10
1 ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 13: February 23, 2017 Combination Logic: CMOS Penn ESE 570 Spring 2017 – Khanna Lecture Outline ! CMOS Gates " 1 st order delay of Gates " Gate design " Sizing, fanin ! CMOS Worst Case Analysis 2 Penn ESE 570 Spring 2017 – Khanna Review: 1st Order RC Delay Models 3 ! Equivalent circuits used for MOS transistors " Ideal switch + “effective” ON resistance + load capacitance " Define unit resistance, R u : “effective” ON resistance of transistor with min length and W=W u (usually min width) " nMOS has “effective” ON resistance R n =R un /κ n and capacitances κ n C d , κ n C g " pMOS has “effective” ON resistance R p =R up /κ p and capacitances κ p C d , κ p C g " scale factors κ n 1 and κ p 1, i.e. W n = κ n W un ,W p = κ p W up " C gb = C g and C db =C sb = C d for the unit n/pMOS transistors " NMOS and pMOS transistor at minimum gate length (L) " Capacitance directly proportional to gate width (W) # C = W*C " Conductance directly proportional to gate width (W) # G = W*G " Resistance is inversely proportional to gate width (W) # R = R/W τ PHL 0.69 C load R n C load C dbn + C dbp + C int + C gb Penn ESE 570 Spring 2017 – Khanna Review: 1st Order Delay Model -τ PHL 4 κ p 1 A Y R n C d C d nC g nκ p C g κ p C d κ p C d VDD VDD VDD VDD VDD where W n =W unit => κ n =1, R n =R un W p = κ p W unit κ p = μ n / μ p = 2 Y R p = R pu /κ p = R n C s = C d = C diff 1,κ p 1,κ p 1,κ p n 2 1 R p Penn ESE 570 Spring 2017 – Khanna Review: 1st Order Delay Model -τ PHL 5 R n C d C d nC g nκ p C g κ p C d κ p C d VDD VDD VDD VDD Y R p VDD VDD κ p C d nκ p C g R eff,HL = R n = R nu R eff,LH = R p = R pu /κ p = R n R n C d nC g Y C load = (1 + κ p )(C d + nC g ) τ PHL 0.69R n C load = 0.69R n (1+ κ p )(C d + nC g ) τ PHL = τ PLH Penn ESE 570 Spring 2017 – Khanna Review: Elmore Delay: Distributed RC network ! The delay from source to node i " N = number of nodes in circuit 6 R ik = R j ( R j [ path(s 4) path(s k )]) τ Di = C k R ik k=1 N τ Di = C 1 ( R 1 ) + C 2 ( R 1 ) +C 3 ( R 1 + R 3 ) +C 4 ( R 1 + R 3 ) +C i ( R 1 + R 3 + R i ) (0 # 50%) τ D = R p C load (0 # 63%) NOTE: τ p = 0.69τ D Penn ESE 570 Spring 2017 – Khanna

Lecture Outline - Penn Engineering · Lec 13: February 23, 2017 Combination Logic: CMOS Penn ESE 570 Spring 2017 – Khanna Lecture Outline !CMOS Gates " 1st order delay of Gates

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture Outline - Penn Engineering · Lec 13: February 23, 2017 Combination Logic: CMOS Penn ESE 570 Spring 2017 – Khanna Lecture Outline !CMOS Gates " 1st order delay of Gates

1

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lec 13: February 23, 2017 Combination Logic: CMOS

Penn ESE 570 Spring 2017 – Khanna

Lecture Outline

!  CMOS Gates "  1st order delay of Gates "  Gate design

"  Sizing, fanin

!  CMOS Worst Case Analysis

2 Penn ESE 570 Spring 2017 – Khanna

Review: 1st Order RC Delay Models

3

!  Equivalent circuits used for MOS transistors "  Ideal switch + “effective” ON resistance + load capacitance

"  Define unit resistance, Ru: “effective” ON resistance of transistor with min length and W=Wu (usually min width)

"  nMOS has “effective” ON resistance Rn= Run/κn and capacitances κnCd, κnCg "  pMOS has “effective” ON resistance Rp= Rup/κp and capacitances κpCd, κpCg

"  scale factors κn ≥ 1 and κp ≥ 1, i.e. Wn = κnWun, Wp = κpWup  "  Cgb = Cg and Cdb = Csb = Cd for the unit n/pMOS transistors

"  NMOS and pMOS transistor at minimum gate length (L) "  Capacitance directly proportional to gate width (W) # C = W*C "  Conductance directly proportional to gate width (W) # G = W*G "  Resistance is inversely proportional to gate width (W) # R = R/W

τ PHL ≈ 0.69 ⋅Cload ⋅Rn Cload ≈ Cdbn + Cdbp + Cint + Cgb

Penn ESE 570 Spring 2017 – Khanna

Review: 1st Order Delay Model -τPHL

4

κp κp

1 1 A Y

Rn

2Rnu/κp

Cd

Cd

nCg

nκpCg

κpCd

κpCd

VDD VDD

VDD VDD

VDD VDD

where Wn=Wunit => κn=1, Rn=Run

Wp = κpWunit

κp = µn/ µp = 2

Y

Rp = Rpu/κp = Rn

Cs = Cd= Cdiff

1,κp

1,κp

1,κp

n

2

1

Rp

Penn ESE 570 Spring 2017 – Khanna

Review: 1st Order Delay Model -τPHL

5

Rn Cd

Cd

nCg

nκpCg

κpCd

κpCd

VDD VDD

VDD VDD

Y

Rp VDD

VDD

κpCd

nκpCg

κnC κnC

Rn/n

Reff,HL = Rn = Rnu Reff,LH = Rp = Rpu/κp = Rn

Rn Cd nCg

Y

Cload = (1 + κp)(Cd + nCg)

τ PHL ≈ 0.69RnCload = 0.69Rn (1+κ p )(Cd + nCg )

τ PHL = τ PLHPenn ESE 570 Spring 2017 – Khanna

Review: Elmore Delay: Distributed RC network

!  The delay from source to node i "  N = number of nodes in circuit

6

Rik = Rj∑ ⇒ (Rj ∈ [path(s→ 4)∩ path(s→ k)])

τ Di = CkRikk=1

N

τ Di =C1(R1)+C2 (R1)+C3(R1 + R3)+C4 (R1 + R3)+Ci (R1 + R3 + Ri )

(0 # 50%)

τ D = RpCload (0 # 63%)

NOTE:

τ p = 0.69τ DPenn ESE 570 Spring 2017 – Khanna

Page 2: Lecture Outline - Penn Engineering · Lec 13: February 23, 2017 Combination Logic: CMOS Penn ESE 570 Spring 2017 – Khanna Lecture Outline !CMOS Gates " 1st order delay of Gates

2

Combinational Logic

CMOS

Penn ESE 570 Spring 2017 – Khanna

CMOS Combinational Logic

!  Complimentary MOSFET "  Pull-up/pull-down complimentary networks

8

pMOS Net = dual (nMOS Net)

Penn ESE 570 Spring 2017 – Khanna

Two-Input NOR Gate (NOR2)

9

For Complimentary CMOS: Pull-up Net = dual (Pull-down Net)

F (VF) A (VA)

Z (VZ)

B (VB)

A (VA)

B (VB)

(A . B)

F (VF)

(A + B)

(A . B) (A + B) = Penn ESE 570 Spring 2017 – Khanna

Data Dependent Delay

!  Drive resistance depends on input values "  Delay depends on input data "  Analyze using worst case delay

10 Penn ESE 570 Spring 2017 – Khanna

1st Order Switch-RC Transistor Models

11

nMOS

Rn = Run

Assume: bulk at GND

Cg

Cd

Cd

ON/OFF

(W/L)n

pMOS VDD

VDD VDD Rp = Rup/κp

Assume: bulk at VDD κpCd

κpCd ON/OFF

(W/L)p

κpCg

(W/L)n = κn (W/L)un where typically κn = 1

(W/L)p = κp (W/L)up

For an INV κp = µn/µp

Penn ESE 570 Spring 2017 – Khanna

1st Order Switch-RC Transistor Models

12

nMOS

Rn = Run/κn

Assume: bulk at GND

κnCg

κnCd

κnCd

ON/OFF

(W/L)n

pMOS VDD

VDD VDD Rp = Rup/κp

Assume: bulk at VDD κpCd

κpCd ON/OFF

(W/L)p

κpCg

Rup ≈VDDLup

0.69µpCoxWup(VDD− |VT 0 p |)2

Run ≈VDDLun

0.69µnCoxWun (VDD −VT 0n )2

(W/L)n = κn (W/L)un

(W/L)p = κp (W/L)up

Rup= µn/µp Run

Penn ESE 570 Spring 2017 – Khanna

Page 3: Lecture Outline - Penn Engineering · Lec 13: February 23, 2017 Combination Logic: CMOS Penn ESE 570 Spring 2017 – Khanna Lecture Outline !CMOS Gates " 1st order delay of Gates

3

Data Dependent Delay

!  Drive resistance depends on input values "  Delay depends on input data "  Analyze using worst case delay

!  Reminder: "  Rn= Run/κn

"  Rp= Rup/κp

"  Assume: µn=2µp

"  What is Rout? "  Output drive resistance

13 Penn ESE 570 Spring 2017 – Khanna

Data Dependent Delay

!  Drive resistance depends on input values "  Delay depends on input data "  Analyze using worst case delay

!  Reminder: "  Rn= Run/κn

"  Rp= Rup/κp

"  Assume: µn=2µp

"  What is Rout? "  Depends on input

"  What is worst case Rout?

14 Penn ESE 570 Spring 2017 – Khanna

Data Dependent Delay

!  Drive resistance depends on input values "  Delay depends on input data "  Analyze using worst case delay

!  Reminder: "  Rn= Run/κn

"  Rp= Rup/κp

"  Assume: µn=2µp

"  What is Rout? "  Depends on input

"  What is worst case Rout? "  Choose κp and κn, such that worst-case Rout=Run/2

15 Penn ESE 570 Spring 2017 – Khanna

Data Dependent Delay

!  Drive resistance depends on input values "  Delay depends on input data "  Analyze using worst case delay

!  Reminder: "  Rn= Run/κn

"  Rp= Rup/κp

"  Assume: µn=2µp

"  What is Rout? "  Depends on input

"  What is worst case Rout? "  What is input capacitance?

16 Penn ESE 570 Spring 2017 – Khanna

NAND2 – 1st Order Models

!  Reminder: "  Rn= Run/κn

"  Rp= Rup/κp

"  Assume: µn=2µp

"  Choose κp and κn, such that worst-case Rout=Run/2 "  What is input capacitance?

17 Penn ESE 570 Spring 2017 – Khanna

1st Order Switch-RC: INV

18

INV pull-down Net

VDD

INV pull-up Net VDD

Rout = Rp

Rout= Rn

(W/L)n = κn (W/L)un Rn = κn Run

(W/L)p = κp (W/L)up

Rp = κp Rup

Rup = µn/µp Run

Penn ESE 570 Spring 2017 – Khanna

Page 4: Lecture Outline - Penn Engineering · Lec 13: February 23, 2017 Combination Logic: CMOS Penn ESE 570 Spring 2017 – Khanna Lecture Outline !CMOS Gates " 1st order delay of Gates

4

1st Order Switch-RC: NOR2

19

Rout = 2Rp

VDD VDD

2-input NOR pull-up Net

Rout= Rn/2

2-input NOR pull-down Net

(W/L)n = κn (W/L)un Rn = κn Run

(W/L)p = κp (W/L)up

Rp = κp Rup

Rup = µn/µp Run

OR Rout= Rn

Penn ESE 570 Spring 2017 – Khanna

1st Order Switch-RC: NAND2

20

Rout = 2Rn

2-input NAND pull-down Net

Rout = Rp/2

VDD VDD

2-input NAND pull-up Net

(W/L)n = κn (W/L)un Rn = κn Run

(W/L)p = κp (W/L)up

Rp = κp Rup

Rup = µn/µp Run

OR VDD VDD

Rout = Rp

Penn ESE 570 Spring 2017 – Khanna

Series Transistors

21 Penn ESE 570 Spring 2017 – Khanna

Transistor Sizing

!  What gate is this? !  Size (κp and κn) equalize rise/fall

times Rout=Run/2? !  Input Capacitance?

22 Penn ESE 570 Spring 2017 – Khanna

Transistor Sizing

!  NAND2 sized for Rout=Run/2 "  κp=4 and κn=4 "  Cin=8Cg

!  NAND3 sized for Rout=Run/2 "  κp=4 and κn=6 "  Cin=10Cg

23 Penn ESE 570 Spring 2017 – Khanna

Increasing Fanin

!  What happens to input capacitance as fanin (k) increases "  Keeping output drive the same

"  E.g. Rdrive=R0/2

!  k-input nand gate has what input capacitance?

24 Penn ESE 570 Spring 2017 – Khanna

Page 5: Lecture Outline - Penn Engineering · Lec 13: February 23, 2017 Combination Logic: CMOS Penn ESE 570 Spring 2017 – Khanna Lecture Outline !CMOS Gates " 1st order delay of Gates

5

Fanin

!  Conclude: gates slow down with fanin "  Less drive per input capacitance "  CInLoad/Ids increases

25 Penn ESE 570 Spring 2017 – Khanna

Transistor Sizing: INV

!  Size (κp and κn) equalize rise/fall times Rout=Run/2?

!  Input Capacitance?

26 Penn ESE 570 Spring 2017 – Khanna

Which is Faster?

!  nand32 Assume: -  Rup=2Run and gates are sized for Rout=Run/2 -  Input also driven by Rdrive = Run/2

nand4-inv-nand4-inv-nand2 (nand2-inv)4-nand2 27 Penn ESE 570 Spring 2017 – Khanna

Lesson

!  Large gates are slow / inefficient "  High capacitive load / drive current

!  Small gates can be inefficient "  Need many stages

!  Staging over moderate size gates minimizes delay !  Exact size will be technology dependent

28 Penn ESE 570 Spring 2017 – Khanna

29

And-Or Chain

Penn ESE 570 Spring 2017 – Khanna

Delay of each implementation?

30 Penn ESE 570 Spring 2017 – Khanna

Page 6: Lecture Outline - Penn Engineering · Lec 13: February 23, 2017 Combination Logic: CMOS Penn ESE 570 Spring 2017 – Khanna Lecture Outline !CMOS Gates " 1st order delay of Gates

6

Take Away?

31 Penn ESE 570 Spring 2017 – Khanna

CMOS NOR2 VTC

32

Kenneth R. Laker, University of Pennsylvania,

updated 26Feb15

3 VTC Cases V1 = 0 V; V2 = 0 → VDD V1 = 0 → VDD; V2 = 0 V1 and V2 = 0 → VDD simultaneously

Vout

Vin 0

simultaneous switching

only one input

switches

VDD

Switching Threshold Voltage: V1 = V2 = Vout = Vth

Penn ESE 570 Spring 2017 – Khanna

Switch-RC Transistor Models

33

Kenneth R. Laker, University of Pennsylvania,

updated 26Feb15

RnEQV= Rn/2 (W/L)nEQV = 2 (W/L)n

VDD VDD

RpEQV = 2Rp (W/L)pEQV = 1/2 (W/L)p

2-input NOR Nets

Penn ESE 570 Spring 2017 – Khanna

CMOS NOR2 Vth

34

Kenneth R. Laker, University of Pennsylvania,

updated 26Feb15

Penn ESE 570 Spring 2017 – Khanna

k pEQV= k p/2

k nEQV= 2k n

k p

k p

k n k n

Review: CMOS Inverter: Vth

35

k 'n2

WL

!

"#

$

%&n

Vin −VT 0n( )2 =k 'p2

WL

!

"#

$

%&p

Vin −VDD −VT 0 p( )2

kR Vth −VT 0n( )2 = Vth −VDD −VT 0 p( )22

Vth =VT 0n +

1kR

VDD +VT 0 p( )

1+ 1kR

Typically, Ln=Lp=Lmin

kR =k 'n W L( )nk 'p W L( )p

=µn W L( )nµp W L( )p

=µnWn

µpWp

Penn ESE 570 Spring 2017 – Khanna

CMOS NOR2 Vth

36

Kenneth R. Laker, University of Pennsylvania,

updated 26Feb15

Penn ESE 570 Spring 2017 – Khanna

k pEQV= k p/2

k nEQV= 2k n

k p

k p

k n k n

Page 7: Lecture Outline - Penn Engineering · Lec 13: February 23, 2017 Combination Logic: CMOS Penn ESE 570 Spring 2017 – Khanna Lecture Outline !CMOS Gates " 1st order delay of Gates

7

CMOS NOR2 Vth

37

k pEQV= k p/2

k nEQV= 2k n

k p

k p

k n k n

Vth =VDD2

kpEQVknEQV

=1

Symmetric ‘Inv’

&

kp = 4knPenn ESE 570 Spring 2017 – Khanna

Parasitic Caps for NOR2 (worst case)

38

Vx

2Cg

Cdbn1 = Cdbn2 = Cd

Cdbp1 = Cdbp2 = Cd

Csb1p = Csb2p = Cd Cd

Cd

Cd

Cd Cd

Penn ESE 570 Spring 2017 – Khanna

Parasitic Caps for NOR2 (worst case)

39

Vx

2Cg

Cdbn1 = Cdbn2 = Cd

Cdbp1 = Cdbp2 = Cd

Csb1p = Csb2p = Cd Cd

Cd

Cd

Cd Cd

V1 = 0, V2 = VDD-> 0 @t=0 & Vx ≈ Vout = 0 -> VDD

Penn ESE 570 Spring 2017 – Khanna

Parasitic Caps for NOR2 (worst case)

40

Vx

2Cg

Cdbn1 = Cdbn2 = Cd

Cdbp1 = Cdbp2 = Cd

Csb1p = Csb2p = Cd Cd

Cd

Cd

Cd Cd

V1 = 0, V2 = VDD-> 0 @t=0 & Vx ≈ Vout = 0 -> VDD Cload-NR2 ≈ 2Cd + 3Cd + Cint + 2Cg

RpEQV = Rp2+Rp1 Lumped Model Penn ESE 570 Spring 2017 – Khanna

Parasitic Caps for NOR2 (worst case)

41

Vx

2Cg

Cdbn1 = Cdbn2 = Cd

Cdbp1 = Cdbp2 = Cd

Csb1p = Csb2p = Cd Cd

Cd

Cd

Cd Cd

V1 = 0, V2 = VDD-> 0 @t=0 & Vx ≈ Vout = 0 -> VDD

Elmore Model? Cload-NR2 ≈ 2Cd + 3Cd + Cint + 2Cg

RpEQV = Rp2+Rp1

Penn ESE 570 Spring 2017 – Khanna

Parasitic Caps for NOR2 (worst case)

42

Vx

2Cg

Cd

Cd

Cd

Cd Cd

Penn ESE 570 Spring 2016 – Khanna

Page 8: Lecture Outline - Penn Engineering · Lec 13: February 23, 2017 Combination Logic: CMOS Penn ESE 570 Spring 2017 – Khanna Lecture Outline !CMOS Gates " 1st order delay of Gates

8

Parasitic Caps for NOR2 (worst case)

43

Vx

2Cg

Cd

Cd

Cd

Cd Cd

Penn ESE 570 Spring 2016 – Khanna

τ = (2Cd)(Rp2)+(3Cd+Cint+2Cg)(Rp1+Rp2)

Parasitic Caps for NOR2 (worst case)

44

Vx

2Cg

Cdbn1 = Cdbn2 = Cd

Cdbp1 = Cdbp2 = Cd

Csb1p = Csb2p = Cd Cd

Cd

Cd

Cd Cd

Penn ESE 570 Spring 2017 – Khanna

Parasitic Caps for NOR2 (worst case)

45

Vx

2Cg

Cdbn1 = Cdbn2 = Cd

Cdbp1 = Cdbp2 = Cd

Csb1p = Csb2p = Cd Cd

Cd

Cd

Cd Cd

V1 = 0, V2 = 0 ->VDD @t=0 & Vx ≈ Vout=VDD-> 0

Penn ESE 570 Spring 2017 – Khanna

Parasitic Caps for NOR2 (worst case)

46

Vx

2Cg

Cdbn1 = Cdbn2 = Cd

Cdbp1 = Cdbp2 = Cd

Csb1p = Csb2p = Cd Cd

Cd

Cd

Cd Cd

V1 = 0, V2 = 0 ->VDD @t=0 & Vx ≈ Vout=VDD-> 0

Elmore Model? Penn ESE 570 Spring 2017 – Khanna

Parasitic Caps for NOR2 (worst case)

47

Vx

2Cg

Cd

Cd

Cd

Cd Cd

Penn ESE 570 Spring 2016 – Khanna

Parasitic Caps for NOR2 (worst case)

48

Vx

2Cg

Cd

Cd

Cd

Cd Cd

Penn ESE 570 Spring 2016 – Khanna

τ = (2Cd)(Rp1+Rn2)+(3Cd+Cint+2Cg)(Rn2)

Page 9: Lecture Outline - Penn Engineering · Lec 13: February 23, 2017 Combination Logic: CMOS Penn ESE 570 Spring 2017 – Khanna Lecture Outline !CMOS Gates " 1st order delay of Gates

9

49

Kenneth R. Laker, University of Pennsylvania,

updated 26Feb15

RnEQV= 2Rn (W/L)nEQV = 1/2 (W/L)n

VDD VDD

RpEQV = Rp/2 (W/L)pEQV = 2 (W/L)p

2-input NAND Nets

Switch-RC Transistor Models

Penn ESE 570 Spring 2017 – Khanna

50

Kenneth R. Laker, University of Pennsylvania,

updated 26Feb15

CMOS NAND2 Vth

k pEQV= 2 k p

k nEQV= kn/2k n

k n

k p k p

Penn ESE 570 Spring 2017 – Khanna

51

Kenneth R. Laker, University of Pennsylvania,

updated 26Feb15

CMOS NAND2 Vth

k pEQV= 2 k p

k nEQV= kn/2k n

k n

k p k p

Penn ESE 570 Spring 2017 – Khanna

52

Kenneth R. Laker, University of Pennsylvania,

updated 26Feb15

CMOS NAND2 Vth

k pEQV= 2 k p

k nEQV= kn/2k n

k n

k p k p

Vth =VDD2

kpEQVknEQV

=1

Symmetric ‘Inv’

&

4kp = knPenn ESE 570 Spring 2017 – Khanna

53

Vx

V1

V2

2Cg

Cdbp1 = Cdbp2 = Cdbp

Cdbn1 = Cdbn2 = Cdbn

Csb1n = Csb2n = Csbn = Cdbn

Parasitic Caps for NAND2 (worst case)

Penn ESE 570 Spring 2017 – Khanna

54

Vx

V1

V2

2Cg

Cdbp1 = Cdbp2 = Cdbp

Cdbn1 = Cdbn2 = Cdbn

Csb1n = Csb2n = Csbn = Cdbn

Parasitic Caps for NAND2 (worst case)

Penn ESE 570 Spring 2017 – Khanna

Page 10: Lecture Outline - Penn Engineering · Lec 13: February 23, 2017 Combination Logic: CMOS Penn ESE 570 Spring 2017 – Khanna Lecture Outline !CMOS Gates " 1st order delay of Gates

10

55

Vx

V1

V2

2Cg

Cdbp1 = Cdbp2 = Cdbp

Cdbn1 = Cdbn2 = Cdbn

Csb1n = Csb2n = Csbn = Cdbn

Parasitic Caps for NAND2 (worst case)

V1 = VDD, V2 = VDD-> 0 @t=0 & Vx ≈ Vout= 0 ->VDD

Penn ESE 570 Spring 2017 – Khanna

56

Vx

V1

V2

2Cg

Cdbp1 = Cdbp2 = Cdbp

Cdbn1 = Cdbn2 = Cdbn

Csb1n = Csb2n = Csbn = Cdbn

Parasitic Caps for NAND2 (worst case)

Penn ESE 570 Spring 2017 – Khanna

57

Vx

V1

V2

2Cg

Cdbp1 = Cdbp2 = Cdbp

Cdbn1 = Cdbn2 = Cdbn

Csb1n = Csb2n = Csbn = Cdbn

Parasitic Caps for NAND2 (worst case)

V1 =VDD, V2 = 0 ->VDD @t=0 & Vx≈ Vout=VDD-> 0

Penn ESE 570 Spring 2017 – Khanna

Idea

!  CMOS Logic "  Complimentary dual pull-up/down networks

!  Delay "  1st order model on gates "  Size for worst case delay

!  Gates have different efficiencies "  Drive strength per unit input capacitance "  Reason to prefer nand over nor

!  Large fanin and fanout slow gates "  Decompose into stages "  …but not too much

58 Penn ESE 570 Spring 2017 – Khanna

Admin

!  HW 5 due Thursday, 3/2 !  Details about midterm exam on Tuesday

59 Penn ESE 570 Spring 2017 – Khanna