin1 = g

    [ ] sin1 = P d

    ( )

    N

    d

    d P

    P

    r =

    +=

    sin1sin1

    N

    P

    P

    r =

    P rr

    E rr

    r

    ru +=Substitute into

    N r =

    P

    P

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    43/55

    43

    r

    P E rr

    r N r u =

    P E += E P =

    ( ) E E rr r N r

    u =

    =

    E r E

    rr r

    r u

    N r

    u

    E E rr r

    r N ur

    N

    r u

    +=+

    ( ) ( ) xQ y x P dxdy =+ E E

    rr r r N u

    r N

    ru

    +=+

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    44/55

    44

    r r

    += cdxQe ye Pdx Pdx

    ( ) ++= dr e N C eu dr r N

    E E rr

    dr r

    N

    r

    ++= dr N r dr r C r u E N E

    rr N N

    r

    ++= dr N r dr r C r u E N E rr

    N N r

    For plane strain conditions, recall the tangential strain

    ( )( )

    ( )( )[ ]orr o

    p p E

    +=

    111 2 E

    ( ) ( )( ) ( )[ ]orr o E p p E

    += 11

    Substitute the residual strength parameters r r

    N c N r rr 2+=

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    45/55

    45

    into

    ( )( )( ) ( )[ ]orr o

    E

    p p E +

    =

    11

    ( )( ) [ ]( ) ( )[ ]orr or rr E p p N c N E r r ++= 21

    1

    ( )( ) ( ) ( )( ) ( )[ ]orr or orr E p N p N c p N E r r r +++= 121

    1

    ( )( ) ( ) ( )( ) ( )[ ]orr or orr E p N p N c p N E r r r +++= 1211

    ( ) ( ) ( ) ( )( ) ( ) ++

    +=12

    121

    r r r

    r r r

    N p N c p N

    p N p N c p N

    E or orr

    orr or orr E

    ( ) ( ) ( ) ( )+++ 121 pNpNcpN

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    46/55

    46

    ( ) ( ) ( ) ( )

    ( ) ( )

    +=12

    121

    r r r

    r r r

    N p N c p N

    p N p N c p N

    E or orr

    orr or orr E

    ( )( )( ) ( ) ( )( )[ 1211 +++= r r r r N p N c p N N E or orr E

    ( )( ) ( )( )[ 1+ E [ ] r r r r i

    N

    rr cc par r

    cotcot

    )1(

    +

    =

    ( ) ( ) 121 ++=r r r r

    N p N c p N N E or orr

    ( ) ( )( )

    [ ]

    ( ) ( )( ) ++

    +

    +=

    121

    cotcot1

    1

    r r

    r

    r r

    N p N c

    pcc par

    N N

    E or

    or r r r i

    N

    E

    For plane strain conditions, recall the radial strain and derive same manner as tangential strain

    E 1

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    47/55

    47

    ( )( ) zz rr E rr E

    +=1

    ( ) += rr zz ( )( )[ ] ++= rr rr E rr E 1

    ( ) ( ) ( ) ( )( )( )[ ]oorr oorr E rr p p p p E ++= 1

    ( )( ) ( )( )[ ]oorr E

    rr p p E += 111 2

    ( )( ) ( )[ ]oorr E

    rr p p E +

    =

    11

    Substitute the residual strength parameters r r

    N c N r rr 2+=

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    48/55

    48

    into

    ( )( ) ( )[ ]oorr E

    rr p p E +

    =

    11

    ( )( ) ( ) ( )( )[ ]r r r N c N p p N p E r oorr orr E

    rr

    2111

    +++

    =( )( ) ( )[ ]1211 +=

    r r r N p N c N p

    E or orr E

    rr

    Substitute the radial stress equation in the plastic zone

    into the above equation

    [ ] r r r r i N

    rr cc par r

    cotcot)1(

    +

    =

    ( )( ) ( )[ ]or rr orr E rr p N c N p E r r ++= 211

    ( )( ) ( )[ ]1211 += r r r N p N c N p E or orr E

    rr

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    49/55

    49

    [ ] r r r r i N

    rr cc par r

    cotcot

    )1(

    +

    =

    ( )( ) ( )+

    +=

    121cotcot1

    1

    r r r

    r

    N p N c N pcc par

    E or or r r r i

    N E

    rr

    Substitute into the radial displacement equation for the plastic zone (radial and tangential strain just derived)

    ++= dr N r dr r C r u E N E rr N N r

    ( ) ( )( )

    [ ]

    ( ) ( )( ) ++

    +

    +=

    121

    cotcot1

    1

    r r

    r

    r r

    N p N c

    pcc par

    N N

    E or

    or r r r i

    N

    E

    dr r For E rr N

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    50/55

    50

    ( )

    ( ) ( ) dr N p N c N pcc p

    a

    r

    E r

    r r r

    r

    or or r r r i

    N N

    +

    +

    121cotcot1

    1

    ( ) ( )( )( ) ( )( )[ ] +++

    ++=

    +

    dr r N p N c N pc

    dr r a

    c p N

    E N or or r

    N N

    N r r i

    r r r

    r

    r r

    121cot

    cot11

    1

    1

    ( ) ( )

    ( )( ) ( )( )[ ]++++

    ++

    = +

    +

    +

    121cot1

    cot1

    11

    1

    r r r

    r r

    r

    r

    N p N c N pc N r

    a

    c p N

    N N r

    E or or r

    N

    N r r i

    N N

    dr r For E N

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    51/55

    51

    ( ) ( )

    ( )

    [ ]

    ( ) ( )( )

    dr

    N p N c

    pcc par N N

    E r

    r r

    r

    r r

    or

    or r r r i

    N

    N

    ++

    + +

    121

    cotcot1

    1

    ( ) ( ) ( ){ }( ) ( ) ( )( )[ ] +++

    +++=

    +dr r N p N c N N pc

    dr r

    a

    c p N N

    E N or or r

    N N

    N r r i

    r r r r

    r

    r r r

    121cot

    cot1

    1

    1

    ( )( ) ( )

    { }( ) ( ) ( )( )+++++

    ++++=

    ++

    +

    1211cot1

    cot

    111

    1

    r r r r

    r r r

    r

    r

    N p N c N r

    N N pc N r

    ac p N N

    N N r

    E or

    N

    or r

    N

    N r r i N N

    Assign the following parameters for simplicity in expressions

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    52/55

    52

    ( )1cot

    += r N

    r r i

    l a

    c p B

    r

    r

    N N

    r r H

    N N

    +

    +

    =)(

    1)(

    1

    +

    =

    +

    N

    r r H

    N

    ( ) ( )+

    + cot1 1

    r c pN

    r N

    r r i N N

    Substitute

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    53/55

    53

    ( ) ( )

    ( )( ) ( )( )[ ]+++++

    = +

    +

    121cot1

    11

    1

    1

    r r r

    r r

    r

    N p N c N pc N r

    a N

    N N

    E or or r

    N

    N

    ( )( ) ( )

    { }( ) ( ) ( )( )+++++

    ++++=

    ++

    +

    1211

    cot1

    cot

    111

    1

    r r r r

    r r r

    r

    r

    N p N c N r N N pc

    N r

    a

    c p N N

    N N r

    E or

    N

    or r

    N

    N r r i

    N N

    and

    into

    ++= dr N r dr r C r u E N E rr N N r

    [ ]21 )()( l r H l r H C r u N r ++=

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    54/55

    54

    ( )( ) ( )[ ] l B N N N N E l r r r ++= 111

    ( ) ( )( ) ( )( ) ( ) ( )( )( )[ or r or pc N N N N N N p N c E

    l r r r r r

    ++++

    =

    cot1112

    12

    To solve for C, use the continuity condition at r=r e

    ( )2

    1 += r u er ( ) ( )rpru +=1

  • 8/13/2019 Lecture9C(groundconvergencederivation)

    55/55

    55

    ( )

    =r

    p

    E r

    er o

    r e

    ( ) ( ) er oer r p E r u e

    ( ) [ ]21 )()( l r H l r H C r r u ee N eer ++=

    ( ) =+ er o r p E e 1 [ ]21 )()( l r H l r H C r ee N e ++

    ( ) 211 )()(1 l r H l r H r p E

    C ee N

    er o e+= +