Lecture PE AU 04-12-08 New

Embed Size (px)

Citation preview

  • 7/27/2019 Lecture PE AU 04-12-08 New

    1/30

    Controlled Semi-

    ControlledDual

    Io

    Vdc

    -V

    -Io

    Chapter 3 Chapter 10

    RectifierMode

    Inverter

    Mode

    Rectifier

    Mode

    InverterMode

  • 7/27/2019 Lecture PE AU 04-12-08 New

    2/30

    02

    1)t(dtsinVm

    0

    1

    )t(dtsinVV mdc

    3

    0

    3

    32

    2/

    mdc)t(dtcosVV

    6

    03

    62

    2/

    mdc )t(dtcosVV

    )t(dtsinVm2

    1

    )t(dtsinVV mdc

    1

    ).(

    /

    /mdc )t(dtsinVV

    1910

    65

    62

    3

    2

    66

    33

    /

    /mdc )t(d)tsin(VV

  • 7/27/2019 Lecture PE AU 04-12-08 New

    3/30

    rmsdc

    max

    dc

    V.V

    V

    V

    450

    rmsdc

    maxdc

    V.V

    VV

    90

    2

    )LL(rmsdc

    )LLmax(dc

    V.V

    VV

    1712

    33

    cosV.V

    cosV

    V

    rmsdc

    max

    dc

    450

    cosV.V

    cosV

    V

    rmsdc

    maxdc

    90

    2

    cosV.V

    cosV

    V

    )LL(rmsdc

    )LLmax(dc

    1712

    33

    )LL(rmsdc

    )LLmax(dc

    V.V

    VV

    351

    3

    cosV.V

    cosV

    V

    )LL(rmsdc

    )LLmax(dc

    351

    3

  • 7/27/2019 Lecture PE AU 04-12-08 New

    4/30

    To Derive an Expression for the

    Average Output Voltage of a

    3-Phase Half Wave Converter withRL Load for Continuous Load Current

  • 7/27/2019 Lecture PE AU 04-12-08 New

    5/30

    Vector Diagram of 3 Phase Supply

    Voltages

    VAN

    VCN

    VBN

    1200

    1200

    1200 RN AN

    YN BN

    BN CN

    v v

    v v

    v v

  • 7/27/2019 Lecture PE AU 04-12-08 New

    6/30

    0

    0

    0

    sin ;

    Max. Phase Voltage

    2sin

    3

    sin 120

    2sin

    3sin 120

    sin 240

    RN an m

    m

    YN bn m

    m

    BN cn m

    m

    m

    v v V t

    V

    v v V t

    V t

    v v V t

    V t

    V t

    VAN

    VCN

    VBN

    1200

    1200

    1200

  • 7/27/2019 Lecture PE AU 04-12-08 New

    7/30

  • 7/27/2019 Lecture PE AU 04-12-08 New

    8/30120o conduction

  • 7/27/2019 Lecture PE AU 04-12-08 New

    9/30

    5

    6

    6

    5

    6

    6

    3

    sin .2

    3cos

    2

    3 5cos cos

    2 6 6

    m

    dc

    m

    dc

    m

    dc

    VV t d t

    VV t

    VV

    120o conduction

  • 7/27/2019 Lecture PE AU 04-12-08 New

    10/30

    0 0

    0

    Note from the trigonometric relationship

    cos cos .cos sin .sin

    5 5cos cos sin sin

    6 63

    2

    co

    cos 150 cos sin 150 sin3

    2 cos 30

    s .cos sin sin6 6

    .cos

    m

    dc

    m

    dc

    A

    VV

    B A B A B

    VV

    0

    sin 30 sin

  • 7/27/2019 Lecture PE AU 04-12-08 New

    11/30

    0 0

    0 0 0 0

    0 0

    0 0

    0

    0

    0

    0

    0 0

    Note: cos 1

    cos 180 30 cos sin 180 30 sin3

    2 cos 30 .cos sin 30 sin

    cos 30 cos sin 30 sin3

    2 cos 30 .cos sin 30 s

    80 30 cos 30

    sin 180 30 sin 30

    in

    m

    dc

    m

    dc

    V

    V

    VV

  • 7/27/2019 Lecture PE AU 04-12-08 New

    12/30

    03 2cos 30 cos2

    3 32 cos

    2 2

    3 3 33 cos cos

    2 2

    3

    cos2

    Where 3 Max. line to line supply voltage

    m

    dc

    m

    dc

    m m

    dc

    Lm

    dc

    Lm m

    VV

    VV

    V VV

    VV

    V V

  • 7/27/2019 Lecture PE AU 04-12-08 New

    13/30

    max

    The maximum average or dc output voltage is

    obtained at a delay angle 0 and is given by

    3 3

    2

    Where is the peak phase voltage.And the normalized average output voltage is

    m

    dmdc

    m

    d

    dcn n

    VV V

    V

    VV V

    cosc

    dmV

  • 7/27/2019 Lecture PE AU 04-12-08 New

    14/30

    15 2

    62 2

    6

    1

    2

    The rms value of output voltage is found byusing the equation

    3sin .

    2

    and we obtain

    1 33 cos 2

    6 8

    mO RMS

    mO RMS

    V V t d t

    V V

  • 7/27/2019 Lecture PE AU 04-12-08 New

    15/30

    Three Phase Full Converter

    3 Phase Fully Controlled Full Wave Bridge Converter.

    Known as a 6-pulse converter. Used in industrial applications up to 120kW output

    power.

    Two quadrant operation is possible.

  • 7/27/2019 Lecture PE AU 04-12-08 New

    16/30

    0

    0

    0

    We deifine three line neutral voltages(3 phase voltages) as follows

    sin ; Max. Phase Voltage

    2sin sin 120

    3

    2sin sin 1203

    sin 240

    RN an m m

    YN bn m m

    BN cn m m

    m

    v v V t V

    v v V t V t

    v v V t V t

    V t

    V

    is the peak phase voltage of a wye-connected source.m

  • 7/27/2019 Lecture PE AU 04-12-08 New

    17/30

  • 7/27/2019 Lecture PE AU 04-12-08 New

    18/30

    2

    6

    mL

    max

    33 sin .6

    3 3 3cos cos

    Where V 3 Max. line-to-line supply vo

    The maximum average dc output voltage isobtained for a delay angle

    ltage

    3 3

    0,

    3

    dc m

    m mL

    dc

    m

    m m

    dmdc

    V V t d t

    V V

    V

    V

    V VV V

    L

    Th li d d l i

  • 7/27/2019 Lecture PE AU 04-12-08 New

    19/30

    1

    222

    6

    The normalized average dc output voltage is

    cos

    The rms value of the output voltage is found from

    6.

    2

    dc

    dcn n

    dm

    OO rms

    VV V

    V

    V v d t

  • 7/27/2019 Lecture PE AU 04-12-08 New

    20/30

  • 7/27/2019 Lecture PE AU 04-12-08 New

    21/30

    =-/m

    =-/m+

    =0

    =/m+

    =/m

    cosm/

    )m/sin(VV mdc

    m/

    m/

    dcosVV mm

    dc 2

    1

    cosm

    sinVm

    V rmsdc2

    E l Si l

  • 7/27/2019 Lecture PE AU 04-12-08 New

    22/30

    m/

    m/

    dcosVV m

    m

    dc 2

    1

    cos

    m

    sinVm

    V rmsdc2

    2

    2

    1/

    /mdc )(dcosVV

    Example: Single

    Phase Full Wave

    controlled rectifier

    (called2-Phase or

    2-pulse rectifier)

    m=2

    cossinVV rmsdc2

    22

    cosV.V rmsdc 90

    900

    conduction2-ripples or

    pulses

    Each cycle Draw

    ?cosV.V rmsdc 090

  • 7/27/2019 Lecture PE AU 04-12-08 New

    23/30

    E ample 3 Phase

  • 7/27/2019 Lecture PE AU 04-12-08 New

    24/30

    m/

    m/

    dcosVV m

    m

    dc 2

    1

    cosm

    sinVm

    V rmsdc2

    6

    662

    1/

    /

    mdc )(dcosV/V

    Example: 3-Phase

    Half Wave controlled

    rectifier

    (called3-Phase or

    6-pulse rectifier)

    m=6

    cossinVV rmsdc6

    62

    cosV.V rmsdc 351

    600

    conduction

    6-ripples or

    pulses

    Each cycle

  • 7/27/2019 Lecture PE AU 04-12-08 New

    25/30

    Three Phase Dual Converters

  • 7/27/2019 Lecture PE AU 04-12-08 New

    26/30

    3 Ph H lf C t ll d B id C t (S i C t ) ith

  • 7/27/2019 Lecture PE AU 04-12-08 New

    27/30

    3 Phase Half Controlled Bridge Converter (Semi Converter) with

    Highly Inductive Load & Continuous Ripple free Load Current

    3 Phase semiconverters are used in Industrial dc drive

    applications up to 120kW power output. Single quadrant operation is possible.

    Power factor decreases as the delay angle increases.

    Power factor is better than that of 3 phase half wave

    converter.

  • 7/27/2019 Lecture PE AU 04-12-08 New

    28/30

  • 7/27/2019 Lecture PE AU 04-12-08 New

    29/30

    Practice Problem

    For controlled RL rectifier, the source is120Vrms at 60Hz, R=20, L=0.04H, delay

    angle is 45o and extinction angle is 217o.

    Determine

    i. An expression for i(t)

    ii. Average current and voltage

    iii. Power absorbed by load

    iv. Power factor

  • 7/27/2019 Lecture PE AU 04-12-08 New

    30/30