32
| | 151-0851-00 V lecture: CAB G11 Tuesday 10:15 – 12:00, every week exercise: HG E1.2 Wednesday 8:15 – 10:00, according to schedule (about every 2nd week) office hour: LEE H303 Friday 12.15 – 13.00 Marco Hutter, Roland Siegwart, and Thomas Stastny 4.10.2016 Robot Dynamics - Kinematics 3 1 Lecture «Robot Dynamics»: Kinematics 3

Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

  • Upload
    others

  • View
    18

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

151-0851-00 Vlecture: CAB G11 Tuesday 10:15 – 12:00, every weekexercise: HG E1.2 Wednesday 8:15 – 10:00, according to schedule (about every 2nd week)office hour: LEE H303 Friday 12.15 – 13.00Marco Hutter, Roland Siegwart, and Thomas Stastny

4.10.2016Robot Dynamics - Kinematics 3 1

Lecture «Robot Dynamics»: Kinematics 3

Page 2: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Topic Title20.09.2016 Intro and Outline L1 Course Introduction; Recapitulation Position, Linear Velocity, Transformation27.09.2016 Kinematics 1 L2 Rotation Representation; Introduction to Multi-body Kinematics 28.09.2016 Exercise 1a E1a Kinematics Modeling the ABB arm04.10.2016 Kinematics 2 L3 Kinematics of Systems of Bodies; Jacobians05.10.2016 Exercise 1b L3 Differential Kinematics and Jacobians of the ABB Arm11.10.2016 Kinematics 3 L4 Kinematic Control Methods: Inverse Differential Kinematics, Inverse Kinematics; Rotation

Error; Multi-task Control12.10.2016 Exercise 1c E1b Kinematic Control of the ABB Arm18.10.2016 Dynamics L1 L5 Multi-body Dynamics19.10.2016 Exercise 2a E2a Dynamic Modeling of the ABB Arm25.10.2016 Dynamics L2 L6 Dynamic Model Based Control Methods26.10.2016 Exercise 2b E2b Dynamic Control Methods Applied to the ABB arm01.11.2016 Legged Robots L7 Case Study and Application of Control Methods08.11.2016 Rotorcraft 1 L8 Dynamic Modeling of Rotorcraft I15.11.2016 Rotorcraft 2 L9 Dynamic Modeling of Rotorcraft II & Control16.11.2016 Exercise 3 E3 Modeling and Control of Multicopter22.11.2016 Case Studies 2 L10 Rotor Craft Case Study29.11.2016 Fixed-wing 1 L11 Flight Dynamics; Basics of Aerodynamics; Modeling of Fixed-wing Aircraft30.11.2016 Exercise 4 E4 Aircraft Aerodynamics / Flight performance / Model derivation06.12.2016 Fixed-wing 2 L12 Stability, Control and Derivation of a Dynamic Model07.12.2016 Exercise 5 E5 Fixed-wing Control and Simulation13.12.2016 Case Studies 3 L13 Fixed-wing Case Study20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam 4.10.2016Robot Dynamics - Kinematics 3 2

Page 3: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Machines are built and controlled to achieve extremely accurate positions, independent of the load the robot carries

Very stiff structure Play-free gears and transmissions High-accurate joint sensors

End-effector accuracy +/- 0.02mm!

Large variety of robot arms

4.10.2016Robot Dynamics - Kinematics 3 3

Multi-body KinematicsIntro

Page 4: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Base frame is rigidly connected to ground Often indicated as CS 0

Base frame is free floating Often indicated as CS B (base)

6 unactuated DOFs!

4.10.2016Robot Dynamics - Kinematics 3 4

Fixed Base vs. Floating Base Robot

Page 5: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

joints revolute (1DOF) prismatic (1DOF)

1 links moving links 1 fixed link

4.10.2016Robot Dynamics - Kinematics 3 5

Classical Serial Kinematic LinkagesGeneralized robot arm

Page 6: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

|| 4.10.2016Robot Dynamics - Kinematics 3 6

Configuration ParametersGeneralized coordinates

Generalized coordinatesA set of scalar parameters q that describe the robot’s configuration Must be complete (Must be independent)

=> minimal coordinates Is not unique

6 parameters• 3 positions• 3 orientations

5 constraints

n moving links: 6n parametersn 1DoF joints: 5n parameters6n – 5n = n DoFs

Degrees of Freedom Nr of minimal coordinates

Page 7: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

End-effector configuration parameters A set of m parameters that completely specify

the end-effector position and orientation with respect to I

Operational space coordinates the m0 configuration parameters are independent

=> m0 number of degrees of freedom of end-effector

4.10.2016Robot Dynamics - Kinematics 3 7

End-effector Configuration Parameters

{I}

{E}

Page 8: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Most general robot arm: q = = = = =

SCARA robot arm q = = = = =

ANYpulator: robot arm with 4 rotational joints q = = = = =

4.10.2016Robot Dynamics - Kinematics 3 8

End-effector Configuration ParametersExample

1... jnq q

6 6

, , , , ,x y zx y z , , , , ,x y zx y z

, , ,

6 4

, , , , ,x y zx y z , , , zx y z

1 2 3 4, , ,q q q q

6 4

, , , , ,x y zx y z

Page 9: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Planar robot arm 3 revolute joints 1 end-effector (gripper) <= don’t consider this for the moment

What are the joint coordinates (generalized coordinates)?

What are the end-effector parameters?

4.10.2016Robot Dynamics - Kinematics 3 9

End-effector Configuration ParametersSimple example

Page 10: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Joint Coordinates

Operational Coordinates 4.10.2016Robot Dynamics - Kinematics 3 10

Configuration Space Joint Space

Page 11: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Joint Coordinates => Joint Space

Operational Coordinates => Operational Space4.10.2016Robot Dynamics - Kinematics 3 11

Configuration Space Joint Space

1

2

3

x

z

1

2

3

q

e

xz

χ

obstacle

Page 12: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

End-effector configuration as a function of generalized coordinates

For multi-body system, use transformation matrices

Note: depending on the selected end-effector parameterization, it is not possible to analytically write down end-effector parameters!

4.10.2016Robot Dynamics - Kinematics 3 12

Forward Kinematics

en

Page 13: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

What is the end-effector configuration as a function of generalized coordinates?

4.10.2016Robot Dynamics - Kinematics 3 13

Forward KinematicsSimple example

0 01 12 23 3IE I E T T T T T T

1 1 2 2 3 3

1 1 0 2 2 1 3 3 2 3

1 0 0 0 c 0 0 c 0 0 c 0 0 1 0 0 00 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 00 0 1 0 0 0 0 0 0 10 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

s s s

s c l s c l s c l l

123 123 1 1 2 12 3 123

123 123 0 1 1 2 12 3 123

c 00 1 0 0

...0

0 0 0 1

s l s l s l s

s c l l c l c l c

Page 14: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Forward Kinematics

Forward Differential Kinematics Analytic:

4.10.2016Robot Dynamics - Kinematics 3 14

Forward Differential KinematicsAnalytical Jacobian

P

R

ee e

e

χχ χ q

χ

with

Page 15: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Given (from last example)

Determine the analytical Jacobian

4.10.2016Robot Dynamics - Kinematics 3 15

Analytical JacobianPlanar robot arm

Page 16: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Analytic:

Geometric:

Algebra:

4.10.2016Robot Dynamics - Kinematics 3 16

Forward Differential Kinematics

with

Depending on parameterization!!

Independent of parameterization

Page 17: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Definitions

Remember the difference:

Velocity

Time derivative of coordinates:4.10.2016Robot Dynamics - Kinematics 3 17

Velocity in Moving Bodies

Page 18: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

For non-moving reference frames:

For moving reference frames:

Vector differentiation in moving frames (A = inertial/reference frame):

4.10.2016Robot Dynamics - Kinematics 3 18

Vector Differentiation in Moving FrameEuler differentiation rule

Page 19: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Apply transformation rule as learned before

Differentiate with respect to time

Substitute

Rigid body formulation

4.10.2016Robot Dynamics - Kinematics 3 19

Velocity in Moving BodiesRigid body formulation

Page 20: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Rigid body formulation at a single element

Apply this to all bodies

Angular velocity propagation

…get the end-effector velocity

4.10.2016Robot Dynamics - Kinematics 3 20

Geometric Jacobian Derivation

with

Page 21: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Position Jacobian

Rotation Jacobian from

4.10.2016Robot Dynamics - Kinematics 3 21

Geometric Jacobian Derivation

Page 22: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Preparation: determine the rotation matrices

Determine the rotation axes Locally Inertial frame

Determine the position vectors

Get the Jacobian

4.10.2016Robot Dynamics - Kinematics 3 22

Geometric JacobianPlanar robot arm

…=…

Page 23: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Analytical Jacobian

Relates time-derivatives of config. parameters to generalized velocities

Depending on selected parameterization (mainly rotation) in 3D Note: there exist no “rotation angle”

Mainly used for numeric algorithms

Geometric (or basic) Jacobian

Relates end-effector velocity to generalized velocities

Unique for every robot

Used in most cases

4.10.2016Robot Dynamics - Kinematics 3 23

RecapitulationAnalytical and Kinematic Jacobian

χ q

Page 24: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Kinematics (mapping of changes from joint to task space) Inverse kinematics control Resolve redundancy problems Express contact constraints

Statics (and later also dynamics) Principle of virtual work Variations in work must cancel for all virtual displacement Internal forces of ideal joint don’t contribute

Dual problem from principle of virtual work4.10.2016Robot Dynamics - Kinematics 3 24

Importance of Jacobian

0

TTi i E E

iTT

E

W

f x τ q F x

τ q F J q q

FE

1

23

T

qxFτ

JJ

Page 25: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

151-0851-00 Vlecture: CAB G11 Tuesday 10:15 – 12:00, every weekexercise: HG E1.2 Wednesday 8:15 – 10:00, according to schedule (about every 2nd week)office hour: LEE H303 Friday 12.15 – 13.00Marco Hutter, Roland Siegwart, and Thomas Stastny

4.10.2016Robot Dynamics - Kinematics 3 25

Floating Base Kinematics

Page 26: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Generalized coordinates

Generalized velocities and accelerations? Time derivatives depend on parameterization

Often

Linear mapping 4.10.2016Robot Dynamics - Kinematics 3 26

Floating Base SystemsKinematics

with

,q q

Page 27: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Position of an arbitrary point on the robot

Velocity of this point

4.10.2016Robot Dynamics - Kinematics 3 27

Floating Base SystemsDifferential kinematics

BQ jr qB bC qIB IB br qI

QJ qI

TT

T

T

C C

C

ω

C CC

ω

CC BI BI

IB

I IB IB

I

B

IB I BIBB IB

with

Page 28: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

A contact point is not allowed to move:

Constraint as a function of generalized coordinates:

Stack of constraints

4.10.2016Robot Dynamics - Kinematics 3 28

Contact Constraints

Page 29: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Contact constraints

Point on wheel

Jacobian

Contact constraints

=> Rolling condition4.10.2016Robot Dynamics - Kinematics 3 29

Contact ConstraintWheeled vehicle simple example

x

qUn-actuated base

Actuated joints

sincos0

IP

x rr r

rI

0x r

10 00 0

IP P

rx

r J q 0

I I

1 cos0 sin0 0

P

rr

JI

Page 30: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Contact Jacobian tells us, how a system can move. Separate stacked Jacobian

Base is fully controllable if

Nr of kinematic constraints for joint actuators:

Generalized coordinates DON’T correspond to the degrees of freedom Contact constraints!

Minimal coordinates (= correspond to degrees of freedom) Require to switch the set of coordinates depending on contact state (=> never used)

4.10.2016Robot Dynamics - Kinematics 3 30

Properties of Contact Jacobian

relation between base motion and constraints

-

c b jn n n

Page 31: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Floating base system with 12 actuated joint and 6 base coordinates (18DoF)

4.10.2016Robot Dynamics - Kinematics 3 31

Quadrupedal Robot with Point Feet

Total constraints

Internal constraints

Uncontrollable DoFs

0

0

6

3

0

3

6

1

1

9

3

0

12

6

0

Page 32: Lecture «Robot Dynamics»: Kinematics 3 › ... › RobotDynamics2016 › 3-kinematics.pdf · 20.12.2016 Summery and Outlook L14 Summery; Wrap-up; Exam Robot Dynamics - Kinematics

||

Exercise TOMORROW Differential Kinematics Use it as extended office hour!

Next Lecture 11.10. (Dario Bellicoso) Script Section 2.9 (Kinematic Control Methods) Inverse Kinematics Inverse Differential Kinematics

4.10.2016Robot Dynamics - Kinematics 3 32

Outlook

{E}

Inverse Kinematics

Configurationend-effector

Joint angles

{I}