19
Lecture Notes in Mathematics Edited by A. Dotd and B. Eckmann 605 Leo Sario Mitsuru Nakai Cecilia Wang Lung Ock Chung Classification Theory of Riemannian Manifolds Harmonic, quasiharmonic and biharmonic functions Springer-Verlag Berlin Heidelberg NewYork 1977

Lecture Notes in Mathematics978-3-540-37261... · 2017. 8. 27. · QB functions but no QD 1.6. QC functions if QB and QD N N 1.7. No relations between OQB and OQD 1.8. Summary NOTES

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Lecture Notes in Mathematics Edited by A. Dotd and B. Eckmann

    605

    Leo Sario Mitsuru Nakai Cecilia Wang Lung Ock Chung

    Classification Theory of Riemannian Manifolds Harmonic, quasiharmonic and biharmonic functions

    Springer-Verlag Berlin Heidelberg NewYork 1977

  • Authors Leo Sario Department of Mathematics University of California Los Angeles, CA 90024 USA

    Mitsuru Nakai Department of Mathematics Nagoya Institute of Technology Gokiso, Showa, Nagoya 466 Japan

    Cecilia Wang Department of Mathematics Arizona State University Tempe, AZ 85281 USA

    Lung Ock Chung Department of Mathematics North Carolina State University Raleigh, NC 2?60? USA

    Library of Congress Cataloging in Publication Data Main e~try under title:

    Classification theory of Riemannian manifolds.

    (Lecture notes in mathematics ; 605) Bibliography: p. Includes indexes. 1. Harmonic functions. 2. Riemannian manifolds.

    I. Sario, Leo. II. Series: Lecture notes in mathe- matics (Berlin) ; 605. QA3.L28 no. 605 cQ~05~ 510t.Ss ~515'.533 77-22197

    AMS Subject Classifications (1970): 31 BXX

    tSBN 3-540-08358-8 Springer-Verlag Berlin Heidelberg New York ISBN 0-38?-08358-8 Springer-Verlag New York Heidelberg Berlin

    This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, re- printing, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin Heidelberg 1977 Printed in Germany Printing an d binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210

  • To

    Angus E. Taylor

  • Preface and Historical Note

    TABLE OF CONTENTS

    Riemannian manifolds

    CHAPTER 0

    ~CE-BELTRAMI OPERATOR

    1. l, Covariant and contravariant vectors

    1.2. Metric tensor

    1.3. Laplace-Beltrami operator

    ~. Harmonic forms

    2.1. Differential p-forms

    2.2. Hodge operator

    2.3. Exterior derivative and coderivative

    2.4. Laplace-Beltrami operator

    CHAPTER I

    HARMONIC FUNCTIONS

    §l. Relations O N = OGN < O~p< O~ B N N

    1.1. Definitions

    1.2. Principal functions

    1.3. Equality of O N and N O G N N 1,4. Inclusions O N C 0Hp C 0~

    1.5- Strictness

    1.6. Base manifold for N = 2

    i. 7, Conforms& structure

    1.8. Reflection function

    1.9. Positive harmonic functions

    1.10. Symmetry about bisectors

    ~

  • Vi

    ½

    2.2. Strictness

    2.3. Case N = 2

    2.4. Polncar~ N-ball B N

    2.5, Representation of harmonic functions on B N

    2.6. Parabolicity

    2.7. Asymptotic behavior of harmonic functions on B N

    N and N 2.8. Characterization of 0Hp 0HB

    2.9. Characterization of 0~ and completion of proof

    2.10. Summary on harmonic functions on the Po~ncare N-ball

    2. ll. Generalization

    2.12° Radial harmonic functions

    2.13. Reduction of the problem

    2.14. Arbitrary harmonic functions

    2.15. Reduction to solution types

    2.16. Existence of KB functions

    2.17. Dirichlet integrals

    2.18. Existence of HD functions

    NOTES TO ~a

    The class O N HL p

    3.1. Neither HL p functions nor HX

    3.2. HX functions bat no HL p

    3.3- HL p functions bat no HX

    3.4. A test for HL p functions

    3.5. HL p functions on the Poincar~ N-ball

    NOTES ~0 §3

    Completeness and harmonic degeneracy

    4,1o Complete and degenerate or neither

    4.2. Not complete but degenerate

    4.3. Complete but nondegenerate

    NOTES TO §4

    38

    38

    4o

    41

    43

    44

    46

    47

    48

    49

    5o

    51

    52

    53

    54

    55

    56

    57

    57

    58

    6o

    @

    65

    66

    67

    67

    68

    69

    69

    7o

  • Vii

    CHAPTER II

    QUASIHARMONIC FUNCTIONS

    ~l. Quasiharmonic null classes

    1.1. Tests for quasiharmonic null classes

    1.2. Green' s functions but no QP

    1.3. QP functions but no QB u QD

    1.4. QD functions but no QB

    1. 5. QB functions but no QD

    1.6. QC functions if QB and QD

    N N 1.7. No relations between OQB and OQD

    1.8. Summary

    NOTES TO §l

    ~__. The class O N

    2.1. Inclusions for QL p

    2.2. Equalities for QL 1

    2.3. QL p functions but no QX

    2.4. Neither or both QL p and QX

    2.5. QB functions but no QL p

    2.6. QD functions but no QL p, p > 1

    2.7. QL p functions, p > i, but no QL 1

    2.8. S ~

    NOTES TO ~2

    ~3. Quasiharmonic functions on the Poincar~ N-ball

    3 • 1. Parabolicity

    3.2 • Potentials

    3.3. Bounds for the Green' s function

    3.4. Bounds for the potential 1 GB 1 3.5. Bounds for the potential GB1

    3.6. Bounds for the potential GB1

    3.7- Null classes of the Poincare 3-balls

    3.8. Arbitrary dimension

    7a

    72

    74

    75

    76

    77

    78

    78

    79

    79

    79

    79

    8o

    81

    83

    86

    88

    89

    89

    89

    9o

    9o

    92

    93

    94

    95

    95

    96

  • VIII

    3.9. Null classes of the Poincare N-balls

    NOTES ~0 §3

    Characteristic quasi~armonic function

    4~ i.

    4.2.

    4.3. Estimating Hpj

    4.4. Estimating qi

    4.5. Estimating b i

    4.6. Boundedness of

    Negative characteristic

    5.1. Negative quasiha~oaic functions

    5.2. Dependence on

    5.3. Case ~ < -3/2

    5.4. Other cases

    5.5. Convergence

    N 5.6. The class OQN

    N0~ES TO §5

    Existence

    Characteristic property

    s(r)

    ~6. Integral form of the characteristic

    6.i. Integral form

    N N 6.2. Characterization of 0~p and OQB

    N N 6.3. Characterization of OQD and O~C

    6.4. Class O N and the characteristic function ~p NOTES ~0 §6

    ~7. Harmonic and quasiharmonic degeneracy of Riemannian manifolds

    7.1. HX and QY functions, or neither

    7.2. }IX functions but no QY

    7.3- HL p functions but no QY

    7.4. HX functions but no QL p

    7.5. HL p functions but no QL t

    7.6. QY functions but no }~X

    98

    99

    99

    io0

    ioi

    102

    lO3

    103

    io5

    io6

    io7

    io7

    108

    io9

    iii

    112

    113

    i14

    i14

    115

    i15

    117

    118

    i18

    i19

    12o

    122

    124

    126

    127

    129

  • IX

    7.7- QY functions but no HL p

    7- 8. The manifold

    7.9. Rate of growth of harmonic functions

    7.10. Exclusion of HX functions

    7.11. Constr~ction of QY functions

    NOTES TO §7

    C~ER IIi

    BOUNDED BIHARMOICIC FUNCTIONS

    ~l. Parabolicity and bounded biharmonic functions

    1.1. Parabolic with ~B functions

    1.2. Hyperbolic 2-manifolds without ~B functions

    1. 3. Hyperbolic space ~ for N > 2

    1.4. Biharmonic expansions on E N

    i. 5. Exclusion of ~B functions on ~ 3

    NOTES TO §2

    ~3. Inde~)endence on the metric

    3.1. Radial harmonic and biharmonic functions

    3.2. Nonradial harmonic functions

    3.3. NonradiaT biharmonic functions

    3.4. Harmonic and biharmonic expansions

    3.5. Nonexistence of ~B functions for N > 3

    3.6. ~ f~nctions on ~ and

    nOTES ~o §3

    13o

    13!

    133

    135

    135

    136

    138

    138

    139

    14o

    143

    144

    145

    146

    146

    147

    149

    151

    152

    153

    153

    154

    155

    156

    158

    159

    16o

    i61

  • X

    ~4. Bounded biharmonic functions on the Poincar~ N-ball

    4. I. Characterizations

    4.2. Case I: ~ < -i

    4. 3 . Case II: ~ > 3/(N - 4)

    4.4. Case III: ~ e (-l, 1/(N -2))

    4. 5 . Case IV: ~ ¢ ( 1 / ( N - 2 ) , 3 / ( N - 4 ) ) , o~ ~ m/(N - 2 )

    4.6. Case IV (continued)

    4.7. Case V: ~ e (I/(N - 2),3/(N - 4)), ~ = m/(N - 2)

    4.8. Case V (continued)

    4. 9 . Case ~ : ~ = ~( N I 2 )

    4.10. Preparation for Cases VII and VIII

    4.11. Case VII: ~ = 3/(N - 4)

    4.]2. Case VIII: ~ = -i

    NOTES TO §4

    ~5. Completeness and bounded biharmonic functions

    5.1. Complete but with H2B functions

    5.2. Complete and without ~B functions

    5.3. Remaining cases

    NOTES TO §5

    §6. Bounded pol~harmonlc functions

    6.1. Main Theorem

    6.2. Polyharmonic expansions

    6.3. Completion of the proof of the Main Theorem

    6.4. Lower dimensional spaces

    NOTES TO §6

    CHAPTER IV

    DIRICHLET FINITE BIHARMONIC FUNCTIONS

    §l. Dirichlet finite biharmonic functions on the Poincar~ N-ball

    i.i. ~D functions on the Ibincar~ disk

    1,2. Case ~ = -3/4 for N = a

    1.3. B2D functions on the Poincar~ N-ball

    162

    162

    163

    164

    164

    164

    166

    167

    169

    17o

    17!

    173

    174

    177

    177

    177

    179

    179

    179

    180

    180

    181

    184

    185

    186

    187

    188

    189

    191

  • XI

    1.4. Case I: ~ > 5/(N - 6)

    1.5. Case I!: & = 5/(N - 6)

    1.6. Case III: ~ E [1/(N - 2),5/(N - 6))

    1. 7. Case IV: ~ < -3/(N + 2)

    1.8. Case V: ~ = -3/(N + 2)

    1.9 ~estfor ~D¢¢

    NOTES TO §i

    ~2. Parabolicit~ and Dirichlet finite biharmonic functions

    2.1. No ~D functions on

    2.2. ~D functions on a parabolic 2-cylinder

    2.3. Parabolicity and ~D degeneracy

    2.4. Another test for ~D ~

    2.5. Original counterexample

    2.6. Plane with radial metrics

    2.7- Completion of the proof

    NO~ES ~0 §2

    §3. Minimum Dirichlet finite biharmonic functions

    §l.

    3.1. Existence of minimum solutions

    3.2. Minimum solutions as limits

    3.3. A nonharmonizable ~D function

    NOTES TO §3

    CHAPTER V

    BOUNDED DIRICHLET FINITE BiHARMONIC FUNCTIONS

    h2D functions but no ~C for N = 2

    1.1. Existence of ~D functions

    1.2. Antisymmetric functions

    1.3. Main Theorem

    1.4. Auxiliary function ~i

    1.5. Auxiliary function ~2

    1.6. Auxiliary functions ~3 through

    1.7. Construction of k

    ~6

    iga

    193

    194

    196

    196

    196

    197

    197

    198

    199

    2OO

    201

    2o3

    2O6

    2O8

    210

    210

    210

    211

    a13

    214

    216

    217

    219

    220

    22O

    221

    223

    224

  • XII

    I. 8. CharaCterization of Hk(C' )

    i. 9. Conclusion

    NOTES TO §i

    Hi~her dimensions

    2.1. Cases N > 4 by the Polncar~ N-ball

    2.2. Arbitrary dimension

    2.3. Special cases of f(x)G(y)

    2.4. General case of f(x)G(y)

    2.5. Biharmonic functions of x

    2.6. Biharmonic functions v(x)G(y)

    2.7. Conclusion

    2.8. No relation between ReB and H2D degeneracies

    NOTES To

    CHA_P~ER VI

    HARMONIC2 QUAS!HARMONIC~ AND BIHABMONIC DEGENERACIES

    §i__. Harmonic and biharmonic degeneracies

    i.i. No relations

    1.2. No ~D functions

    1.3. No ~B functions

    NOTES TO §i

    ~q. Correspondin6 ~uasiharmonic and biharmonic degeneracies

    2.1. Strict inclusions

    2.2. ~C functions but no QP

    2-3. ~L p functions but no QL p

    2.4. Summary

    N~ES ~o ~.

    CHAP~ VII

    RIESZ REPRESENTATION OF BIHARMONIC FUNCTIONS

    Metric ~rowth of Lap!acian

    l.l. ~e class SaD%

    2A

    226

    227

    228

    228

    228

    229

    23O

    231

    232

    232

    234

    234

    235

    237

    237

    238

    240

    24O

    24O

    24!

    24i

    24a

    244

    244

    245

    246

    a47

  • XIII

    i. 3. Axuiliary estimates

    1.4. Completion of proof

    1.5. Application to Riesz representation

    1.6. Dependence on the type of R

    2e l,

    2.2.

    2.3.

    2.4.

    2.5.

    2.6.

    2.7.

    2.8.

    2.9.

    ~c~s ~o §l

    Riesz representation

    Main result

    Frostman-type representation

    Local decomposition

    Energy integrals

    Reduction of Theorem 2.1

    Royden compactification

    Completion of the proof of Theorem 2.1

    ~DD A function not in H2G

    Dirichlet potentials

    NO~ES ~0

    Minimum solutions as ~otentials

    3.1. Preliminary considerations

    3.2. Rate of growth

    3.3. Role of QP functions

    3.4. Role of QB functions

    ~N 3.5. Nonnecessity of R g O~p

    3.6. Construction of the metric

    NOTFS TO §3

    Biharmonie and (p, q) -biharmonie pro~ection and decomposition

    4.1. Definitions

    4.2. Potential p-s ubalgebra

    4.3. Energy integral

    4.4. The (p,q)-biharmonic projection

    4.5. (p,q)-q~asiharmonic classification of Riemannian manifolds

    4.6. Decomposition

    248

    249

    251

    251

    253

    253

    254

    254

    257

    258

    261

    2~3

    265

    267

    269

    27O

    271

    271

    272

    274

    275

    278

    279

    285

    285

    286

    287

    ~88

    290

    292

    294

  • ×IV

    4.7. Nondegenerate manifolds

    4.8. Special density functions

    4.9. Inclusion relations

    NOTES TO §4

    CHAPTER VIII

    BIHAP~0N!C GREEN' S ~CTION

    294

    295

    296

    296

    §l__. Existence criterion for ~ 299

    1.1. Definition 300

    1.2. Existence on N-space 301

    1.3. Biharmonic Dirichlet problem 302

    i. 4. Independence 305

    1.5. Existence criterion 307

    1.6. Illustration 307

    NOTES TO §l 308

    §22. Biharmonic measure 308

    2 • 1. Definition 310

    2.2. Biharmonic measure on N-space 311

    2.3. Radial metric 313

    2.4. Poincar~ N-ball 316

    2.5. Independence 322

    2.6. Conclusion 325

    NOTES TO ~ 325

    ~3. Biharmonic Green's function y and harmonic degeneracy 326

    3.1. Alternate proof of the test for O N 327

    3.2. Harmonic and biharmonic Green' s functions 328

    3.3. Relation to harmonic degeneracy 329

    3.4. Neither ? nor HL p functions 332

    3.5. HL p functions but no y 333

    3.6. ~ but no HL p functions 333

    NOTES TO §3 335

  • XV

    §4. Biharmonic Green's function

    4o l°

    4.2. Strict inclusion

    4.3. Relation to QL p

    N0~ES TO §4

    an,d ~uasiharmonic degeneracy

    Existence test for QP functions

    degeneracy

    CHAl~ER IX

    BIHARMONIC GREEN S FUNCTION ~: DEFiNITION ANDEXISTENCE

    §l. Introduction: definition and main result

    1.1. Conventional definition

    1.2. New definition

    1.3. Main Theorem

    1.4. Plan of this chapter

    NOTES TO §l

    ~_. Local boundedness

    2.1. An auxiliary result

    2.2. Locally bounded Banach space

    2.3. Locally bounded Hilbert space

    NOTES TO §a

    §3. Fundamental kernel

    3.1. Harmonic Green's functions

    3.2. Fundamental kernel

    3.3. Corresponding functional

    3.4. Continuity

    3.5. Auxiliary function

    NOTES TO §3

    §_~4. Existence of

    4.1. Fundamental kernel and

    4.2. Existence and uniqueness

    4.3. Joint continuity

    4.4. Existence on regular subregions

    335

    335

    337

    338

    339

    341

    341

    343

    344

    345

    346

    346

    346

    348

    349

    35o

    35o

    35o

    351

    351

    352

    354

    356

    356

    356

    356

    357

    357

  • XVl

    NO~ES To §4

    §5. ~ as a directed limit

    5.1. Consistency

    5.2. Continuity

    5-3- Convergence to zero

    5.4. Existence only

    NOTES TO §5

    ~. Existence of ~ on hyperbolic manifolds

    6.1. Hyperbolicity

    6.2. Existence of fundamental kernel

    6.3. Existence of

    NOTES TO §6

    Existence of ~ on parabolic manifolds

    7. i. Imitation problem

    7.2. Principal functions

    7.3. Maximum principle

    7.4. Generalization of Evans kernel

    7.5. Continuity

    7- 6. Fundamental kernel

    7.7- Unboundedness of h

    7.8. Existence of

    NOTES TO §7

    Examples

    8.1. Euclidean N-space

    8.2. Dimensions 3 and 4

    8.3. Complement of unit ball

    8.4. Properties of K

    8. 5. Functional k~

    8.6. Dimension 2

    NOTES T0 §8

    §7.

    §8.

    359

    359

    359

    36o

    361

    362

    363

    363

    363

    364

    365

    366

    366

    366

    367

    368

    369

    372

    373

    375

    375

    375

    376

    376

    376

    378

    379

    380

    381

    382

  • XVll

    52_.

    .

    CHAPTER X

    RELATION OF O N TO OTHER NULL CLASSES

    N< O N Inclusion O~

    N and ~N 1.1. Definitions of 08 0 G

    1.2. Operators ~ and ~

    I. 3 • Monotonicity

    1.4. Comparison

    i. 5. Exhaustion

    i. 6. Convergence of ~

    1.7. Inclusion 0~ C O N

    i. 8. Elementary proof

    1.9. A criterion for the existence of

    i. i0. Strictness of the inclusion

    NOTES TO §i

    A nonexistence test for

    2.1. The class O N

    N 2.2. The class 0SH ~

    2.3. The ~-density H~(-,y)

    2.4. The ~-span S~

    2.5. The ~-demsity H(.,y)

    2.6. An extremum property of H(-,y)

    2.7. Proof of Theorem 2.2

    2.8. Plane with HD functions bat no

    NOTES TO §2

    Manifolds with strong harmonic boundaries but without

    3.1. Double of a Riemannian manifold

    3.2. Manifolds with HD functions but without

    3.3. Existence of HD functions

    3.4. Nonexistence of

    N~m so §3

    384

    384

    386

    387

    389

    39o

    391

    392

    393

    395

    398

    399

    399

    399

    4OO

    4Ol

    4o2

    404

    4o6

    4o8

    408

    4o9

    41o

    41o

    411

    411

    412

    415

  • XVlll

    2.

    Parabolic Riemannian planes carrying

    4.i. Density

    4.2. Potentials

    4. 3 . Extremumproperty

    4.4. Consequences

    4. 5. Green' s function of the simply supported plate

    4.6. Kernels

    4. 7 . Strong limits

    4.8. Convergence of ~

    4.9. Existence of B on C k

    4.10. Necessity

    4.11. Sufficiency

    4.12. Auxiliary formulas

    4.13. Case y ~ 0

    4.14. Case y = 0

    NOTES TO §4

    Further existence relations between harmonic and biharmonic

    Green' s functions

    5" 1.

    5.2.

    5.3.

    5.4.

    5.5.

    5.6.

    5.7.

    5.8.

    5.9.

    5. i0.

    5. !i.

    ~orzs ~o §5

    Parabolic manifolds without

    Hyperbolic manifolds without

    Hyperbolic manifolds with

    A test for O N n ~N 0 ~N O~ 0 G

    Comparison principle

    but without

    Expansions in spherical harmonics

    ~in result

    Hyperbolic ity

    An inequality

    Fourier expansion

    Conclusion

    415

    415

    416

    417

    418

    419

    420

    420

    422

    423

    423

    424

    425

    426

    430

    431

    431

    431

    434

    435

    436

    437

    437

    438

    439

    440

    441

    442

    443

  • XIX

    CHAPTER XI

    HADAMARD'S CONJECTURE ON THE GREEN'S FUNCTION

    OF A CLA~PED PLATE

    §l. Green' s f~nctlons of the clamped ~unctured disk

    1.1. Clamping and simple supporting

    1.2. Simply supported punctured disk

    1.3. Clamped punctured disk

    1.4. Clamped disk

    l, 5. Boundary behavior

    1.6. Hadamard's conjecture

    NOTES TO §l

    ~2-- Hand's problem for higher dimensions

    2.1. The manifold

    2.2. Sign of ~0

    2.3. Biharmonic Poisson equation

    2,4. First inequality

    2.5. Second inequality

    NOTES TO ~2

    ~_~3. Duffin's function and Hadamard's conjecture

    3,1t

    3.2.

    3.3.

    3.4.

    3.5.

    3.6.

    3.7.

    3.8.

    3.9.

    3. lO.

    3. ll.

    3.12,

    Beta densities

    Fundamental kernel

    Sharpened consistency relation

    Infinite strip

    Negligible boundary

    Fundamental Lemma

    Fourier transforms

    Completion of proof

    Duffin's function

    Nonconstant sign of Duffin's function

    Additional properties

    Biharmonlc Green's potential

    445

    445

    446

    447

    447

    449

    45o

    451

    451

    452

    453

    453

    454

    455

    456

    456

    457

    459

    46O

    461

    462

    463

    463

    465

    466

    466

    467

    468

  • ×X

    3-13. Identity of ~ and w

    3.14. Counterexamples, old and new, to Hadsm~rd's conjecture

    BIBLIOGRAPHY

    AUTHOR INDEX

    SUBJECT AND NOTATION INDEX

    469

    470

    472

    473

    485

    488