35
2/22/13 1 Lecture 15 FERMENTATION INDUSTRIES HISTORY OF FERMENTATION Age old applications: 1. Wine/ Beer/ Spirits 2. Cheese and Yoghurt Louis Pasteur: Hypothesised that bacteria spoils milk Suggested that milk be heated to kill bacteria Hence: pasteurization of milk Fermentations Pros and Cons Extended shelf life of food (ex. Cheese) Eases Digestion (ex. Wild rice) New [better] flavours (ex. Chocolate) Can be unpredictable (i.e. bad bacteria win the battle) New [worse] flavours (ex. Mouldy bread tastes terrible) Classic Fermentation Products I Ethanol Acetone-Butanol Glycerol 2,3-Butanediol industrial solvent, beverage, fuel Saccharomyces cerevisiae SOLVENT CLOSTRIDIUM ACETOBUTYLICUM synthetic rubber Bacillus polymyxa, Acetobacter aerogenes food and pharmaceutical use Lactobacillus delbrukki, bulgaricus

Lecture15’’’’ HISTORYOFFERMENTATION · PDF file2/22/13 3 Glycerol! Principalsource(is(saponification(of(fats(and(oils(! Diverse(use(in(explosives,foods,beverages,cosmetics,

  • Upload
    phamtu

  • View
    217

  • Download
    1

Embed Size (px)

Citation preview

2/22/13

1

Lecture  15          FERMENTATION  INDUSTRIES  

HISTORY  OF  FERMENTATION  

Age  old  applications:    1.  Wine/  Beer/  Spirits  2.  Cheese  and  Yoghurt  Louis  Pasteur:  n  Hypothesised  that  bacteria  spoils  milk  n  Suggested  that  milk  be  heated  to  kill  bacteria  n  Hence:  pasteurization  of  milk  

Fermentation’s  Pros                    and                  Cons  

n  Extended  shelf  life  of  food  (ex.  Cheese)  

n  Eases  Digestion  (ex.  Wild  rice)  

n  New  [better]  flavours  (ex.  Chocolate)  

n  Can  be  unpredictable  (i.e.  bad  bacteria  win  the  battle)  

n  New  [worse]  flavours  (ex.  Mouldy  bread  tastes  terrible)  

Classic  Fermentation  Products  I  Ethanol

Acetone-Butanol

Glycerol 2,3-Butanediol

industrial solvent, beverage, fuel Saccharomyces cerevisiae

SOLVENT CLOSTRIDIUM ACETOBUTYLICUM

synthetic rubber Bacillus polymyxa, Acetobacter aerogenes

food and pharmaceutical use Lactobacillus delbrukki, bulgaricus

2/22/13

2

Classic  Fermentation  Products  II  Organic Acids

Acetic Acid—Saccharomyces sp., Acetobacter Lactic Acid—Lactobacillus delbruckii Citric Acid—Aspergillus niger Itaconic Acid—Aspergillus itaconicus

Ethanol  

n  1906  in  US  Industrial  Act—denatured  product  was  legalized  in  the  US  

n  WWII:    demands  for  industrial  product  increased—use  for  synthetic  rubber  and  smokeless  gunpowder  

n  Whole  grains,  starches,  sulfite  liquors  or  saccharine  materials  are  used  as  feed  stocks  

n  Saccharomyces  cerevesiae  cannot  ferment  starch  directly—amylases  must  first  break  down  starch  to  sugars  

 

C2

Organic  Acids  n  French  name  vin  +  aigre  n  Condiment  and  preservative  n  Feedstock:  sugary  or  starchy  n  Slow  Process:    Orleans  or  French  method  

-­‐-­‐”mother  of  vinegar”  n  Generator  Process:  1670  

-­‐-­‐fast  process,  maximum  air  exposure  n  Cider  (apples),  wine  (grapes),  malt  (barley),  sugar,  

glucose,  spirit  (grain)  used  for  biomass  

Vinegar C2 Organic  Acids  

n  1790  by  Scheele  from  milk  n  Present  in  sour  milk,  sauerkraut,  bread,  muscle  tissue,  

principal  organic  soil  acid  n  1881  Commercial  production  by  Chas.  Avery,  Littleton,  

Mass    as  substitute  for  cream  of  tartar  

n  Dextrose,  maltose,  lactose,  sucrose,  whey      Starch,  grapefruit,  potatoes,  molasses,  beet  juice  

n  Dimerizes  to  lactide  upon  heating    

Lactic Acid C3

PURAC for applications

2/22/13

3

Glycerol  

n  Principal  source  is  saponification  of  fats  and  oils  n  Diverse  use  in  explosives,  foods,  beverages,  cosmetics,  

plastics,  paints,  coatings  n  First  identified  by  Pasteur  n  WWI  demand  exceeded  supply,  esp.  in  Germany—

became  leader  in  fermentation  n  At  least  one  integrated  plant  took  directly  to  

nitroglycerine  

C3

Acetone-­‐Butanol  

n  True,  anaerobic  fermentation  by  Clostridium  n  Major  development  during  WWI:  used  for  synthetic  

rubber  via  butadiene;  critical  commodity  for  cordite  n  WWII  production  was  solely  by  fermentation  n  1861  Pasteur  first  observed  formation;  1905  Schardinger    n  1916  Chaim  Weizmann  procedure  first  industrial  use  in  

Canada,  Terre  Haute  for  WWI  production  n  1926  Demand  for  lacquers:  Peoria  

n  96  fermentors  in  use,  cap.  50,000  gallons  each  

C3 and C4

2,3-­‐Butanediol  

n  Major  interest  in  WWII  by  US  and  Canada  n  Northern  Regional  Research  Laboratory  of  USDA  in  

Peoria  n  Uses  as  antifreeze,  butadiene  synthesis  n  1936,  Julius  Nieuwland  of  Notre  Dame  with  DuPont’s  

Wallace  Carothers-­‐-­‐DuPrene  (neoprene)  from  it  and  later  from  petroleum  sources  

n  Fermentation  sources  never  commercialized  

C4 Organic  Acids  

n  Resin  and  detergent  industries  n  Polymerizable  alkene  n  Competition  with  methacrylate  n  Also  produced  by  pyrolysis  of  citric  acid  n  Commercial  production  since  1940s  n  Surface  culture  method—shallow  pans  n  Submerged  culture  method—vats  n  Corn  steep  liquor:    mixture  of  aa  and  sugars  

Itaconic Acid C5

2/22/13

4

Organic  Acids  

n  Made  today  by  mold  fermentation  n  1893:  Carl  Wehmer  discovery  n  1917:    Currie  surface  fermentation  method  n  1945  Commercial,  Landenburg  Germany  n  Molasses,  cane  blackstrap  molasses,  sugar    n  Remarkable  increase  in  production  over  past  60  years—

huge  sales  to  China  n  Originally  produced  directly  from  citrus  fruit  

Citric Acid C6 THE  PROCESS  n  Aerobic  respiration  n  release  of  energy  from  

glucose  or  another  organic  substrate  in  the  presence  of  Oxygen    

n  CO2,  H2O,  an  energy  produced    

n  Anaerobic  respiration  n  release  of  energy  from  

glucose  or  another  organic  substrate  in  the  absence  of  Oxygen  

n  Products:  CO2,  energy,  and  alcohol  or  various  organic  acids  

Fermentation  Definition:    Anaerobic  respiration  of  food  by    

micro  organisms    Types  of  fermentation:  1.  Bacterial  fermentation  2.  Yeast  fermentation  3.  Mold  and    Enzyme  fermentation  

2/22/13

5

1.  Bacterial  Fermentation  (4  types)  

a)  Lactic  Acid  Bacteria  (pickles,  sauerkraut)                                                                                                                                                      

b)  Acetic  Acid  Bacteria  (vinegar)  

c)  Carbon  Dioxide  Bacteria  (Edam,  Gouda,  Swiss)  

d)  Proteolytic  Bacteria  (cocoa,  chocolate)    

bacteria  

2.  Yeast  Fermentation  n  Gluà  Ethyl  alcohol  +  CO2  

n  Best  temperature:  27  degree  C  (warm)  

n  Other  sugars  will  ferment  (mal,  suc,  fru)  

n  Too  much  salt  ruins  the  process  

When  baking:  follow  the  recipe  

3.  Mold  and  Enzyme  Fermentation  

n  Enzymes  in  Mold  can  be  useful:            -­‐Break  down  cellulose  thus  grains  easier  to  chew        -­‐Add  flavour  and  texture  to  cheeses  (ex-­‐  blue)  

WINE  n  Dates  back  to  Middle  

east  3000  bc  n  Fermentation  of  grapes  n  Scientific  process  yet  so  

many  variables    n  Growing  years  affect  

vintages  

2/22/13

6

Coffee  n  Coffee  beans  fermented  

by  bacteria  and  enzymes  (2  methods):  

1.  Wet  Method:  soaked  for  12-­‐24  hours  and  dried  

2.  Dry  Method:  washed  then  dried  for  2-­‐3  weeks  

TEA  

n  3000  AD  (at  the  latest)-­‐  Cultivated  in  China  

n  Rolled  leaves  begin  to  ferment  

n  Lets  stand  at  27  degree  C  for  2-­‐3  hrs  

n  Types:  Green,  Oolong,  Black  

CHOCOLATE  n  1.5  million  tons  cocoa  

produced  each  year  n  Supply:  W.  Africa          

Produced:  S.  America  n  Enzyme  fermentation  in  

the  sun  via  proteolytic  bacteria  

n  Bitter  beans  become  sweeter  and  brown  

FERMENTATION  AROUND  THE  WORLD  

n  Food,  drink,  sauces,      et  cetera  

2/22/13

7

INDUSTRIAL  FERMENTATION  

n  Industrial  fermentation  uses  microorganisms,  typically  grown  on  a  large  scale,  to  produce  valuable  commercial  products  or  to  carry  out  important  chemical  transformations.  This  process  is  commonly  referred  to  as  FERMENTATION  

RANGES  OF  FERMENTATION  PROCESS  n  Microbial  cell  (Biomass)  •  Yeast    n  Microbial  enzymes  •  Glucose  isomerase  n  Microbial  metabolites    •  Penicillin  n  Food  products  •  Cheese,  yoghurt,  vinegar    n  Vitamins    •  B12,  riboflavin  n  Transformation  reactions  •  Steroid  biotransformation    

FERMENTATION  

n  Aerobic  

n  Anaerobic  

AEROBIC  FERMENTATION  

n  Adequate  aeration    n  Bioreactors-­‐  adequate  supply  of  sterile  air  

n  In  addition,  these  fermenters  may  have  a  mechanism  for  stirring  and  mixing  of  the  medium  and  cells    

n  Antibiotics,  enzymes,  vitamins.  

2/22/13

8

ANAEROBIC  FERMENTATION  

n  In  anaerobic  fermentation,  a  provision  for  aeration  is  usually  not  needed.  

n  Lactic  acid,  ethanol,  wine  

INDUSTRIAL  FERMENTORS  

View  looking  down  into  a  125m3  

stainless  steel  fermentor  

2/22/13

9

INDUSTRIAL  FERMENTORS  

n  125-­‐250m3  

n  Conditions  in  the  fermenter  are  carefully  monitored  to  regulate  cell  growth.  

n  Fermenter  and  all  pipe  work  must  be  sterile  before  fermentation  begins  

n  This  is  usually  achieved  by  flushing  the  whole  system  with  superheated  steam  before  the  production  begins.  

INDUSTRIAL  FERMENTORS  

 n  Process  if  frequently  aerobic  so  fermentor  has  to  be  

well  aerated.  n  The  aeration  will  be  sufficient  to  mix  many  cultures  n  If  the  culture  is  thick  or  sticky,  additional  stirring  is  

required  by  a  motor  driven  paddle  called  an  impeller.  

INDUSTRIAL  FERMENTORS    n  While  initially  the  culture  may  need  warming  to  start  of  

the  process  –  once  it  has  started  a  cooling  system  is  vital.  

n  Cooling  is  achieved  by  either  a  water  jacket  or  cooling  coils  inside  the  fermenter.  

2/22/13

10

FERMENTATION    n  Fermentation  could  be:  n  Batch  mode  n  Fed  batch  mode    (continuous)  

BATCH  FERMENTATION    

n  Most  fermentations  are  batch  processes  n  Nutrients  and  the  inoculum  are  added  to  the  sterile  

fermenter  and  left  to  get  on  with  it!  n  Anti-­‐foaming  agent  may  be  added.  n  Once  the  desired  amount  of  product  is  present  in  the  

fermenter  the  contents  are  drained  off  and  the  product  is  extracted.  

n  After  emptying,  the  tank  is  cleaned  &  prepared  for  a  new  batch.  

CONTINUOUS  FERMENTATION      

n  Some  products  are  made  by  a  continuous  culture  system.  

n  Sterile  medium  is  added  to  the  fermentation  with  a  balancing  withdrawal  of  broth  for  product  extraction.  

MICROBIAL  GROWTH  KINETICS  

•  Microbial  Growth  Kinetics  describe  how  the  microbe  grows  in  the  fermenter.    This  information  is  important  to  determine  optimal  batch  times.    The  growth  of  microbes  in  a  fermenter  can  be  broken  down  into  four  stages:  n  Lag  Phase    n  Exponential  Phase  n  Stationary  Phase  n  Death  Phase    

2/22/13

11

MICROBIAL  GROWTH  KINETICS  

•  Lag  Phase  n  This  is  the  first  phase  in  the  fermentation  process  n  The  cells  have  just  been  injected  into  a  new  

environment  and  they  need  time  to  adjust  accordingly  

n  Cell  growth  is  minimal  in  this  phase.      

MICROBIAL  GROWTH  KINETICS  

•  Exponential  Phase  n  The  second  phase  in  the  fermentation  process  n  The  cells  have  adjusted  to  their  environment  and  

rapid  growth  takes  place  n  Cell  growth  rate  is  highest  in  this  phase  

MICROBIAL  GROWTH  KINETICS  

•  Exponential  Phase  (Continued)  n  At  some  point  the  cell  growth  rate  will  level  off  and  

become  constant  n  The  most  likely  cause  of  this  leveling  off  is  substrate  

limited  inhibition    • Substrate  limited  inhibition  means  that  the  microbes  do  not  have  enough  nutrients  in  the  medium  to  continue  multiplying.      

MICROBIAL  GROWTH  KINETICS  

•  Stationary  phase  n  This  is  the  third  phase  in  the  fermentation  process  n  The  cell  growth  rate  has  leveled  off  and  become  

constant  n  The  number  of  cells  multiplying  equals  the  number  of  

cells  dying  

2/22/13

12

MICROBIAL  GROWTH  KINETICS  

•  Death  phase  n  The  fourth  phase  in  the  fermentation  process  n  The  number  of  cells  dying  is  greater  than  the  number  

of  cells  multiplying  • The  cause  of  the  death  phase  is  usually  that  the  cells  have  consumed  most  of  the  nutrients  in  the  medium  and  there  is  not  enough  left  for  sustainability  

MEDIA  FOR  INDUSTRIAL  FERMENTATIONS  

•  The  media  is  the  feed  solution  n  It  must  contain  the  essential  nutrients  needed  for  the  

microbe  to  grow  •  Factors  of  consideration  when  choosing  media  

 -­‐Quality  consistence  and  availability    -­‐Ensure  there  are  no  problems  with  Media  Prep  or  other  aspects  of  production  process  

Ex.  Cane  molasses,  beet  molasses,  cereal  grains  

STERILIZATION  

•  Sterilizing  the  feed  solution  is  essential  because  the  media  cannot  contain  foreign  microbes  because  this  could  severely  hinder  the  growth  of  the  production  microbe  n  Most  popular  method  is  heat  sterilization  of  the  feed  

solution    

THE  DEVELOPMENT  OF  INOCULA  FOR  INDUSTRIAL  FERMENTATIONS  

•  The  inoculum  is  the  starter  culture  that  is  injected  into  the  fermenter  n  It  must  be  of  sufficient  size  for  optimal  growth  kinetics  

•  Since  the  production  fermenter  in  industrial  fermentations  is  so  large,  the  inoculum  volume  has  to  be  quite  large  

 -­‐  A  seed  fermenter  is  usually  required  to  produce  the  inoculum  volume      -­‐The  seed  fermenter’s  purpose  is  not  to  produce  product  but  to  prepare  inoculum  

2/22/13

13

DESIGN  OF  A  FERMENTER  

•  Factors  to  consider  when  designing  a  fermenter  n  Aseptic  and  regulatory  

capability,  long-­‐term  reliability  

n  Adequate  aeration  and  agitation  

n  Low  power  consumption  

n  Temperature  and  pH  controls  

n  Sampling  facilities    

 

14 L fermenter shown is a copyright of New Brunswick Scientific

INSTRUMENTATION  AND  CONTROL  

•  The  success  of  a  fermentation  process  is  highly  dependent  on  environmental  factors  n  The  fermenter  needs  to  be  able  to  control  such  

factors  as  temperature,  pH,  and  dissolved  oxygen  levels  

AERATION  AND  AGITATION  

• Most  industrial  fermentations  are  aerobic  processes  meaning  that  the  production  microbe  requires  oxygen  to  grow  n  The  oxygen  demand  is  met  by  sparging  air  through  

the  fermentation  vessel  and  using  an  agitator  increase  the  amount  of  dissolved  oxygen  

INDUSTRIAL  ETHANOL  PRODUCTION  

The Philippines Biofuels Act 2006 requires oil companies to use biofuels in all "liquid fuels for motors and engines sold in the Philippines." All gasoline sold in the country must contain at least 5 percent ethanol by February 2009, and by 2011, the mandated blend can go up to 10 percent.

2/22/13

14

n  Ethanol  can  enter  the  environment  as  emissions  from  its  manufacture,  use  as  a  solvent  and  chemical  intermediate,  and  release  in  fermentation  and  alcoholic  beverage  preparation.    

n  It  naturally  occurs  as  a  plant  volatile,  microbial  degradation  product  of  animal  wastes,  and  in  natural  fermentation  of  carbohydrates.    

n  Produced  naturally  from  a  wide  range  of  microbiological  processes  (by  fungi,  bacteria,  etc),  and  possibly  some  plants.    

n  When  spilled  on  land  it  is  apt  to  volatilize,  biodegrade,  and  leach  into  the  ground  water,  but  no  data  on  the  rates  of  these  processes  could  be  found.  Its  fate  in  ground  water  is  unknown.    

ethanol  is  a  clean-­‐burning,  high-­‐octane  fuel  that  is  produced  from  renewable  sources.      at  its  most  basic,  ethanol  is  grain  alcohol,  produced  from  crops  such  as  corn.    

2/22/13

15

A  bushel  of  corn  weighs  56  pounds  and  will  produce  at  least  2.8  gallons  of  ethanol  ,  17  pounds  of  distillers  grain  &  18  Pounds  of  CO2  

In  2005,  97  ethanol  plants  in  21  states  produced  a  record  3.904  billion  gallons  of  ethanol    

STEPS TO MAKING ETHANOL n  Ethanol is produced using the following process:

n  Wheat or corn kernels are ground in a hammer mill to expose the starch.

n  The ground grain is mixed with water, cooked briefly and enzymes are added to convert the starch to sugar using a chemical reaction called hydrolysis.

n  Yeast is added to ferment the sugars to ethanol. n  The ethanol is separated from the mixture by distillation

and the water is removed from the mixture using dehydration.

MAKING ETHANOL n  The unprocessed product, in fact, is a lot like beer:

n  8 percent alcohol and 92 percent water. n  Not something that's going to burn in a car engine.

n  To make a usable fuel, all but 0.5 percent of the water must be removed.

n  This is done by a series of distillation and chemical extractions that use even more energy than was used to grow the corn. n  And that doesn't count the diesel fuel needed to ship corn to

the ethanol plant or ethanol to the pump. n  In theory, all of these energy costs should make ethanol

uneconomical to produce.

ETHANOL PRODUCTION FLOW CHART

2/22/13

16

n  Ethanol  can  be  made  by  a  dry  mill  process  or  a  wet  mill  process.  

n   Most  of  the  ethanol  in  the  U.S.  is  made  using  the  dry  mill  method.  In  the  dry  mill  process,  the  starch  portion  of  the  corn  is  fermented  into  sugar  then  to  alcohol.    

THE  MAJOR  STEPS  IN  THE  DRY  MILL  PROCESS  ARE:    1.  Milling.  The  feedstock  passes  through  a  hammer  mill  which  grinds  it  into  a  fine  powder  called  meal.    2.  Liquefaction.  The  meal  is  mixed  with  water  and  alpha-­‐amylase,  then  passed  through  cookers  where  the  starch  is  liquefied.  Heat  is  applied  at  this  stage  to  enable  liquefaction.  Cookers  with  a  high  temperature  stage  (120-­‐150  degrees  Celsius)  and  a  lower  temperature  holding  period  (95  degrees  Celsius)  are  used.  High  temperatures  reduce  bacteria  levels  in  the  mash.  

3. Saccharification. The mash from the cookers is cooled and the secondary enzyme (gluco-amylase) is added to convert the liquefied starch to fermentable sugars (dextrose).

4. Fermentation. Yeast is added to the mash to ferment the sugars to ethanol and carbon dioxide. Using a continuous process, the fermenting mash is allowed to flow through several fermenters until it is fully fermented and leaves the final tank. In a batch process, the mash stays in one fermenter for about 48 hours before the distillation process is started.

2/22/13

17

5. Distillation. The fermented mash, now called beer, contains about 10% alcohol plus all the non-fermentable solids from the corn and yeast cells. The mash is pumped to the continuous flow, multi-column distillation system where the alcohol is removed from the solids and the water. The alcohol leaves the top of the final column at about 96% strength, and the residue mash, called stillage, is transferred from the base of the column to the co-product processing area.

6. Dehydration. The alcohol from the top of the column passes through a dehydration system where the remaining water will be removed. Most ethanol plants use a molecular sieve to capture the last bit of water in the ethanol. The alcohol product at this stage is called anhydrous ethanol (pure, without water) and is approximately 200 proof.

7. Denaturing. Ethanol that will be used for fuel must be denatured, or made unfit for human consumption, with a small amount of gasoline (2-5%). This is done at the ethanol plant.

8. Co-Products. There are two main co-products created in the production of ethanol: distillers grain and carbon dioxide. Distillers grain, used wet or dry, is a highly nutritious livestock feed. Carbon dioxide is given off in great quantities during fermentation and many ethanol plants collect, compress, and sell it for use in other industries.

2/22/13

18

     Distillers  grain  can  be  fed  to  livestock  wet  or  dry.  Dried  distillers  grain  (DDG)  is  the  most  common  variety.  Drying  the  distillers  grain  increases  its  shelf  life  and  improves  its  ability  to  be  transported  over  longer  distances.  If  a  consistent  nearby  market  can  be  secured,  ethanol  producers  can  supply  the  feed  as  wet  distillers  grain  (WDG).  The  wet  form  is  not  as  easily  transportable,  but  the  cost  of  drying  the  product  is  removed.  

The  personal  care  products  industry  is  one  of  the  largest  users  of  industrial  ethanol,  or  ethyl  alcohol.    Check  the  labels  –  hairspray,  mouthwash,  aftershave,  cologne,  and  perfume  all  contain  large  amounts  of  alcohol  by  volume.  Ethanol  is  also  used  in  many  deodorants,  lotions,  hand  sanitizers,  soaps,  and  shampoos.  

n  Ethanol  melts  at  –114.1°C,  boils  at  78.5°C,  and  has  a  density  of  0.789  g/mL  at  20°C.    

n  Its  low  freezing  point  has  made  it  useful  as  the  fluid  in  thermometers  for  temperatures  below  –40°C,  the  freezing  point  of  mercury,  and  for  other  low-­‐temperature  purposes.    

Pure,  100%  ethanol  is  not  generally  used  as  a  motor  fuel;  instead,  a  percentage  of  ethanol  is  combined  with  unleaded  gasoline.  This  is  beneficial  because  the  ethanol:    

n  decreases  the  fuel's  cost  n  increases  the  fuel's  octane  rating  n  decreases  gasoline's  harmful  emissions    

2/22/13

19

BLENDING  WITH  GASOLINE  

n  Any  amount  of  ethanol  can  be  combined  with  gasoline,  but  the  most  common  blends  are:  

n  E10  -­‐  10%  ethanol  and  90%  unleaded  gasoline  

n  E10  is  approved  for  use  in  any  make  or  model  of  vehicle  sold  in  the  U.S.  Many  automakers  recommend  its  use  because  of  its  high  performance,  clean-­‐burning  characteristics.  In  2004,  about  one-­‐third  of  America's  gasoline  was  blended  with  ethanol,  most  in  this  10%  variety.  

n  E85  -­‐  85%  ethanol  and  15%  unleaded  gasoline  

n  E85  is  an  alternative  fuel  for  use  in  flexible  fuel  vehicles  (FFVs).  There  are  currently  more  than  4  million  FFVs  on  America's  roads  today,  and  automakers  are  rolling  out  more  each  year.  In  conjunction  with  more  flexible  fuel  vehicles,  more  E85  pumps  are  being  installed  across  the  country.  When  E85  is  not  availible,  these  FFVs  can  operate  on  straight  gasoline  or  any  ethanol  blend  up  to  85%.  

ETHANOL  Physical  properties:  

 n  Colorless  liquid.    n  Pleasant  alcoholic  odor  detectable  at  49  to  716  ppm.    n  Miscible  with  water  and  most  organic  solvents.  n  Melting  Point  (°C):  -­‐114.1  n  Boiling  Point  (°C):  78.3  n  Specific  Gravity:  0.789  n  Vapor  Density:  1.6    

2/22/13

20

COMMERCIAL  PRODUCTION  OF  BEER  

Essential  Ingredients  of  Beer  n  Malted  Barley  n  Hops  n  Yeast  n  Water  n  Not  required,  but  frequently  found  ingredient  n  Starch  adjuncts    

n  Corn  and  rice  starches  

MAKING  BEER:  A  THREE  STEP  PROCESS  

n  Malting  n  Brewing  n  Fermentation  

MALTING    

n  Takes  place  in  malt  houses  n  Occasionally  in  a  brewery  (Coors)  

n  Controlled  germination  of  barley  n  Moisture    n  Temperature  n  Carbon  dioxide  

n  Goal  n  Produce  enzymes  useful  for  brewing  

n  Amylases  n  proteases  

2/22/13

21

Malting    n  Soaking  the  grain  n  Allow  for  controlled  

germination  n  Maximum  enzyme  

production  n  Minimum  enzymatic  

activity  and  plant  growth  n  Kiln  drying  

n  Stop  germination    n  Stabilize  malted  barley  n  Impart  color  and  flavor  

n  Light  malt,  dark  malt,  amber  malt,  black  patent  malt  

Brewing  

n  Functions:  n  Enzymatic  conversion  of  starch  to  maltose,  proteins  to  amino  acids  

n  Extraction  of  hop  flavors  and  aromatic  compounds  

n  Sterilize  maltose/aa/hop  flavor  solution  

Brewing  

n  Milling  of  malted  barley  n  Careful  cracking  of  malted  barley  

n  Shatter  endosperm  n  Keep  husk  in  large  pieces  

n  Adding  water  n  Controlled  temperature  for  enzymatic  action  

Mash  Tun  

The mash tun is a vessel in which the milled malted barley is mixed with water And the enzymes are allowed to degrade the starches and proteins into Substrates that the yeast can utilize during fermentation

2/22/13

22

Mash  

These photos show the milled Malted barley being mixed with Warm water. The enzymes Convert the starch to maltose and The proteins to amino acids creating What is known as sweet wort.

Lautering  (filtering)  The sweet wort Is separted from The spent barley By a filtration step Known as Lautering. The Barley husks serve As the primary Filtering material. Here, the remaining Spent grains are Being removed from The sweet wort With this screen.

Mash  Tun  with  used  Mash  

These are the spent malt that acted as a filtering bed for the sweet wort.

Scraping  out  the  used  mash  

2/22/13

23

Used  mash  heading  towards  feedlot   Sweet  Wort  

Kettle  n  Sweet  Wort  n  Bring  to  boil  

n  Add  hops  n  Extract  flavors  (bitter  acids)  and  aromatic  compounds  

n  Sterilizes  hopped  wort  

Fermentation  Tanks  

After the yeast is added to the hopped wort, fermentation of the maltose to Ethanol occurs in these tanks.

2/22/13

24

Adding  yeast  to  the  fermenter  Blow-­‐off  hoses  on  fermentation  tanks  

Fermentation produces both ethanol and carbon dioxide. The carbon Dioxide is allowed to vent out through these blow-off hoses whose ends Are immersed in a tank of water, producing an air-lock and preventing Oxygen from entering the fermentation tanks.

Cleaning  fermentation  tanks  Cleanliness is critical in producing Quality beer. Microbial contamination Can result in off flavors and aromas.

Next

Grape Wine

2/22/13

25

Next End   Previous

Grape Wine

Introduction Grapes are cultivated in many countries of the world. India produces only about 2.77 per cent of the total world production. However, in productivity India stood first with 23.50 tonnes /Ha. Grape is one of the most perishable fruits and during the process of distribution and marketing, substantial losses are incurred which ranges from a slight loss of quality to total spoilage. Processing is an alternative method of preservation of this fruit for long durations. Fermentation of juices for the preparation of alcoholic beverages is being practiced for the last many centuries. Wine is a fermented beverages produced from grape and has a large acceptability across the world and has immense potential for local marketing as well as export.

Next End   Previous

Grape Wine

Alcoholic Beverages These are the beverages which are prepared after alcoholic fermentation of sugars by yeast, contain varying amounts of ethyl alcohol (5-42%), and are consumed directly or after dilution in water. Wine Product made by alcoholic fermentation of grapes or grape juice unless otherwise specified, by yeast (Saccharomyces cerevisiae and a subsequent ageing process. Alcohol content is 11-14 %, but may be as low as 7 %.

Next End   Previous

Grape Wine

Definitions Fortified wines

Contain added alcohol/ distillate of wine (brandy). Alcohol content of fortified wines is 19-21% Table Wines

Low alcohol content and little or no sugar Dessert Wines

These are fortified sweet wines. Next End   Previous

Grape Wine

Source: Sharma (2010)

2/22/13

26

Next End   Previous

Grape Wine

Nutritional  value  per  100  g  (3.5  oz)  

Energy   355  kJ  (85  kcal)  

Carbohydrates   2.6  g  

-­‐  Sugars   0.6  g  

Fat   0.0  g  

Protein   0.1  g  

Alcohol   10.6  g  

10.6  g  alcohol  is  13%vol.,  100  g  wine  is  approximately  100  ml  (3.4  fl  oz.),  Sugar  and  alcohol  content  can  vary.  Source:  USDA  Nutrient  Database  

Red table wine

Nutritional value of red table wine

Next End   Previous

Grape Wine

Process for preparation of wine

Next End   Previous

Grape Wine

Source: http://www.softchalk.com/lessonchallenge09/lesson/wineTutorial/wineTutorial4.html

Steps in wine making

Next End   Previous

Grape Wine

Determination of alcohol content ?

Record starting specific gravity of must (S1), Record finished specific gravity (S2) Calculate by using the formula

36.721(%) SSAlcohol −

=

2/22/13

27

Next End   Previous

Grape Wine

What happens during fermentation?

Yeast Saccharomyces cerevisae, which causes fermentation, is a single cell organism that converts the sugar in the fruit to alcohol and carbon dioxide. The carbon dioxide escapes into the air and what is left is wine.

Next End   Previous

Grape Wine

Wine Making Problems The major cause of wine failures is a lack of proper sterilization procedures and practices. Important Problems encountered are: 1. Corkiness Symptoms: An unpleasant flavor in wine Possible Causes: a. Bottling with a defective cork b. Not a complete seal and the outside air allowed to enter into the bottle c. Inferior cork 2. Soapiness Symptoms: Soapy taste in your favorite wine Possible Causes: a. Equipment, carboys and Fermenters not properly cleaned and rinsed.

Next End   Previous

Grape Wine

Wine Making Problems 3.  Woody Symptoms: Aroma of wood in your wine. Possible Causes: a.  Over-soaking of corks b.  Over-aging with oak chips 4. Flowers of Wine Symptoms: A white film or skin that forms on the surface of wines Possible Causes: a.  Undue exposure to air

Next End   Previous

Grape Wine

Wine Making Problems 5. Stuck Fermentation Symptoms: Wine has stopped fermenting before reaching a specific gravity of 0.994 -

0.996 Possible Causes: a.  cold temperatures / too hot b.  Bad yeast, using a yeast that's reached its limit of alcohol tolerance c.  Too much sugar d.  Insufficient nutrients or acids e.  Insufficient oxygen f.  Too much carbon dioxide Remedy: Add a high powered yeast

2/22/13

28

Next End   Previous

Grape Wine

Let us sum up •  Wine is a product made by alcoholic fermentation of grapes or grape juice unless

otherwise specified, by yeast (Saccharomyces cerevisiae and subsequent ageing process. Alcohol content is 11-14 %, but may be as low as 7 %.

•  Fortified wines contain added alcohol or distillate of wine while sweet wines consist of unfermented sugar.

•  Ethyl alcohol and CO2 are produced during fermentation •  Alcohol content is calculated by dividing the difference between initial and

final specific gravity by 7.36. •  Corkiness, soapiness and flower of wines are problems of wine making.

 PRODUCTION    OF          ANTIBIOTICS  

ANTIBIOTICS    

n  Of  all  the  microbial  products  manufactured  commercially,  antibiotics  are  the  most  important.  

n  Antibiotics  are  chemical  substances  produced  by  microorganisms  to  kill  other  microorganisms.  

n  They  are  used  in  the  treatment  of  infectious  diseases.  

SOME  ANTIBIOTICS  PRODUCED  BY          MICROORGANISMS  

Antibiotic Producing microorganism Cephalosporin Cephalosporium acrimonium Chloramphenicol Streptomyces venezuelae Erythromycin Streptomyces erythreus Griseofulvin Penicillium griseofulvin Penicillin Penicillium chrysogenum Streptomycin Streptomyces griseus Tetracycline Streptomyces aureofaciens Gentamicin Micromonospora purpurea

2/22/13

29

n  Thanks  to  work  by  Alexander  Fleming  (1881-­‐1955),  Howard  Florey  (  1898-­‐1968)  and  Ernst  Chain  (1906-­‐1979),  penicillin  was  first  produced  on  a  large  scale  for  human  use  in  1943.  At  this  time,  the  development  of  a  pill  that  could  reliably  kill  bacteria  was  a  remarkable  development  and  many  lives  were  saved  during  World  War  II  because  this  medication  was  available.      

E. Chain H. Florey A. Fleming

PRODUCTION    OF  PENICILLIN  

•  During  world  war  II-­‐importance  realized,  as  penicillin  had  been  used  to  treat  many  wounded  soldiers.  

A  tale  by  A.  Fleming  

n  In  1928,  Sir  Alexander  Fleming,  a  Scottish  biologist,  observed  that  Penicillium  notatum,  a  common  mold,  had  destroyed  staphylococcus  bacteria  in  culture.    

A  tale  by  A.  Fleming  n  He took a sample of the mold

from the contaminated plate. He found that it was from the Penicillium family, later specified as Penicillium notatum. Fleming presented his findings in 1929, but they raised little interest. He published a report on penicillin and its potential uses in the British Journal of Experimental Pathology.

2/22/13

30

MOA  OF  PENICILLIN  n  All penicillin like antibiotics inhibit

synthesis of peptidoglycan, an essential part of the cell wall.

n  They do not interfere with the synthesis of other intracellular components.

n  These antibiotics do not affect human cells because human cells do not have cell walls.

Spectrum  of  Activity    

n  Penicillins  are  active  against  Gram  positive  bacteria  

n  Some  members  (e.g.  amoxicillin)  are  also  effective  against  Gram  negative  bacteria  but  not  Pseudomonas  aeruginosa  

 

PRODUCTION  OF  PENICILLIN  

n  Penicillin  was  the  first  important  commercial  product  produced  by  an  aerobic,  submerged  fermentation  

n  First  antibiotic  to  have  been  manufacture  in  bulk.  

n  Used  as  input  material  for  some  semi  synthetic  antibiotics.  

n  It  is  fermented  in  a  batch  culture    

n  When  penicillin  was  first  made  at  the  end  of  the  second  world  war  using  the  fungus  Penicillium  notatum,  the  process  made  1  mg  dm-­‐3.    

n  Today,  using  a  different  species  (P.  chrysogenum)  and  a  better  extraction  procedures  the  yield  is  50  g  dm-­‐3.    

n  There  is  a  constant  search  to  improve  the  yield.  

2/22/13

31

The  yield  of  penicillin  can  be  increased  by:    

n  Improvement  in  composition  of  the  medium  

n  Isolation  of  better  penicillin  producing  mold  sp.  Penicillium  chrysogenum  which  grow  better  in  huge  deep  fermentation  tank  

n  Development  of  submerged  culture  technique  for  cultivation  of  mold  in  large  volume  of  liquid  medium  through  which  sterile  air  is  forced.  

Primary  and  Secondary  Metabolites  

n  Primary  metabolites  are  produced  during  active  cell  growth,  and  secondary  metabolites  are  produced  near  the  onset  of  stationary  phase.  

Commercial  Production  Of  Penicillin  n  Like  all  antibiotics,  penicillin  is  a  secondary  metabolite,  so  is  only  produced  in  the  stationary  phase.    

 

INDUSTRIAL  PRODUCTION  OF  ANTIBIOTIC-­‐  PENICILLIN    

n  The  industrial  production  of  penicillin  was  broadly  classified  in  to  two  processes  namely,  

n  Upstream  processing    n  Downstream  processing  

2/22/13

32

UPSTREAM  PROCESSING    

n  Upstream  processing  encompasses  any  technology  that  leads  to  the  synthesis  of  a  product.  Upstream  includes  the  exploration,  development  and  production.      

DOWNSTREAM  PROCESSING  

n  The  extraction  and  purification  of  a  biotechnological  product  from  fermentation  is  referred  to  as  downstream  processing.      

UPSTREAM  PROCESSING  INOCULUM  PREPARATION  

n  The  medium  is  designed  to  provide  the  organism  with  all  the  nutrients  that  it  requires.  

n  Inoculation  method-­‐  submerged  technique    

n  Spores  -­‐major  source  of  inoculum  

RAW  MATERIALS  •  CARBON  SOURCES:  

Lactose  acts  as  a  very  satisfactory  carbon  compound,  provided  that  is  used  in  a  concentration  of  6%.  Others  such  as  glucose  &  sucrose  may  be  used.    NITROGEN  SOURCES:  

•  Corn  steep  liquor  (CSL)  •  Ammonium  sulphate  and  ammonium  acetate  can  be  used  as  nitrogenous  

sources.    MINERAL  SOURCES:  Elements  namely  potassium,  phosphorus,  magnesium,  sulphur,  zinc  and  copper  are  essential  for  penicillin  production.  Some  of  these  are  applied  by  corn  steep  liquor.    

•  Calcium  can  be  added  in  the  form  of  chalk  to  counter  the  natural  acidity  of  CSL    

•  PAA-­‐  precursor  

2/22/13

33

FERMENTATION  PROCESS  n  The  medium  is  inoculated  with  a  suspension  of  conidia  of  Penicillium  chrysogenum.  

n   The  medium  is  constantly  aerated  and  agitated,  and  the  mould  grows  throughout  as  pellets.    

n  After  about  seven  days,  growth  is  complete,  the  pH  rises  to  8.0  or  above,  and  penicillin  production  ceases  

STAGES  IN  DOWNSTREAM  PROCESSING  

Removal  of  cells    

n  The  first  step  in  product  recovery  is  the  separation  of  whole  cells  and  other  insoluble  ingredients  from  the  culture  broth  by  technique  such  as  filtration  and  centrifugation.    

ISOLATION  OF  BENZYL  PENICILLIN    n  The  PH  is  adjusted  to  2-­‐2.5  with  the  help  of  phosphoric  or  

sulphuric  acids.    n  In  aqueous  solution  at  low  PH  values  there  is  a  partition  

coefficient  in  favor  of  certain  organic  solvents  such  as  butyl  acetate.    

n  This  step  has  to  be  carried  out  quickly  for  penicillin  is  very  unstable  at  low  PH  values.  

n  Antibiotic  is  then  extracted  back  into  an  aqueous  buffer  at  a  PH  of  7.5,  the  partition  coefficient  now  being  strongly  in  favor  of  the  aqueous  phase.  The  resulting  aqueous  solution  is  again  acidified  &  re-­‐extracted  with  an  organic  solvent.    

n  These  shifts  between  the  water  and  solvent  help  in  the  purification  of  penicillin.      

n  The  treatment  of  the  crude  penicillin  extract  varies  according  to  the  objective,  but  involves  the  formation  of  an  appropriate  penicillin  salt.    

n  The  solvent  extract  recovered  in  the  previous  stage  is  carefully  extracted  back  with  aqueous  sodium  hydroxide.    

n  This  is  followed  by  charcoal  treatment  to  eliminate  pyrogens  and  by  sterilization.    

n  Pure  metal  salts  of  penicillin  can  be  safely  sterilized  by  dry  heat,  if  desired.  Thereafter,  the  aqueous  solution  of  penicillin  is  subjected  to  crystallization.      

2/22/13

34

FURTHER  PROCESSING  n  For  parental  use,  the  antibiotic  is  packed  in  sterile  

vials  as  a  powder  or  suspension.  n   For  oral  use,  it  is  tabletted  usually  now  with  a  film  

coating.  n   Searching  tests  (ex:  for  purity,  potency)  are  

performed  on  the  appreciable  number  of  random  samples  of  the  finished  product.  

n   It  must  satisfy  fully  all  the  strict  government  standards  before  being  marketed  

The  main  stages  of  Penicillin  production  are:  

2/22/13

35

PRODUCTION  OF  PENICILLIN  V  n  Phenoxy  methyl  penicillin  n  Addition  of  different  Acyl  groups  to  the  medium.  

n  Phenoxyacetic  acid  as  precursor  instead  of  phenyl  acetic  acid.