Lecture05-2005 Combinational Design

  • Upload
    bhawna

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

  • 8/19/2019 Lecture05-2005 Combinational Design

    1/78

    Lecture 5 Combination Logic

    Design

    Pradondet Nilagupta

    [email protected]

    Department of Computer Engineering

    Kasetsart University

  • 8/19/2019 Lecture05-2005 Combinational Design

    2/78

    #

    Acknowledgement

    'his lecture note has (een summari)ed fromlecture note on *ntroduction to +,-* Design"

    +,-* Circuit Design all over the orld. * can/t

    remem(er here those slide come from.0oever" */d like to thank all professors ho

    create such a good ork on those lecture

    notes. 1ithout those lectures" this slide can/t

    (e finished.

  • 8/19/2019 Lecture05-2005 Combinational Design

    3/78

    2

    Topics

    Com(inational logic functions.-tatic complementary logic gate structures.

  • 8/19/2019 Lecture05-2005 Combinational Design

    4/78

    %

    Combinational logic expressions

    Com(inational logic3 function value is acom(ination of function arguments.

     & logic gate implements a particular logic

    function.4oth specification 5logic e6uations7 and

    implementation 5logic gate netorks7 are

    ritten in 4oolean logic.

  • 8/19/2019 Lecture05-2005 Combinational Design

    5/78

    8

    Gate design

    1hy designing gates for logic functions is non9trivial3may not have logic gates in the li(ray for all logic

    e:pressions;a logic e:pression may map into gates that

    consume a lot of area" delay" or poer.

  • 8/19/2019 Lecture05-2005 Combinational Design

    6/78

    !

    Boolean algebra terminology

    a(/

    a is a varia(le; a and a/ are literals.

    a(/ is a term. & function is irredundant if no literal can (e

    removed ithout changing its truth value.

  • 8/19/2019 Lecture05-2005 Combinational Design

    7/78?

    Irredundancy

     & logical e:pression is irredundant if no literalcan (e removed from the e:pression ithout

    changings its value

    edundant e:pressions3a*b + a

    a*b + a*b'

    *rredundant e:pressions3

    a*b' + a'*b

    a + c*d'

  • 8/19/2019 Lecture05-2005 Combinational Design

    8/78A

    Completeness

     & set of logical functions is complete iif ecan generate every possi(le 4oolean function

    using that set

    'he set B &ND" " N' is complete'he set B N&ND is complete

    'he set B &ND" is not complete

    'ransmission gates are not complete.

    *f your set of logic gates is not complete" you

    can/t design ar(itrary logic.

  • 8/19/2019 Lecture05-2005 Combinational Design

    9/78

    Minimality

     & logic e:pression is minimal if no e6uivalentform has a higher cost 5i.e." literal count7

    Minimality F *rredundancy

    C&D tools are availa(le to find the minimal5or near9minimal7 form for3'o level logic 5&NDG -um of Products7

    Multilevel ,ogic 5&r(itrary netork of gates7

  • 8/19/2019 Lecture05-2005 Combinational Design

    10/78$

    Static complementary gates

    Complementary3 have complementary pullup5p9type7 and pulldon 5n9type7 netorks.

    -tatic3 do not rely on stored charge.

    -imple" effective" relia(le; hence u(i6uitous.

  • 8/19/2019 Lecture05-2005 Combinational Design

    11/78

    Static complementary gatestructure

    VDD

    Out

    Gnd

    VDD

    Out

    Gnd

    PullupNetwork

    (p-transistors)

    PulldownNetwork

    (n-transistors)

    InInputs

    Inverter

    Pullup Netork 9 drives output to +DD Pulldon Netork 9 drives output to HND

  • 8/19/2019 Lecture05-2005 Combinational Design

    12/78#

    Inverter layout

    (tubs not

    shown)a out

    +

    transistors

    GND

    VDD

    a out

    tub ties

  • 8/19/2019 Lecture05-2005 Combinational Design

    13/782

    Complementary CMOS otes

    Pullup" pulldon netorksshould NE+E conduct at

    same timeI

    Pullup" pulldon netorks are

    duals

    Parallel in pulldon impliesserial in pullup

    -erial in pulldon implies

    parallel in pullup

    Hate 'ypes3

    -imple3 N&ND" N"inverter 

     &nd9r9*nvert 5&*7

    r9&nd9*nvert 5&*7

    A

    A

    B

    C

    B C

    OUT = (A*(B+C))’

  • 8/19/2019 Lecture05-2005 Combinational Design

    14/78%

    !ayout Considerations

    Metal lines re6uired for +ddI" HndI ndiff" pdiff must (e separated (y $ lam(da

    'ransistor options3hori)ontal or vertical diffusion lines-tart ith minimum9si)e transistors

    *ncreased idth implies increased driving capa(ilitiy"

    (ut

    Do the analysis first to see if it/s necessary

  • 8/19/2019 Lecture05-2005 Combinational Design

    15/788

    !ayout Considerations "cont#d$

    *nterconnect layers 5use vias hennecessary73Metal

    Metal #Poly

    Diffusion

    -pecify a ell depending on process typeUse su(strate contacts to prevent latchup

  • 8/19/2019 Lecture05-2005 Combinational Design

    16/78!

    A% gate

    +

     ba

    out

  • 8/19/2019 Lecture05-2005 Combinational Design

    17/78?

    A% layout

    +

     ba

    out

     b

    a

    out

    VDD

    GND

    tub

    ties

  • 8/19/2019 Lecture05-2005 Combinational Design

    18/78A

    !ayout &xample ' A%

    Compare to

  • 8/19/2019 Lecture05-2005 Combinational Design

    19/78

    O( gate

    +

     b

    a

    out

  • 8/19/2019 Lecture05-2005 Combinational Design

    20/78#$

    O( layout

     b

    a

    out

    a

     b

    out

    VDD

    GND

    tub ties

  • 8/19/2019 Lecture05-2005 Combinational Design

    21/78#

    !ayout &xample ' O(

    Compare to

  • 8/19/2019 Lecture05-2005 Combinational Design

    22/78##

    !ayout ' Creating )ideTransistors

    Divide into multiple transistors 'ie together sources" drains

    Compare to

  • 8/19/2019 Lecture05-2005 Combinational Design

    23/78#2

    AOI*OAI gates

     &* = andGorGinvert; &* = orGandGinvert. *mplement larger functions.

    Pullup and pulldon netorks are compact3

    smaller area" higher speed than N&NDGNnetork e6uivalents.

     &*2#3 and 2 inputs" and input 5dummy7"

    and # inputs; or together these terms; theninvert.

  • 8/19/2019 Lecture05-2005 Combinational Design

    24/78#%

    AOI example

    out = Ja(>c/3

    symbol circuit

    and

    or 

    invert

  • 8/19/2019 Lecture05-2005 Combinational Design

    25/78

    #8

    +ullup*pulldown network design

    Pullup and pulldon netorks are duals. 'o design one gate" first design one netork"

    then compute dual to get other netork.

    E:ample3 design netork hich pulls donhen output should (e $" then find dual to get

    pullup netork.

  • 8/19/2019 Lecture05-2005 Combinational Design

    26/78

    #!

    %ual network construction

         d   u   m   m   y

    a

     b c

    dummy

    a

     b c

  • 8/19/2019 Lecture05-2005 Combinational Design

    27/78

    #?

    Inverter ' %C Analysis

    in out

    Vout

    Vin1 2 3 4 5

            1

            2

            3

            4

            5

    NMOS linPMOS off 

    NMOS sat

    PMOS sat

    NMOS off 

    PMOS lin

    NMOS satPMOS lin

    NMOS lin

    PMOS sat

    A

    B

    C

    D

    E

  • 8/19/2019 Lecture05-2005 Combinational Design

    28/78

    #A

    Inverter %C Analysis ' Continued

    A Vout = VDD

    Vout = Vin − Vtn )− Vin − Vtn )2−

    βp

    βn

    Vin − VDD − vtp)2D

    E Vout = 0

    B Vout = Vin − Vtp)− Vin − Vtp)2− 2 Vin −

    VDD

    2− Vtp

    VDD −βn

    βp

    Vin − v tn 2

    C Vout =VDD

    2

    Source: N. Weste & . !shra"hian# Principles of CMOS VLSI Design $ddison Wesley# %'

    Note dependence on n/βpRecall: βn = k n

    ' Wn

    Ln

    βp = k p' Wp

    Lp

  • 8/19/2019 Lecture05-2005 Combinational Design

    29/78

    #

    !ogic !evels, Output

    ,ogic values are represented (y a range ofvoltages,ogic 3 (eteen +C0 and +DD 58+7

    ,ogic $3 (eteen +C, and +-- 5$+7-tatic CM- utput levels  +C0 = +DD  58+7

    +C, = +-- = Hnd 5$+7

  • 8/19/2019 Lecture05-2005 Combinational Design

    30/78

    2$

    !ogic !evels, Input

    E:amine DC *nputGutput Curve 5

  • 8/19/2019 Lecture05-2005 Combinational Design

    31/78

    2

    !ogic !evels ' Summary

    "1"

    "0"

    VOH

    VH

     V!

     VO!

    Undefined  Region

    V()

    V(y)

    V

    *

    V

    V,*

    V,

    Slo-e /%

    Slo-e /%

  • 8/19/2019 Lecture05-2005 Combinational Design

    32/78

    2#

    oise Margin

     & measure of noise immunity,ogic 3 NM0 = +C0 9 +*0

    ,ogic $3 NM, = +C, 9 +*,

    *mportant hen noise is presentDefinition3 small random variations in voltage

    Don/t ant noise to affect circuit output

  • 8/19/2019 Lecture05-2005 Combinational Design

    33/78

    22

    Vin

    Vout

    βnβp

    = 1

    βnβp

    = 10

    βnβp

    = 0.1

    Transistor Si-ing and oiseMargin

    Changing (eta 5si)e7ratio changes +*0" +*,

    'o (alance noise

    margin3 Make βn=βp = 1p=2.81n &ctually" 1p=#1n is often

    good enoughO

  • 8/19/2019 Lecture05-2005 Combinational Design

    34/78

    2%

    Gate %elay

    Consider an inverter ith step function inputDelay related to time to discharge G charge

    C,

    RL

    CL

    in

    t

  • 8/19/2019 Lecture05-2005 Combinational Design

    35/78

    28

    Simpli.ying Assumptions

     &ssume transistors turn onGoffinstantaneously

    Model transistor as a sitch" resistor in series

    esistor appro:imates +dsG*d at different values of+ds 

    5-ee

  • 8/19/2019 Lecture05-2005 Combinational Design

    36/78

    2!

    %elay Calculation ' /inding (n

     Rn=   V sat 

     I sat 

    +  V lin I 

    lin

        

       / 2   EQ   3 − 1

     I sat  = 1

    2′k W  L

    V  DD − V SS  − V t ( )

    2

    V sa t 

    = V  DD

    − V SS 

    V lin

    =   V  DD

    − V SS 

    − V t ( ) / 2

     I lin = ′kW 

     L12

    V  DD − V SS  −V t ( )2 − 12

    V  DD −

     V SS  −

    V t 

    2      

    2

    =3

    8′kW 

     LV 

     DD− V 

    SS − V 

    t ( )2

  • 8/19/2019 Lecture05-2005 Combinational Design

    37/78

    2?

    %elay Calculation ' /inding (n

     Rn=  V 

    sa t 

     I sa t 

    + V 

    lin

     I lin

     

     

     

       / 2

    =  V 

     DD −V 

    SS 

    1

    2′kW 

     LV  DD

    − V SS − V 

    t ( )2

    +  V 

     DD − V 

    SS  − V 

    ( ) / 238

    ′kW 

     LV  DD

    − V SS 

    −V t 

    ( )2

     

     

     

         / 2

     Rn =  L

    5

    3V  DD

    − 5

    3V 

    SS −

     2

    3V 

    k '   V  DD

    − V SS 

    − V t ( )

    2

     

     

     

     

       

    Table 3-1, p. 125 (0.5µm process, VDD=5V)

    Rn = 3.9kΩRp = 14kΩ

  • 8/19/2019 Lecture05-2005 Combinational Design

    38/78

  • 8/19/2019 Lecture05-2005 Combinational Design

    39/78

    2

    /all Time Approximation

    Capacitor initially charged at +DD 'ransistor appro:. n

  • 8/19/2019 Lecture05-2005 Combinational Design

    40/78

    %$

    (ise Time Approximation

    Capacitor initially discharged 5at +ss7 'ransistor appro:. p

  • 8/19/2019 Lecture05-2005 Combinational Design

    41/78

    %

    Gate %elay Accuracy

    Comparison to -pice simulation3

  • 8/19/2019 Lecture05-2005 Combinational Design

    42/78

    %#

    Gate %elay o. A% Gate

    Pulldon3 series n9transistorstf  = #.# R 5# R n7 R C,

    Pullup3 parallel p9transistors

    5orst case hen one on7tr  = #.# R p R C,

    Rn CL

    VOUT

    Rn

  • 8/19/2019 Lecture05-2005 Combinational Design

    43/78

  • 8/19/2019 Lecture05-2005 Combinational Design

    44/78

  • 8/19/2019 Lecture05-2005 Combinational Design

    45/78

    %8

    Gate %elay ' %e.initions

    Vin

    Vout

    tpH!

    50

    50

    tp!H

    50

    50

    t#

    $0

    10

    tf 

    Delay: time to reach 50% of final value tpHL (book calls this td)

     tpLHTransition Time: time between 10% and 90%: tf - fall time

     tr - rise time

  • 8/19/2019 Lecture05-2005 Combinational Design

    46/78

    %!

    Simpli.ying Assumptions

     &ssume -tep

  • 8/19/2019 Lecture05-2005 Combinational Design

    47/78

    %?

    %elay Calculation ' /inding (n

    Rn =   VsatIsat

    + VlinIlin

        

       /2 EQ 3−1

    Isat = 12k n'  W

    LVDD − VSS − Vt( )2

    Vsat = VDD − VSS

    Vlin =   VDD −VSS −Vt( ) /2

    Ilin = ′knW

    L

    1

    2 VDD −VSS −Vt( )

    2

    −1

    2

    VDD −VSS −Vt2

      

       

     

    = 38

    ′knW

    LVDD −VSS −Vt( )

    2

  • 8/19/2019 Lecture05-2005 Combinational Design

    48/78

    %A

    %elay Calculation ' /inding (n

    Rn =   VsatIsat

    + VlinIlin

        

       /2

    =

      VDD − VSS1

    2′kn

    W

    LVDD − VSS − Vt( )

    2 +

      VDD − VSS − Vt( ) /23

    8′kn

    W

    LVDD − VSS − Vt( )

    2

     

     

     

     

     

       /2

    Rn =L

    W

    5

    3

    VDD −5

    3

    VSS −2

    3

    Vt

    ′kn VDD −VSS −Vt( )2

     

     

     

  • 8/19/2019 Lecture05-2005 Combinational Design

    49/78

    %

    %elay Calculation ' /inding (p

    Rp =   VsatIsat

    + VlinIlin

        

       /2 EQ 3−1

    Isat = − 12 ′kp WL VSS − VDD − Vt( )2

    Vsat = VSS − VDD

    Vlin =   VSS −VDD −Vt( ) /2

    Ilin = − ′kpW

    L

    1

    2 VSS −VDD −Vt( )

    2

    −1

    2

    VSS

    −VDD

    −Vt

    2

      

       

     

    = − 38

    ′kpW

    LVSS −VDD −Vt( )

    2

  • 8/19/2019 Lecture05-2005 Combinational Design

    50/78

    8$

    %elay Calculation ' /inding (p

    Rp =  Vsat

    Isat+ Vlin

    Ilin

      

        /2

    =   VSS − VDD− 1

    2′k W

    LVSS − VDD − Vt( )

    2+   VSS − VDD − Vt( ) /2− 3

    8′k W

    LVSS − VDD − Vt( )

    2

     

     

     

     

        /2

    Rp = LW

    5

    3VSS −

    5

    3 VDD −

    2

    3Vt

    −k' VSS −VDD −Vt( )2

     

     

     

     

     

  • 8/19/2019 Lecture05-2005 Combinational Design

    51/78

    8

    Summary, Calculating (n and (p

    Rp

    = L

    W

    − 53

    VDD −2

    3Vt

    − ′kp −VDD −Vt( )2

     

     

     

    Rn =L

    W

    5

    3VDD −

    2

    3Vt

    ′kn VDD −Vt( )2

     

     

     

     &ssume +--=$ to simplify3

  • 8/19/2019 Lecture05-2005 Combinational Design

    52/78

    8#

    &xample, Calculating (n

    Rn = LW

    5

    3V

    DD

    − 2

    3V

    t

    ′kn VDD − Vt( )2

     

     

     

     

       

      = 23

    5

    3(5V)− 2

    3(0.7V)

    ′kn 5V− 0.7V( )2

     

     

     

     

       =14KΩ

    Use values from (ook3VDD = 5V

     

    Vt = 0.7V

     

    ′kn = 73µA/V2

     

    L = 2λ

     

    W = 3λ

  • 8/19/2019 Lecture05-2005 Combinational Design

    53/78

    82

    &xample, Calculating (p 

    Rp = LW

    − 5

    3

    VDD −2

    3

    Vt

    − ′kp −VDD −Vt( )2

     

     

     

        

      = 23

    − 5

    3

    (5V)− 2

    3

    (−0.8V)

    −(21µA/V2 ) −5V− (−0.8V)( )2

     

     

     

     

       =14KΩ

    Use values from (ook3VDD = 5V

     

    Vt = −0.8V

     

    ′kp = 21µA/V2

     

    L = 2λ

     

    W = 3λ

    Summary, ( and ( .or

  • 8/19/2019 Lecture05-2005 Combinational Design

    54/78

    8%

    Summary, (n and (p .orMinimum'Si-ed Transistors

    type VDD=5V VDD=3.3V

    Rn

    3.9KΩ 6.8KΩ

    Rp 14KΩ 25KΩ

    Table 3-1, p. 130

  • 8/19/2019 Lecture05-2005 Combinational Design

    55/78

    88

    Inverter %elay wit0 t0e τ model

    Rising Input / Falling Output

    Vout(t)= VDDe−t

    (Rn+RL )CL   EQ 3− 6

    CL

    Rp

    Rn

    RL0.5VDD = VDDe−tpHL

    (Rn+RL )CL   EQ 3− 7*

    tpHL = −(Rn +RL )CL ln(0.5)= 0.69(Rn +RL )CL   EQ 3− 8

    tf  = t10% − t90% = (Rn +RL )ln0.1

    0.9

      

       = 2.2(Rn +RL )CL   EQ 3− 9

    VDD

    tt10%t90%

  • 8/19/2019 Lecture05-2005 Combinational Design

    56/78

    A% Gate %elay wit0 t0e

  • 8/19/2019 Lecture05-2005 Combinational Design

    57/78

    8?

    A% Gate %elay wit0 t0e τ Model

    CL

    Rp

    Rn

    RL

    Rp

    Rn

    ,7C,

    ise time3 p9transistor on5for orst case7

    tf = #R#.#5n>,7C,

  • 8/19/2019 Lecture05-2005 Combinational Design

    58/78

    8A

    O( Gate %elay wit0 t0e τ Model

    ,7C,

    ise time3 p9transistor in series

    tf = #R#.#5n>,7C,

    Rp

    Rp

    Rn Rn

  • 8/19/2019 Lecture05-2005 Combinational Design

    59/78

    8

    AOI Gate %elay wit0 t0e τ Model

    ,7C,

    ise time3 2 p9transistors in series5orst case7

    tf = 2R#.#5n>,7C, CL

    RL

    A

    B

    C

    D

    A

    B

    D

    C

    %elay &stimation ' Ot0er

  • 8/19/2019 Lecture05-2005 Combinational Design

    60/78

    !$

    %elay &stimation ' Ot0erApproac0es

    Current source model 9 treat transistor as current sourcein saturation

  • 8/19/2019 Lecture05-2005 Combinational Design

    61/78

    !

    Accuracy o. met0ods

    Comparison to -pice simulation3

  • 8/19/2019 Lecture05-2005 Combinational Design

    62/78

    !#

    &xample ' Inverter %elay

    Estimate tr  and tf  for a minimum9si)e inverter driving theinputs of four minimum9si)e inverters

    5assume loading only from transistor gates7

    IN OUT

    CL

    CINV

    CINV

    CINV

    CINV

    Cgp

    Cgn

  • 8/19/2019 Lecture05-2005 Combinational Design

    63/78

    !2

    0"-

    0"n

    0,NV

    0

    &xample ' Inverter %elay "1*2$

    Estimate loading from a single inverter3

    CINV

    Cgp

    Cgn

     

    2λ ×0.25µm/ λ( )× 3λ ×0.25µm/ λ( )×0.9fF/ µm2

     

    = 0.3375fF

     

    2λ ×0.25µm/ λ( )× 3λ ×0.25µm/ λ( )×0.9fF/ µm2

     

    = 0.3375fF

     

    Cgn +Cgp = 0.3375fF+0.3375fF

     

    = 0.675fF

     

    4×Cinv = 4×0.675fF = 2.7fF

  • 8/19/2019 Lecture05-2005 Combinational Design

    64/78

    !%

    tr 

    t1 

    &xample ' Inverter %elay "2*2$

    No use n" p" C, to calculate tr " tf 

     

    2.2×Rn ×CL

     

    = 2.2× 3.9KΩ×2.7×10−15 F

     

    = 23. 1ps

     

    2.2×Rp ×CL

     

    = 2.2×14KΩ×2.7×10−15 F

     

    = 83. 1ps

    &xample ' Gate %elay o. an AOI

  • 8/19/2019 Lecture05-2005 Combinational Design

    65/78

    !8

    &xample Gate %elay o. an AOIGate

    Use values in (ook for +DD=8+ise time tr 31orst case3 # transistors in series

  • 8/19/2019 Lecture05-2005 Combinational Design

    66/78

    !!

    &..ect o. Increased Transistor)idt0

    *ncrease idth of transistor to3 *ncrease current

    educe effective resistance 5n or p7

    -ide9effect3 increased input capacitance

    5more a(out this later7

    Rn(WNEW) =  L

    WNEW

    5

    3VDD −

     2

    3Vt

    ′kn  VDD − Vt( )

    2

     

     

     

     

      

     

    =   3λWNEW

    Rn(W=3λ)

    Rp(WNEW) =  3λ

    WNEWRp(W=3λ)

    &xample, Gate %elay o. a O(

  • 8/19/2019 Lecture05-2005 Combinational Design

    67/78

    !?

    t f  =

    t f  =

    &xample, Gate %elay o. a O("3%%453$

    A

    B

    BA

    W=31L=2

    W=8L=2

    OUT

    CL=20fF

    Rn(W=8λ) =

    Rp(W=31λ) =

    Rn(W=3λ) ×3λ8λ

    = 3.9k Ω×3λ8λ

    =1.46k Ω

    Rn(W=3λ) × 3λ31λ

    = 14k Ω×3λ31λ

    = 1.35k Ω

    2.2 × (2×Rp(W=31λ) )×CL

    = 2.2 × 2 ×1.35k Ω× 20fF = 0.12ns

    2.2 × Rn(W=8λ) ×CL

    = 2.2 ×1.46k Ω× 20fF = 0.064ns

  • 8/19/2019 Lecture05-2005 Combinational Design

    68/78

    !A

    Transistor Si-ing &xample

    -i)e the transistors in an inverter so that tr =tf p G n = 2KW G 2.KW = 2.%?

    Make 1p appro:imately 2.8R1n

    VOUTVIN

    %&3!&2

    %&10

    !&2

  • 8/19/2019 Lecture05-2005 Combinational Design

    69/78

    !

    Transistor Si-ing &xample

    -i)e the transistors in an &* gateso that tr =tf 

    p G n = 2KW G 2.KW = 2.%?

    5round donO to 27

    -i)e each orst case path for e6ual delay &ssume ,=# in all transistors

    3

    A

    B

    C

    D

    A

    B

    D

    C

    '

    ''

    1(

    1(

    3'

    3'

    (esult o. Body &..ect, Increased

  • 8/19/2019 Lecture05-2005 Combinational Design

    70/78

    ?$

    (esult o. Body &..ect, Increased%elay

    Consider n9transistors in series3 ' has higher +t hile C charged

    ' turns on more sloly

    C, discharges more sloly

    Delay 5fall time7 increasesI

    1hat to doT

     &ttempt to reduce parasitic

    C9Ointernal node capacitanceO

    Place earliest9arrivingO gate inputs

    near Hnd 5+DD" for p9transistors7 Place latest9arrivingO gate inputs

    near output

    CL

    C1

    T1

    T2 +

    -VC1=Vsb1

    Vsb2=0V

    To Pullup Network

    OUT

  • 8/19/2019 Lecture05-2005 Combinational Design

    71/78

    ?

    Body &..ect

    1e/ve used fi:ed values for +tp" +tn" 4U' 'his is true only if sourceGsu(strate voltage +s(=$

    Not alays the case hen transistors are in series

    *ncreasing +s( 

    increases idth of depletion layer

    raises the threshold voltage +t

    E:ample 5p. 8!73 if +s(=8+" X+t=$.!+ 5#%Q of +t7

    ∆V t = γ  n Φs + Vsb − Φs( )

  • 8/19/2019 Lecture05-2005 Combinational Design

    72/78

    ?#

    +ower Consumption

    -tatic poer consumption 9 due to leakage current DiodeO leakage 9 reverse9(iased diode Yunction

    -u(threshold current 9 in deep su(micron devices

    'otal static consumption3

    Dynamic poer consumption

    Poer consumed as outputs sitch toCharge load capacitances

    Discharge load capacitance

    Pstatic = Ileakage ×VDD

    io = is(eqV/kT

    − 1)

    Isub=

    ID0 (WL

    )e−

    Vgs

    Vt / nV

    th 

    1

  • 8/19/2019 Lecture05-2005 Combinational Design

    73/78

    ?2

    %ynamic +ower Consumption

    Charging Capacitor Current" voltage3 E6. 29A" 29 5p. 2$7

    Energy3 E6. 29$

    Discharging Capacitor Current" voltage3 E6. 29" 29# 5p. 27

    Energy3 E6. 292

  • 8/19/2019 Lecture05-2005 Combinational Design

    74/78

    ?%

    +ower Consumption "cont#d$

    Poer3 Energy per unit timeP = fRC,R5+DD9+--7# = fRC,R+DD#

    1here

    f = rate of change of gate output1orst case3 f=f clock 5more likely f L f clock (ut f α f clock 

    7

    P depends only on f" C," and +DDI

  • 8/19/2019 Lecture05-2005 Combinational Design

    75/78

    ?8

    +ower Consumption and 3%%

    educing +DD creates large reduction in P *f e reduce +DD to +DD/"

    P

    P' =V

    DD

    ( )

    2

    VDD'( )

    2  

    EXAMPLE: if VDD= 5V,V

    DD' = 3.3V

    P

    P'=

    5V( )2

    3.3V( )2= 2.29

    EXAMPLE: if VDD= 5V,V

    DD' = 1.8V P

    P'= 5V( )

    2

    1.8V( )2= 7.72

    % l d 3

  • 8/19/2019 Lecture05-2005 Combinational Design

    76/78

    ?!

    %elay and 3%%

    'radeoff3 reducing +DD increases delay *f e reduce +DD to +DD/"

    'radeoff3 reducing +DD decreases noise immunity5more careful design necessaryI7

    Rp

    Rp'

    VDD

    VDD'

      sotr'

    tr

      ∝  VDD

    VDD'

     

    EXAMPLE : if VDD = 5V,VDD'= 3.3Vtr'

    tr∝

    5V

    3.3V= 1.52

    EXAMPLE : if VDD = 5V,VDD '= 1.8Vtr'

    tr

    5V

    1.8V

    = 2.77

    %esign Strategies .or +ower

  • 8/19/2019 Lecture05-2005 Combinational Design

    77/78

    ??

    g g(eduction

    Use loer +DD to reduce poer  Compensate for higher delays (y

    Using neer" smaller" faster *C technology

    'rading off more sloer logicO for less faster logicO 9

    this is called voltage scaling

    E:amples 5from 'om 4urd/s Heneral Processor *nformationO7

    *ntel P8 Pentium3 +DD=8.$+ G f clk=!!M0) G P=!1

    *ntel P8%C3 +DD=2.2+ G f clk=$$M0) G P=8.$1

    *ntel P88+'3 +DD=2.2 G f clk=#$$Mh) G P=2.%1 *ntel P!3 +DD=2.2+G f clk=!!M0) G P=#2.%1

    Compa6 &lpha ##!%3 +DD=#.$+ G f clk=!!?M0) G P=?#1

  • 8/19/2019 Lecture05-2005 Combinational Design

    78/78

    Speed'+ower +roduct

     & ay of characteri)ing the 6uality of a logicfamily