Lecture_18 - Power System Analysis

Embed Size (px)

Citation preview

  • 8/17/2019 Lecture_18 - Power System Analysis

    1/35

    EE 369

    POWER SYSTEM ANALYSIS

    Lecture 18

    Fault Analysis

    Tom Overbye and Ross Baldick 

    1

  • 8/17/2019 Lecture_18 - Power System Analysis

    2/35

    Announcements

    Read Chapte !"

    #ome$o% 1& 's 6"(3) 6"(*) 6"+9)6"61) 1&"19) 1&"&&) 1&"&,) 1&"&()

    1&"&6) 1&"&*) 1&"&9- due Tuesda.No/" &+"

    #ome$o% 13 's 1&"&1) 1&"&+)

    1&"&!) !"1) !"3) !"() !"+) !"6) !"9)!"1&) !"16- due Thusda.)0eceme ("

    &

  • 8/17/2019 Lecture_18 - Power System Analysis

    3/35

     Tansm'ss'on 2aut Ana.s's

     The cause o4 eect'c po$e s.stem 4auts's 'nsuat'on ea%do$n5compom'se"

     Th's ea%do$n can e due to a /a'et.

    o4 d'eent 4actos78 L'htn'n 'on':'n a')

    8 W'es o$'n toethe 'n the $'nd)

    8 An'mas o pants com'n 'n contact $'th the$'es)

    8 Sat spa. o pout'on on 'nsuatos"

    3

  • 8/17/2019 Lecture_18 - Power System Analysis

    4/35

     Tansm'ss'on 2aut T.pes

     Thee ae t$o ma'n t.pes o4 4auts78 s.mmet'c 4auts7 s.stem ema'ns aanced-

    these 4auts ae eat'/e. ae) ut ae theeas'est to ana.:e so $e; cons'de them 0L?4auts) and aanced thee phase 4auts"

    (

  • 8/17/2019 Lecture_18 - Power System Analysis

    5/35

    L'htn'n St'%e E/entSeBuence

    1" L'ht'n h'ts 'ne) sett'n up an 'on':ed path to

    ound 3, m''on 'htn'n st'%es pe .ea 'n SD

    a s'ne t.p'ca sto%e m'ht ha/e &+),,, amps) $'th a'se t'me o4 1, µs) d'ss'pated 'n &,, µs"

    mut'pe sto%es can occu 'n a s'ne ash) caus'n the'htn'n to appea to 'c%e) $'th the tota e/entast'n up to a second"

    &" Conduct'on path 's ma'nta'ned . 'on':ed a' a4te'htn'n sto%e ene. has d'ss'pated) esut'n 'nh'h 4aut cuents >o4ten F &+),,, ampsD?

    +

  • 8/17/2019 Lecture_18 - Power System Analysis

    6/35

      )cont;d

    3" W'th'n one to t$o c.ces >16 ms? ea.s at othends o4 'ne detect h'h cuents) s'na'nc'cu't ea%es to open the 'ne7 nea. ocat'ons see deceased /otaes

    (" C'cu't ea%es open to de@ene':e 'ne 'n an

    add't'ona one to t$o c.ces7 ea%'n tens o4 thousands o4 amps o4 4aut cuent 's

    no sma 4eatD

    $'th 'ne emo/ed /otaes usua. etun to neanoma"

    +" C'cu't ea%es ma. ecose a4te se/easeconds) t.'n to estoe 4auted 'ne to se/'ce"

    6

  • 8/17/2019 Lecture_18 - Power System Analysis

    7/35

    2aut Ana.s's

    2aut cuents cause eBu'pment damae dueto oth thema and mechan'ca pocesses"

    oa o4 4aut ana.s's 's to detem'ne the

    man'tudes o4 the cuents pesent du'nthe 4aut7

    8 need to detem'ne the maG'mum cuent toensue de/'ces can su/'/e the 4aut)

    8 need to detem'ne the maG'mum cuent thec'cu't ea%es >CHs? need to 'nteupt tocoect. s':e the CHs"

    !

  • 8/17/2019 Lecture_18 - Power System Analysis

    8/35

    RL C'cu't Ana.s's

     To undestand 4aut ana.s's $e need toe/'e$ the eha/'o o4 an RL c'cu't

    ( )

    2 cos( )

    v t 

    V t ω α 

    =

    +

    >Note teGt uses s'nuso'da /otae 'nstead oHe4oe the s$'tch 's cosed) i>t ? ,"When the s$'tch 's cosed at t , the cuenha/e t$o components7 1? a stead.@state /a

    &? a tans'ent /aue"

    R  L

    *

  • 8/17/2019 Lecture_18 - Power System Analysis

    9/35

    RL C'cu't Ana.s's) cont;d

    2 2 2 2

    1

    1. Steady-state current component (from standard

     phasor analysis)

    Steady-state phasor current magnitude is ,

    where ( )

    and current phasor angle is , tan ( / )

    Corresponding in

    ac

     Z Z 

    V  I 

     Z 

     Z R L R X 

     L R

    ω 

    θ θ ω −

    =

    = + = +

    − =

    ac

    stantaneous current is:

    2 cos( )( )   Z 

    V t i t 

     Z 

    ω α θ + −=

    9

  • 8/17/2019 Lecture_18 - Power System Analysis

    10/35

    RL C'cu't Ana.s's) cont;d

    1

    1

    ac dc 1

    1

    2. !ponentially decaying dc current component

    ( )

    where is the time constant,"he #alue of is determined from the initial

    conditions:

    2($) $ ( ) ( ) cos( )

    2

    t T 

    dc

    t T  Z 

    i t C e

     LT T   R

    V i i t i t t C e Z 

    V C 

     Z 

    ω α θ 

    =

    =

    = = + = + − +

    = − cos( ) which depends on Z α θ α −1,

  • 8/17/2019 Lecture_18 - Power System Analysis

    11/35

     T'me /a.'n cuent

    i>t ?

    t'me

    Supepos't'on o4 stead.@state component andeGponent'a. deca.'n dc oset"

    11

  • 8/17/2019 Lecture_18 - Power System Analysis

    12/35

    RL C'cu't Ana.s's) cont;d

    dc

    %ence ( ) is a sinusoidal superimposed on a decaying

    dc current. "he magnitude of ($) depends on when

    the switch is closed. &or fault analysis we're ust

    concerned with the worst case.

    %ighest C c

    i t 

    i

    * 1

    2urrent occurs for: + ,

    ( ) ( ) ( )

    2 2( ) cos( )

    2

    ( cos( ) )

    ac dc

    t T 

    t T 

    V C 

     Z 

    i t i t i t  

    V V i t t e

     Z Z 

    t e Z 

    α θ π 

    ω 

    ω 

    − =

    = +

    = − +

    = − + 1&

  • 8/17/2019 Lecture_18 - Power System Analysis

    13/35

    RMS 4o 2aut Cuent

    "he interrupting capaility of a circuit reaer is

    specified in terms of the S current it can interrupt.

    2

    "he function ( ) ( cos( ) ) is

    not periodic, so we can't formally define an S #alue

    t T 

    i t t e Z ω 

    = − +.

    %owe#er, if then we can appro!imate the current

    as a sinusoid plus a time-in#arying dc offset."he S #alue of such a current is e0ual to the

    s0uare root of the sum of the s0uares of the

    indi#i

    T t J

    dual S #alues of the two current components.13

  • 8/17/2019 Lecture_18 - Power System Analysis

    14/35

    RMS 4o 2aut Cuent

    2 2S

    22 2

    ,

    2  where , 2 ,

    2

    "his function has a ma!imum #alue of .

    "herefore the worst case effect of the dc

    component is included simply y

    mu

    ac dc

    t t T T 

    ac dc ac

    t T 

    ac ac

    ac

     I I 

    V V  I I e I e

     Z Z 

     I I e

     I 

    − −

    = +

    = = =

    = +

    ltiplying the ac fault currents y .1(

    t M d ' 0 '

  • 8/17/2019 Lecture_18 - Power System Analysis

    15/35

    eneato Mode'n 0u'n2auts0u'n a 4aut the on. de/'ces that can cont'ute 4aut

    cuent ae those $'th ene. stoae"

     Thus the modes o4 eneatos >and othe otat'n mach'nes?

    ae /e. 'mpotant s'nce the. cont'ute the u% o4 the 4autcuent"

    eneatos can e appoG'mated as a constant /otae

    eh'nd a t'me@/a.'n eactance7

    '

    a E 

    1+

  • 8/17/2019 Lecture_18 - Power System Analysis

    16/35

    eneato Mode'n) cont;d

    3

    d

    'd

    d

    "he time #arying reactance is typically appro!imatedusing three different #alues, each #alid for a different

    time period:

    4 direct-a!is sutransient reactance

    4 direct-a!is transient reactance

    4 dire

    ==

    = ct-a!is synchronous reactance

    Can then estimate currents using circuit theory:

    &or e!ample, could calculate steady-state current

    that would occur after a three-phase short-circuit

    if no circuit reaers interrupt current. 16

  • 8/17/2019 Lecture_18 - Power System Analysis

    17/35

    eneato Mode'n) cont;d

    '

    3

    ''ac

    3 '

    3

    &or a alanced three-phase fault on the generator terminal the ac fault current is (see page 52)

    1 1 1

    ( ) 2 sin( )

    1 1

    where

    direct-a!is su

    d d d a t 

    d d 

    e X X  X 

    i t E t  

    e X X 

    ω α 

     + − +

    ÷  = +   − ÷  

    ='

     transient time constant ( $.$6sec)

    direct-a!is transient time constant ( 1sec)d T 

    = ≈ 1!

  • 8/17/2019 Lecture_18 - Power System Analysis

    18/35

    eneato Mode'n) contKd

    '

    3

    ''

    ac

    3 '

    '

    C 3

    "he phasor current is then

    1 1 1

    1 1

    "he ma!imum C offset is

    2( )

    where is the armature time constant ( $.2 seconds)

     A

    d d d 

    a t T 

    d d 

    t T a

     A

    e X X  X 

     I E 

    e X X 

     E  I t e

     X 

     + − + ÷

     

    =   − ÷  

    =

    ≈ 1*

  • 8/17/2019 Lecture_18 - Power System Analysis

    19/35

    eneato Shot C'cu'tCuents

    19

  • 8/17/2019 Lecture_18 - Power System Analysis

    20/35

    eneato Shot C'cu'tCuents

    &,

  • 8/17/2019 Lecture_18 - Power System Analysis

    21/35

    eneato Shot C'cu'tEGampe

    A +,, MA) &, %) 3φ 's opeated $'th an'ntena /otae o4 1",+ pu" Assume a so'd 3φ 4aut occus on the eneatoKs tem'na andthat the c'cu't ea%e opeates a4te thee

    c.ces" 0etem'ne the 4aut cuent" Assume

    3 '

    3 '

    $.16, $.27, 1.1 (all per unit)

    $.$6 seconds, 2.$ seconds

    $.2 seconds

    d d d 

    d d 

     A

     X X X 

    T T 

    = = =

    = =

    =&1

  • 8/17/2019 Lecture_18 - Power System Analysis

    22/35

    eneato S"C" EGampe)contKd

    2.$

    ac

    $.$6

    ac

    5

     ase ac

    $.2C

    Sustituting in the #alues1 1 1

    1.1 $.27 1.1( ) 1.$6

    1 1$.16 $.27

    1.$6($) 8 p.u.$.16

    6$$ 1$ 17,7 9 ($) 1$1,$$$ 9 2$ 1$

    ($) 1$1 9 2 17

    e

     I t 

    e

     I 

     I I 

     I e

     + − + ÷  =  

      − ÷  

    = =

    ×= = =×

    = × = S9 ($) 186 9 I    =&&

  • 8/17/2019 Lecture_18 - Power System Analysis

    23/35

    eneato S"C" EGampe)contKd

    $.$62.$

    ac $.$6$.$6

    ac

    $.$6

    $.2C

    S

    #aluating at t + $.$6 seconds for reaer opening1 1 1

    1.1 $.27 1.1($.$6) 1.$6

    1 1$.16 $.27

    ($.$6) 8$. 9

    ($.$6) 17 9 111 9

    ($.$6

    e

     I 

    e

     I 

     I e

     I 

     + − + ÷  =  

      − ÷   =

    = × =2 2) 8$. 111 12 9= + =

    &3

    Net$o% 2aut Ana.s's

  • 8/17/2019 Lecture_18 - Power System Analysis

    24/35

    Net$o% 2aut Ana.s'sS'mp'nonsp'nn'n? oads ae 'noed

    &(

  • 8/17/2019 Lecture_18 - Power System Analysis

    25/35

    Net$o% 2aut EGampe

    2o the 4oo$'n net$o% assume a 4aut on ttem'na o4 the eneato- a data 's pe un'teGcept 4o the tansm'ss'on 'ne eactance

    2

    1;.6Con#ert to per unit: $.1 per unit

    1

    1$$

    line X    = =

    eneato has 1",+tem'na /otae supp'es 1,, MA

    $'th ,"9+ a p4 

    &+

  • 8/17/2019 Lecture_18 - Power System Analysis

    26/35

    Net$o% 2aut EGampe)contKd

    2auted net$o% pe un't d'aam

    <'

    "o determine the fault current we need to first estimate

    the internal #oltages for the generator and motor &or the generator 1.$6, 1.$ 1.2

    1.$ 1.2$.;62 1.2 1.1$ 8.1

    1.$6

    T G

    Gen a

    V S 

     I E 

    = = ∠ °

    ∠  = = ∠ − ° = ∠ ° ÷&6

  • 8/17/2019 Lecture_18 - Power System Analysis

    27/35

    Net$o% 2aut EGampe)contKd

    "he motor's terminal #oltage is then

    1.$6 $ - ($.;$77 - $.2;8) $. 1.$$ 16.

    "he motor's internal #oltage is

    1.$$ 16. ($.;$77 - $.2;8) $.2

    1.$$ 25.5

    =e can then sol#e as a linear circuit:

    1 f  

     j j

     j j

     I 

    ∠ × = ∠ − °

    ∠ − ° − ×= ∠ − °

    = .1$ 8.1 1.$$ 25.5$.16 $.6

    8.6 2.; 2.$15 115.5 ;.$;

     j j

     j

    ∠ ° ∠ − °+

    = ∠ − ° + ∠ − ° =

    &!

  • 8/17/2019 Lecture_18 - Power System Analysis

    28/35

    2aut Ana.s's Sout'on Techn'Bues

    C'cu't modes used du'n the 4aut ao$ the net$o%to e epesented as a 'nea c'cu't

     Thee ae t$o ma'n methods 4o so/'n 4o 4autcuents7

    1" 0'ect method7 se pe4aut cond't'ons to so/e 4o the'ntena mach'ne /otaes- then app. 4aut and so/e d'ect."

    &" Supepos't'on7 2aut 's epesented . t$o oppos'n/otae souces- so/e s.stem . supepos't'on7

    8

  • 8/17/2019 Lecture_18 - Power System Analysis

    29/35

    Supepos't'on Appoach

    2auted Cond't'on

    EGact EBu'/aent to 2auted Cond't'on2aut 's epesented. t$o eBua and

    oppos'te /otaesouces) each $'tha man'tude eBuato the pe@4aut /otae

    &9

  • 8/17/2019 Lecture_18 - Power System Analysis

    30/35

    Supepos't'on Appoach)cont;d

    S'nce th's 's no$ a 'nea net$o%) the 4autedand cuents ae ust the sum o4 the pe@4autthe >1? component and the cond't'ons $'th /otae souce at the 4aut ocat'on the >&? co

    Pe@4aut >1? component eBua to the pe@4autpo$e o$ sout'on

    O/'ous the

    pe@4autQ4aut cuent's :eoD

    3,

  • 8/17/2019 Lecture_18 - Power System Analysis

    31/35

    Supepos't'on Appoach)cont;d

    2aut >1? component due to a s'ne /otae sat the 4aut ocat'on) $'th a man'tude eBuaneat'/e o4 the pe@4aut /otae at the 4aut

    (1) (2) (1) (2)

    (1) (2) (2)$

     g  g g m m m

     f     f f f  

     I I I I I I 

     I I I I 

    = + = +

    = + = +31

  • 8/17/2019 Lecture_18 - Power System Analysis

    32/35

     T$o Hus Supepos't'onSout'on

    (1) (1)

    (2) f 

    (2) f 

    (2)

    >efore the fault we had 1.$6 $ ,

    $.;62 1.2 and $.;62 1.2

    Sol#ing for the (2) networ we get

    1.$6 $8

     $.16 $.16

    1.$6 $

    2.1 $.6 $.6

    8 2.1 ;.1

    $.;62

     g    m

     g 

    m

     f  

     g 

     I I 

     I j

     I j

     I j j j

     I 

    = ∠ °= ∠ − ° = − ∠ − °

    ∠ °= = = −

    ∠ °

    = = = −= − − = −

    = ∠ 1.2 8 8.6 2.; j− ° − = ∠ − °

     Th's matches$hat $ecacuatedea'e 

    3&

  • 8/17/2019 Lecture_18 - Power System Analysis

    33/35

    EGtens'on to Lae S.stems

     us

     us

    "he superposition approach can e easily e!tendedto larger systems. ?sing the we ha#e

    &or the second (2) system there is only one #oltagesource so is all @eros e!cept at the fault loca

    =Y

    Y V I

    I tion

    $

    $

     f   I 

    − =

    I

    M

    M

    #o$e/e to use th'sappoach $e need to

  • 8/17/2019 Lecture_18 - Power System Analysis

    34/35

    0etem'nat'on o4 2autCuent

     us1

     us us

    (2)1

    (2)11 1 2

    (2)1 1

    (2)

    (1)f 

    efine the us impedance matri! as

    $

    "hen

    $

    &or a fault a us i we get -

    bus

    n

     f  

    n nn n

    n

    ii f i

     Z Z V 

     I 

     Z Z  V 

     Z V V 

    =

        − =        

    = − = −

    Z

    Z Y V Z I

    M

    L

    M O M M

    L

    M

    3(

  • 8/17/2019 Lecture_18 - Power System Analysis

    35/35

    0etem'nat'on o4 2autCuent

    (1)

    (1) (2) (1)

    %ence

    =here

    dri#ing point impedance

    ( ) transfer point imepdance

    Aoltages during the fault are also found y superposition

     are prefault #alues

    i f  

    ii

    ii

    ij

    i i i i

    V  I 

     Z 

     Z 

     Z i j

    V V V V  

    =

    = +

    3+