113
Lecture Note Soil and Groundwater Pollution Seoul National University Civil and Environmental Engineering Kyoungphile Nam

Lecture Note - Seoul National University

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Lecture Note

Soil and Groundwater Pollution

Seoul National University

Civil and Environmental Engineering

Kyoungphile Nam

Contents

โ… . Soil and Pollutants 1) Water and Soil - Physical-Chemical Characteristics of Waters (EPS, Ch3) - Physical-Chemical Characteristics of Soils and the Subsurface (EPS, Ch.2) - Biotic Characteristics of the Environment (EPS, Ch.5) 2) Major Pollutants - Common Hazardous Wastes: Nomenclature, Industrial Uses, Disposal Histories (HW, Ch.2) - Common Hazardous Wastes: Properties and Classification (HW, p.155-177) 3) Interactions between Soil and Pollutants(fate and transport) - Physical Processes Affecting Contaminant Transport and Fate (EPS, Ch.6) - Contaminant Release and Transport from the Source (HW, Ch.8) - Chemical Processes Affecting Contaminant Transport and Fate (EPS, Ch.7) - Biological Processes Affecting Contaminant Transport and Fate (EPS, Ch.8) โ…ก. Site Investigation, Evaluation, Remediation 1) Contamination Investigation - Source Analysis (HW, Ch.4) 2) Risk Assessment - Risk Assessment (EPS, Ch.14) 3) Remediation Technologies - Soil and Groundwater Remediation (EPS, Ch.19) โ…ข. Special Topic: Applied Ecological Engineering 1) Ecological Engineering (Ch.3-6) 2) Case Study: Ecological Restoration Examples (Texts) โ€ข EPS: Environmental and Pollution Science (2nd Ed), I.L.Pepper, C.P.Gerba, M.L.Brusseau, 2006, Academic Press โ€ข HW: Hazardous Wastes-Sources, Pathways, Receptors (2nd Ed), R.J. Watts, 1998, John Wiley & Sons โ€ข Ecological Engineering-Bridging Between Ecology and Civil Engineering, 2005, Hein Van Bohemian, Aeneas Technical Publishers

(Lecture 1) EPS Ch 3. Physical-chemical characteristics of water

Unique properties of water - polarity - universal solvent Gases in water - oxygen; DO - carbon dioxide <-> bicarbonate <-> carbonate (-> precipitates) Oxidation-reduction reaction - oxidation-reduction potential (ORP) or redox potential (1 volt = 1 Eh) - measures the tendency for a solution to either gain or lose electrons - higher (lower) ORP -> easily gain (lose) electrons - effect on bioavailability of metal ions (and nutrients) . Fe(III)-phosphate <-> Fe(II) + phosphate . Hg <-> methyl-Hg Water in the subsurface (groundwater): Supplement 1 - hydraulic head, soil-water potential - Darcyโ€™s law - hydraulic conductivity (K)

(Lecture 2)

EPS Ch 2. Physical-chemical characteristics of soils and the subsurface

Soil - weathered end product - soil-forming factors: parent material, climate, living organisms, topography, time - surface soil vs. subsurface soil - unsaturated zone (vadose zone, capillary fringe) vs. saturated zone - water movement; nonspontaneous vs. spontaneous - solid phase, gas phase, liquid phase - aggregation, structure Solid phase - 95-99% inorganic, 1-5% organic matter - soil texture; clay, silt, sand (soil textural triangle) - pore space; filled with gas, liquid - interaggregate pores vs. intraaggregate pores - cation exchange capacity (CEC) - soil pH - soil organic matter (SOM) Gas phase - N2 >>>> O2 >> CO2 - soil respiration; aerobic vs. anaerobic - soil moisture; O2 availability

Liquid phase - water; polar - field capacity (water-holding capacity) Basic physical properties - bulk density (ฯb, dry soil mass/total volume, g/cm-3) - porosity (n, void volume/bulk volume, unitless) . sand < silt < clay . packing arrangement, grain size distribution . when saturated soil, porosity = water content Soil water content - gravimetric water content; mass (ฮธg) - volumetric water content; volume (ฮธv) Soil temperature - temperature reaction rate - surface; fluctuate - subsurface; relatively constant

(Lecture 3) EPS Ch 5. Biotic Characteristics of the Environment

Major groups of microbes; virus, bacteria, fungi, algae, protozoa - dominant culturable soil bacteria; Arthrobacter, Streptomyces, Pseeudomonas, Bacillusโ€ฆ Bacteria - 0.1-2 ฮผm, single-celled, no nuclear membrane - genetic exchange; conjugation, transformation, transduction - abundant, diverse, ubiquitous, (e.g.) 105-7 cells/ g-subsurface soil, 109-10 cells/ g-surface soil - main removal mechanism of pollutants in soil Mode of nutrition (energy, carbon source) - autotrophic; chemoautotrophic, photoautotrophic - heterotrophic; chemoheterotropic, photoheterotrophic Types of electron acceptors - aerobic (O2) - denitrifying (NO3

-) - sulfate-reducing (SO4

2-) - anaerobic (CO2) Ecological classification - K-selected organisms; under eutrophic env, (e.g.) rhizobacteria - r-selected organisms; under oligotrophic, rapid growth, (e.g.) pollutants-degrading bacteria

Biological generation of energy; energy stored as ATP - photosynthesis; E needs to be provided (negative ฮ”G) by sunlight - respiration . aerobic heterotrophic respiration; negative ฮ”G, Pseudomonas, Bacillusโ€ฆ . aerobic autotrohphic respiration; negative ฮ”G, Nitrosomonas, Nitrobacterโ€ฆ . facultative anaerobic, heterotrophic/autotrophic respiration . anaerobic heterotrophic respiration . fermentation Soil as an environment for microbes - biotic stress; . competition for nutrients, water, growth factorsโ€ฆ . inhibitory or toxic substances by other microbes (e.g.) antibiotics . predation - abiotic stress; . light . soil moisture, soil temp, pH, texture . soil carbon, nitrogenโ€ฆ . Soil redox potential; +800 mV โˆผ -300 mV (Table 5.5), Eh-pH diagram (Fig. 5.12) Activity and physiological state - viable and culturable (i.e., CFU, plate counting) - viable but unculturable indigenous vs. introduced ecological niche

(Lecture 4)

HW Ch 2. Common Hazardous Wastes: Nomenclature, Industrial Uses, Disposal Histories 1. Introduction to Organic Chemistry (p. 48) : organic compounds; mainly C, H but O, N, P, S, and halogens (Cl, Br,..) also 1) Carbon bonding a) ionic bonding; donation of a valence electron from an electropositive atom to an electronegative atom (e.g., NaCl, MgCl2,...) b) covalent bonding; - occurs when two atoms share valence electrons - usually N, O, C, S, or Si is involved (e.g., H2O, NH3, H2S,...) - the bonds of organic compounds are covalent! โ—Ž Polarity, nucleophilic attack, and degradation (p. 51) โ‘  polarity due to the differences in electronegativity between atoms โ‘ก unequal distribution of electron clouds --> partial charges --> polarity (e.g.) compare the electron clouds of H2 and H2O โ‘ข chemical reaction: - low electron density (i.e., electron poor region of a chemical) allows attack by nuclephiles (such as H2O, OH-), (e.g.) parathion โ‘ฃ biological reaction: - biological degradation rates are lowered by electron-poor areas of organic compounds, (e.g.) pentachlorophenol

2) Nomenclature of organic compounds (p. 51) a) aliphatic hydrocarbons; alkanes (radical forms; alkyl groups), alkenes (PCE, TCE..), alkynes b) aromatic hydrocarbons; - monoaroatics (phenolics, BTEX,...) - polyaromatics (PAHs,...) c) isomers; same chemical formulas but different structural configurations (formed from 4-carbon aliphatic compounds) d) IUPAC (International Union of Pure and Applied Chemists) nomenclaure vs. conventional name (e.g.) CH2Cl2; 1,2-dichloromethane, methylene chloride

โ—Ž Aromatic compounds (p. 63) โ‘  resonance structure (alternating single and double bonds between C atoms) โ‘ก ฯ€-bonds between aromatic compounds (stacking of aromatic rings possible!) โ‘ข more stable than alkenes (e.g., benzene vs. cyclohexene) โ‘ฃ substitution reaction for benzene and addtion reaction for cyclohexene

e) Nomenclature of benzene derivatives (p. 64) f) Polycyclic Aromatic Hydrocarbons (PAHs, p. 68) ; incomplete combustion of organic compounds, heavier fractions of petroleum products, cigarette smoke, blackened barbecued food,...

2. Petroleum Products (p. 77) 1) UST (Underground Storage Tank) leakage 2) aliphatic and aromatic hydrocarbons 3) BTEX (Benzene, Toluene, Ethylbenzene, Xylenes) 4) TPHs (Total Petroleum Hydrocarbons) 5) Characteristics of petroleum products (Table 2.11, Table 2.12) 6) Gasoline additives; - Pb (leaded vs. unleaded) - oxygenates (e.g., methyl tert-butyl ether, MTBE) 3. Nonhalogenated Solvents (p. 81) 1) Hydrocarbons 2) Ketones 3) Alcohols and Esters 4. Halogenated Solvents (p. 85) : an important class of environmental contaminants (volatile, mobile, dense, moderate soluble, less degradable) - halogenation of hydrocarbons --> lower flammability, higher density and viscosity --> improved solvent properties (for degreasing and cleaning) - methane derivatives; methylene chloride (dichloromethane), chloroform (trichloromethane), carbon tetrachloride (tetrachloromethane) - derivatives of ethane, ethene (ethylene); 1,1,1-trichloroethane (TCA), trichloroethylene (trichloroethene, TCE), perchloroethylene (tetrachloroethene, PCE)

5. Pesticides (p. 90) 1) Insecticides a) organochlorine insecticides; - highly lipophilic, recalcitrant, bioconcentrated, chronic toxicity - most banned nowadays but present in the environment as residues (e.g.) DDT, methoxychlor, lindane, aldrin, dieldrin,... b) organophosphorus esters; - less persistent (days to weeks), less adverse effects, more degradation, but, higher acute toxicity than organochlorine insecticides, (e.g.) parathion, malathion,... c) carbamate esters; - widely used along with organophosphorus esters - moderately labile in the environment, low acute toxicity, (e.g.) carbaryl, carbofuran, aldicarb,... 2) Herbicides (generally less persistent and chronically toxic than organochlorines) a) acid amides; alachlor, propanil,,... b) aliphatics; glyphosate, methyl bromide,... c) phenoxy herbicides; 2,4-D (2,4-dichlorophenoxy acetic acid), 2,4,5-T (2,4,5-trichlorophenoxy acetic acids) d) substrate ureas; diuron, linuron (persist in soils for up to a year) e) triazines; atrazine (strongly sorb but mobile also, found in aquifers) 3) Fungicides a) pentachlorophenol (PCP); wood preservative and insecticide also b) ethylene dibromide (1,2-dibromoethane, EDB); soil fumigants

6. Explosives (p. 104) : aliphatic or aromatic structure with substituted nitro (-NO2) groups - aliphatic nitrate esters; nitroglycerin - nitramines; RDX (cyclotrimethylenetrinitramine), HMX (cyclotetramethylenetetranitramine) - nitroaromatics; TNT (2,4,6-trinitrotoluene), picric acid (2,4,6-trinitrophenol) 7. Industrial Intermediates (p. 109) - phthalene esters; plasticizers or softners (e.g., phthalic acid) - chlorobenzenes, chlorophenols; . 2,4-dichlorophenol in the manufacture of 2,4-D . 2,4,5-trichlorophenol in the manufacture of 2,4,5-T - anilines; in the synthesis of inks, dyes, frugs, photographic developers - hexachlorocyclopentadiene; in the synthesis of aldrin, dieldrin, chlordane,,,, 8. Polychlorinated Biphenyls (p. 114) - heat-stable nonflammable oils once used extensively as transformer and hydraulic fluids (--> high persistence and toxicity) - banned in 1979, but still present in the environment - biphenyl molecule with chlorine substitution up to 10 positions - congeners; 207 products possible, (e.g.) Aroclor 1221, Aroclor 1232,... 9. Polychlorinated dibenzodioxins and dibenzofurans (PCDDs, PCDFs; p. 116) - not intentionally manufactured chemicals - trace impurities formed during the manufacture, chlorination or combustion of other organic compounds - collectively called "(chlorinated) dioxins", derivatives of dibenzo-p-dioxin - 75 possible congeners

โ—Ž Generation of dioxins and their toxicities โ‘  In the course of manufacturing 2,4,5-T (i.e., trichlorophenol + chloroacetic acid), two molecules of trichlorophenols may dimerize to form 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) โ‘ก Chlorinated dioxins are produced during (incomplete) combustion at low-to-moderate temperatures, even from innocuous materials such as firewood (like PAHs) โ‘ข 2,3,7,8-TCDD is the most toxic (--> Toxic Equivalent Factor, TEF 1.0) โ‘ฃ Other dioxins' toxicities are expressed based on a reference TEF of 1.0

10. Metals and Inorganic Nonmetals (p. 119) - semantic definitions of heavy metals; i) elements with atomic numbers greater than iron, ii) metals with densities greater than 5.0 g/cm3 - what about Al (atomic number 13)?; regarded as a heavy metal - another definition; metals cause adverse biological (=toxic) effects 1) Arsenic (As) a) present as anionic forms in solution b) arsenite AsO3

- (As3+); under reduced conditions, most toxic c) arsenate AsO4

3- (As5+); under aerobic conditions, less toxic d) extensively used in agriculture (weed control, insecticidal ingredients,...) 2) Cadmium (Cd) a) always found as Cd2+ b) highly toxic and accumulative 3) Chromium (Cr) a) highly toxic, stable, soluble; Cr6+(chromate CrO4

2-, dichromate Cr2O72-)

b) insoluble form in water; Cr3+ (low toxicity) 4) Lead (Pb) a) low water solubility and strong tendency to sorb and exchange on solids b) less mobile in the environment 5) Nickel (Ni)

6) Mercury (Hg) a) three forms possible; elemental, inorganic, organic b) Hg0 present as a liquid at room temperature c) Hg0 for porosity measurement (e.g., Mercury porosimeter) d) bioconcentration (in fish); methyl mercury (CH3Hg+) e) volatilization and global recycling; dimethyl mercury (CH3HgCH3) f) HgCl2; biocide (used to sterilize environmental samples) 7) Cyanides (-CN) a) inorganic nonmetal anions b) HCN; highly toxic, acute poison 8) Asbestos a) a group of six mineral fibers (hydrated magnesium silicates) b) nonflammable, strong, resistant to acids c) indoor air pollution d) toxic only through inhalation (not from dermal contact, ingestion,..) --> "route of exposure" is important!!! 11. Nuclear Wastes (p. 127)

(Lecture 5)

HW Ch 3. Common Hazardous Wastes: Properties and Classification

1. Common Concentration Units (p. 155)

1) SI vs Non-SI units (SI; International System of Units) 2) conversion of ppm to concentration 2. Water Solubility (p. 160) 1) definition; "maximum (saturation) concentration of a substance that will dissolve in water in a given temperature" 2) soluble vs. insoluble (filtration through 0.45-ฮผm pore sized membrane) 3) polar (hydrophilic) vs. nonpolar (hydrophobic); Table 3.5 (e.g.) water vs. hexane 4) controls the environmental fate of waste chemicals a) inversely proportional to sorptivity, bioaccumulation, volatilization from aqueous solutions b) influence biodegradation, photolysis, chemical oxidation,... 5) determined by intermolecular attractive forces between solute-solvent molecules a) van der Waals force b) hydrogen bonding (mainly with -OH, -NH2 groups) c) dipole-dipole interaction (by electronegativity difference) 6) related to the size and structure of a chemical a) functional groups may or may not affect b) molecular volume (halogens increase m.v. -> decrease water solubility) c) Table 3.1

7) water solubilities of weak organic acids (bases) a) basic (ionized) form is more soluble than acidic (unionized) form b) [ionized forms] โˆ water solubility c) pH vs. pKa (pH where [unionized forms] = [ionized forms]) - pH < pKa ; protonated (acidic, unionized form) - pH > pKa ; deprotonated (basic, ionized form) d) solubility change depending on pH e) Handerson-Hasselbalch equation (Fig. 3.1) - calculates the degree of acidic dissociation at a given pH f) fraction of unionized acid (ฮฑ); - ฮฑ = (1 + )-1 (Ka = ; acid dissociation constant) - used to correct transport models; ionized forms are miscible in water -> no retardation (p. 281) 8) acidity of chlorophenols with higher chlorine substitution (Table 3.2) a) Cl- is a highly electronegative element b) more Cl- on the ring -> proton(s) more easily released -> higher acidity 3. Density and Specific Gravity (p. 167) - density; ratio of mass to volume (g/mL, kg/m3) - specific gravity; a compound's density to that of water (1.0 g/mL at 4ยฐC) - (aliphatic) hydrocarbons are lighter than water - substitution of a chlorine atom on a hydrocarbon increases its density (density; H < C < Cl) - influence contaminants' fate and remediation technology selection (esp. in groundwater); Table 3.6 - metals are more dense than water

4. Light and Dense Nonaqueous Phase Liquids (p. 170) ; NAPL(s) as a continuous source in the subsurface system 1) LNAPL (Light Nonaqueous Phase Liquid) / Fig. 3.2 (a) a) floats on groundwater surface easily detected b) aliphatic hydrocarbons, BTEX, nonhalogenated solvents,... 2) DNAPL (Dense Nonaqueous Phase Liquid) / Fig. 3.2 (b), Example 3.4 a) sinks into the bottom of subsurface system (fractures, pores,...) b) form pools, lenses c) halogenated solvents,... 3) dissolution a) transfer of a compound from its insoluble phase into the water b) generally rate-limiting step in degradation (remediation) of a contaminant c) rate of dissolution [(mg/L)/min] = Kใ†(Cs - C) K (min-1); mass transfer coefficient (from NAPL to water phase) Cs (mg/L); contaminant water solubility C (mg/L); contaminant concentration at a site 4) effective solubility a) solubility of the mixtures of NAPLs b) usually less than the water solubility of a single compound c) effective solubility of compound i (mg/L) Si

e = XiSiฮณi Xi = mole fraction of compound i in the NAPL mixture Si = water solubility of compound i found in literatures ฮณi = correction factor that normalizes solubility based on field conditions and water chemistry 5. Flammability Limits (p. 177)

(Lecture 6) EPS Ch 6. Physical Processes Affecting Contaminant Transport and Fate

Contaminant transport and fate in the environment

โ€œThe health risk posed by a contaminant to humans is a function of its pollution potential

as well as its toxicityโ€ advection dispersion - mechanical dispersion - molecular diffusion

mass transfer - volatilization/evaporation - sorption - dissolution transformation - biological - chemical

Dispersion Spatial distribution of contaminant plume

Advection-dispersion model

What about โ€œtransformation termโ€ is incorporated??? advection-dispersion- reaction equation (ADRE)

Breakthrough curves

Estimating phase distributions of contaminants Retardation factor

groundwater velocity contaminant velocity R =

dissolved conc + adsorbed conc dissolved conc

(Lecture 7) HW Ch 8. Contaminant Release and Transport from the Source

- Contaminants distributions are commonly quantified using sampling and analysis schemes because monitoring data are more reliable and thus preferred. - However, in some cases, values obtained from prediction models are still useful.

1. The Controlling Processes in Contaminant Release and Transport: Sorption, Volatilization, Transformation (p. 405) a) atmospheric and subsurface transport (Fig. 8.1) - major contaminants' trnasport through the subsurface and atmosphere - once released from the source, contaminants experience sorption, volatilization, and transformation b) conceptual pathway analysis (Example 8.1) 2. Mass Transfer of Contaminants in the Atmospheric and the Subsurface (p. 408) 1) Mass balance a) expressions โ–ถ change in storage of mass = mass transported IN - mass transported OUT +mass PRODUCED by sources - mass ELIMINATED by sinks โ–ถ rate of change in storage of mass = mass transport rate in - mass transport rate out +mass production rate by sources - mass elimination rate by sinks โ–ถ rate of mass accumulation within the system boundary = rate of mass flow into the system - rate of mass flow out of the system -/+rate of reaction within the system (* rate = mass per time [M/T]) โ˜ž If storage does not change with time the left-hand sides are zero steady state

b) described by a general mass flux vector J; the mass flux vector in the x, y, or z direction m; contaminant mass per unit volume t; time c) differences between atmospheric and subsurface definitions of mass - volume of air; total volume of the sample - in the subsurface; "porosity" and "retardation" concepts included m = C (atmosphere) m = nโ€ขRโ€ขC (subsurface) 2) Two important phenomena of movement a) advection (i.e., wind; pore-water velocity) b) dispersion c) flux J = Jadv + Jdisp

3) Advective flux a) mainly resulting from bulk, large scale movement of a medium (e.g.) wind blows, water flows,.... b) so, transported at the same velocity as the fluid - macroscale view; center of mass of chemical moves by advection - microscale view; Fickian transport occurs at the same time c) convection; often vertical advection (but, considered almost a similar term) d) flux density (J) - mass of chemical transported across an imaginary surface of unit area per unit of time J = Cโ€ขV J; advective flux (mg/m2-sec) [M/L2T] / C; contaminant conc. (mg/m3) [M/L3] V; fluid velocity (m/sec) [L/T] - in groundwater, V is pore-water velocity J = Cโ€ข(nvp) n; porosity (i.e., ne) / vp; seepage (pore-water) velocity (m/sec) 4) Dispersive flux a) "all of the mass transfer exclusive of advection" b) Turbulent diffusion ("eddy diffusion") - resulting from random mixing of air or water by eddies - carries mass in the direction of decreasing chemical concentration (e.g.) dye blob injected into a river - important in surface water and air (not considered in the subsurface) - use Fick's first law to describe J [M/L2T]; dispersive flux in the x direction n; porosity D; turbulent diffusion coefficient C [M/L3]; chemical concentration x [L]; distance over which a concentration change is considered

c) (mechanical) dispersion (hydraulic dispersion) - fluctuations in the velocity field at scales smaller than advection - groundwater flow; . no eddies present due to its low velocity . but still random detours exist, causing mixing chemicals - transport of a chemical from regions of higher to lower concentration - use Fick's first law to describe J [M/L2T]; dispersive flux in the x direction n; porosity Dmech; mechanical dispersion coefficient C [M/L3]; chemical concentration x [L]; distance over which a concentration change is considered - related to the tortuous path of water through the subsurface solids - tortuosity of flow paths and contaminant concentration result in the longitudinal mixing of contaminants d) molecular diffusion - random movement of chemicals due to local concentration gradient - lower flux density compared to other Fickian transport processes - use Fick's first law to describe J [M/L2T]; dispersive flux in the x direction n; porosity D; molecular diffusion coefficient C [M/L3]; chemical concentration x [L]; distance over which a concentration change is considered - not related to advective, dispersive, or turbulent motion but dependent on contaminants' molecular properties (primarily, size) and temperature

e) hydrodynamic dispersion - the spreading of a tracer beyond the region expected to the average flow alone - the macroscopic outcome of the actual movements of individual tracer particles through the pores and the various physico-chemical phenomena that take place within the pores - Jdisp = Jmech + Jmole - D = Dmech + Dmole โ€ป Transport in total: J = Jadv + Jdis โ€ป One-dimensional situation is considered, flow is anisotrophic - flow direction vs. perpendicular to flow, - homogeneous medium vs. heterogeneous medium, - time 5) The advection-dispersion equation - for the subsurface transport; characteristics of the medium - analytical methods - numerical methods 3. Atmospheric Transport Following Volatilization Releases (p. 413)

4. Subsurface Transport of Contaminants (p. 421) 1) Subsurface transport and exposure a) migration through the unsaturated zone to groundwater b) exposure routes - subsurface contamination; volatilization, leaching to groundwater - groundwater; drinking water wells, other uses 2) Nature of the subsurface environment (Fig. 8.12) a) vadose zone - subsurface region where the pore-water pressure is less than atmospheric pressure - pore-water pressure increases linearly with depth - water present as a thin film on solid surfaces - consists of solid particles, water (i.e,. volumetric water content) and air (i.e., empty pore space) - unsaurated zone; b) saturated zone - boundary of water table; pore-water pressure = atmospheric pressure - below the water table where the pore spaces are filled with water - pore-water pressure is greater than atmospheric, and increases linearly with depth c) more terms - capillary fringe; an area where the upward movement of water from the saturated zone due to surface tension and capillary forces - aquifer; a saturated permeable geologic unit that can transmit sufficient water under ordinary hydraulic gradients - aquitard; the strata that are less permeable than an aquifer - unconfined aquifer; - confined aquifer;

d) porous and heterogeneous; most important subsurface properties!!! e) Darcy's Law - an empirical mathematical description between the flow rate of a fluid through a porous medium and the head gradient (basis for advection in groundwater) f) hydraulic conductivity - a parameter that describes the ease with which a fluid passes through porous media - a function of a fluid and a medium (Table 8.2) g) pore-water velocity (seepage velocity) - the velocity that accounts for the cross-sectional area / related to porosity of a medium 4.1. Development and use of groundwater transport equations a) factors influencing subsurface transport (rates) of contaminants - media; characteristics of subsurface - fluid; flow (rate) of groundwater - interactions; sorption, transformation, volatilization,... b) assumptions - the media are characterized by constant density and viscosity - the media are isotrophic, the flow is incompressible, and the system is saturated c) many models are available - one-, two-, three-dimensional flow - pulse contaminant input and continuous contaminant input - presence or absence of transformation reactions - BUT, limited by estimation of parameters such as dispersion coefficient, transformation rate,... d) one-dimensional advection-dispersion equations - simple models relatively accurate for simple systems (e.g.) soil columns, landfill leachate migration,... - a pulse input with or without transformation - a continuous input with or without transformation

1) Pulse model a) describes a pulse input of contamination such as hazardous materials spill b) derived with zero background concentration at the beginning (x = 0) c) a pulse input model without transformation; at a distance x downgradient and time t M; the mass spilled per cross-sectional area (g/m2) D'x; D/R (m2/day) Dx; dispersion coefficient in the x direction x; distance from the source (from the point of spill) v'x; v/R (m/day) vx; pore-water velocity in the x direction R; retardation factor d) a pulse input equation with transformation k'; k/R (day-1) k; first-order transformation rate constant (day-1) e) estimation of downgradient concentration from a source with transformation (Example 8.4)

2) Plume model a) describes a continuous input from a source (e.g., landfill) b) a plume input equation without transformation C(x,t); contaminant conc. at point x and time t (mg/L) erfc; the complementary error function under most conditions, the right-hand term becomes negligible, c) estimation of downgradient conc from a surface impoundment without transformation (Example 8.5) 3) Advection-Dispersion-Reaction Equation (ADRE) a) from the advection-dispersion equation ADRE can be derived to account for transformation through the addition of a new term for first-order degradation (at a distance x and time t) C; contaminant conc. in the aqueous phase (mg/L) R; retardation factor (1+โ€ขKd) D; groundwater dispersion coefficient (m2/day) v; pore-water velocity (m/day) k; first-order degradation rate constant (day-1)

b) effect of retardation on contaminant profile (Fig. 8.13) c) effect of transformation on contaminant profile (Fig. 8.14) d) an analytical solution to the ADRE equation (Eq. 8.35, p. 431) - one-dimensional contaminant transport with transformation (Example 8.6) used to estimate the time required for a relative contaminant concentration to reach a distance downgradient - development of a contaminant profile in groundwater (Example 8.7) used to estimate a contaminant conc. profile as a function of time at a set distance (or as a function of distance at a set time) 4.2. Contaminant Transport in the Vadose Zone a) vadose zone - may be less than a meter to hundreds of meters deep - higher organic matter, more metal oxides, more microbial activity b) contaminants can move in the vadose zone - as a solute in the water phase - as a separate, immiscible NAPL phase - as a gas resulting from volatilization c) percolation rate - increases as a function of porosity - ranges from cm/h to cm/yr (recall infiltration rate!!!)

(Lecture 8) EPS Ch 7. Chemical Processes Affecting Contaminant Transport and Fate

Basic properties of inorganic contaminants 1) Speciation - pH, redox status - metal solubility - surface charge of minerals - adsorption(<-> desorption) - precipitation(<-> dissolution) 2) Aqueous phase activity and concentration - effective conc (or activity) โ‰  concentration - activity coefficient (ฮณi) . approach 1 only in a very dilute solution - Ionic strength (I) - activity coefficient

Ion hydration and hydrolysis 1) Ion hydration - ions dissolved hydrated - ionic potential (Z/r) - small ionic potential hydrated cations, - high ionic potential hydrolysis insoluble oxides(hydroxides), soluble oxyanions 2) Ion hydrolysis - breaking of O-H bonds in water molecules that are attached to the ions - proton dissociation - depends on pH

lead hydroxide (insoluble) at high pH . precipitation limited transport . low bioavailability low risk

Aqueous phase complexation reactions

- metal-ligand complex . cation; central metal group . coordinating anion; ligand - stability constant (Kstab) . mobility; HgCl+ > Hg2+

Precipitation-dissolution reactions

solubility product constant (Ksp)

Basic properties of organic contaminants

1) Phase transfer 2) Dissolution - โ€œlikes dissolves likesโ€ - miscibility with water

3) Evaporation - transfer from the pure liquid (or solid) to the gas phase - vapor pressure . an index of the degree to which a compound will evaporate . a measure of โ€œsolubilityโ€ of a compound in air - governed by chemical-chemical interactions, temperature

Volatilization - transfer of contaminant molecules between water and gas phases - Henryโ€™s law; Cg = HยทCw (at equilibrium)

Multiple-component organic phase - NAPL - transfer of individual components of a multiple component into water; Raoultโ€™s law; Ci

w = XiSiw

Sorption

1) Inorganics - surface complex - cation exchange capacity (CEC) โ€“ exchangeable - adsorption mainly on clay minerals (as well as soil organic mater) - PZC (point of zero charge) . the suspension pH at which a surface has a net charge of zero 2) Organics - โ€œhydrophobic effectโ€ . expulsion of a nonpolar compound from water . mainly on soil organic matter . distribution (partitioning) coefficient; Kd (Kp)

3) Sorption isotherm - relationship between the conc of sorbed contaminant and the conc of dissolved contaminant - at the same temperature, in equilibrium - Freundlich isotherm; Csorb = KfCn

w - n . a measure of nonlinearity . Indicates โ€˜sorption mechanismโ€™ - Langmuir isotherm

Abiotic transformation mechanisms 1) Hydrolysis

2) Oxidation-reduction reactions - heterotrophic respiration - electron acceptors . nitrate . Mn(Fe) oxides . sulfateโ€ฆ 3) Photochemical reactions 4) Radioactive decay

Transformation rates - reaction kinetics . zero order rxn; constant amount is lost per unit time, all substrates are available . first order rxn; exponential decrease of in initial conc, half-life (independent of initial conc) . second order rxn; half-life (dependent of initial conc) . pseudo-first order rxn; widely employed in the env. R = k[A][B] when [A] is in large excess amount, k[A] = kโ€™ R = kโ€™[B] half-life = 0.693/kโ€™ - saturation kinetics . surface catalysis (enzyme) reaction; Michaelis-Menton kinetics . bacterial growth; Monod equation

Enzyme reaction Bacterial growth

1st

zero

2nd

Time

Log[S

] re

mai

ning

(Lecture 9) EPS Ch 8. Biological Processes Affecting Contaminant Transport and Fate

Biodegradation - breakdown of organic compounds through microbial activity - pollutants as substrates (food โ€“ C & E source) - when biodegraded into CO2 and H2O mineralization - a set of enzymatic activity - cometabolism; partial degradation, no benefit (C &E)

Environmental effects on biodegradation 1) Terminal electron acceptor (TEA) - oxygen; highest energy generation faster biodegradation addition of oxygen; can improve biodegradation rates

- rule of thumb; reduced C oxidized C TPH stable under anaerobic conditions TCE stable under aerobic conditions

2) Microbial population and soil organic matter content - cultural bacterial numbers; ca. 106 โ€“ 109 CFU/g-soil - decrease with depth by > 2 orders of magnitude - mainly due to oxygen and nutrients (SOM and trace minerals) โ€œNumber of bacteriaโ€ participating in biodegradation is important - population growth; acclimation - acquisition of required metabolic activity; adaptation 3) Nitrogen and phosphorous - may act ac limiting factors - C:N:P 100:10:1 4) Pollutant structure - intrinsic property of p ollutants; โ€œrecalcitrantโ€ matrix and time effect; โ€œpersistentโ€

Aerobic biodegradation - mainly use preexisting pathways; similar to naturally occurring compounds 1) Aliphatic hydrocarbons CH3-(CH2)n-CH3 CH3-(CH2)n-CH2OH CH3-(CH2)n-CHO CH3-(CH2)n-COOH ฮฒ-oxidation (C2-removal) TCA cycle CO2 + H2O + NADH ADP NAD+

ATP 2) Aromatic hydrocarbons - low solubility & high sorption low biodegradation low bioavailability - โ€œdioxygenaseโ€ 3) Alicyclic hydrocarbons - saturated carbon chains single isolate consortium (mixed culture)

Anaerobic biodegradation - anaerobic respiration; use TEA (i.e., Fe/Mn, NO3

-, SO42-, CO2) other than oxygen is used

1) Aliphatic hydrocarbons - reductive dehalogenation 2) Aromatic hydrocarbons - benzoate

Transformation of metals

- oxidation/reduction - complexation - alkylation - valence change

Cr6+ Cr3+

As3+ As5+

1. Materials Balances and Waste Audits (p. 212) 2. Hazardous Waste Site Assessments (p. 216) - Hazardous wastes sites must be assessed to determine the extent of contamination before cleanup is initiated. (a) Phase I assessment - to confirm the suspicions of the presence of hazardous wastes - involves documents and paper research including a chemical inventory evaluation, interviews with current and former personnel and neighbors, regulatory agency record searches and interviews, and title searches and reviews of historical ownership,... - on-site inspection also required (i.e., to find clues of contamination) - to determine the need for further investigation, not to determine whether a site is contaminated or not (b) Phase II assessment - to confirm or deny the presence of hazardous wastes at the site - includes a detailed evaluation of pathways and potential receptors - extensive sampling and analysis around source areas (c) Phase III assessment - conducted if Phase II assessment shows that the site is contaminated - to detail the extent of contamination in terms of the area, volume, and concentrations - more extensive sampling and analysis around the source and adjacent areas (i.e., soil, subsurface, groundwater) - to provide criteria for an appropriate remedial design

(Lecture 10) HW Ch 4. Source Analysis

4. Source Sampling (p. 219) - one of the most important procedure - generally use statistical methods to minimize sampling errors - sampling errors mainly from heterogeneous media - sampling errors are usually greater than analytical errors 5. Source Sampling Procedures and Strategies (p. 229) 6. Sampling away from the Source (p. 232) - often a prerequisite before designing remediation systems and documenting their effectiveness during operation 7. Priority Pollutant and Sample Analyses (p. 241) - among a list of 129 chemicals, 114 organics, 13 metals, 1 mineral, and 1 inorganic nonmetal - organics; extraction through simple solvent shaking or Soxhlet apparatus (continuous solvent flushing with heat) - analysis; GC/FID (EDC...), HPLC, AA (Atomic Absorption) spectrophotometer, ICP (Inductively Couple Plasma) - US EPA Method 600 series (for aqueous samples), 8,000 series (for soils and sludges); Table 4.3

(Lecture 11) ESP Ch 14. Risk Assessment Risk assessment - the process of estimating both probability that an event will occur and the probable magnitude of its adverse effects - provides an effective framework for determining relative urgency of problems and the allocation of resources to reduce risks - human risk assessment, ecological risk assessment de minimis level of risk acceptable risk - depends on population . size/age/health conditionsโ€ฆ - for carcinogens, general range of 10-4 โ€“ 10-6

- for noncarcinogens, HI = 1

Risk assessment process (1) Hazard identification - a review of all relevant biological and chemical information bearing on whether or not an agent poses a specific threat - site investigation (contamination levelsโ€ฆ) (2) Exposure assessment - the process of measuring intensity, frequency and duration of exposure to an agent - exposure routes; ingestion, derma contact, inhalation - exposure pathway . from source to receptors . affected by interactions between pollutants and environmental media (soil, water, aquiferโ€ฆ) - exposure factors

(3) Dose-response assessment - need quantitative toxicity data . mainly from animal experiments . IRIS (US EPA) - acute, subchronic, chronic toxicity - dose-response relationship . generally, sigmoid-type curve . dose; mg-chemical/kg-body weight/day . response; mortalityโ€ฆ

โ–ถ dose vs. dosage - dose; the total mass of chemical to which an organism is exposed - dosage; the chemical dose normalized for body weight, surface area,..

โ–ถ Surrogates vs. human

- for carcinogens . linear multistage model (USEPA) . slope factor (SF), cancer potency factor (CPF) . risk by a lifetime average dose (AD) of 1 mg/kg/day . lifetime risk = AD * SF (70 years)

- for noncarcinogens . assumes โ€œthresholdโ€ . reference dose (RfD) . unit; mg/kg/day (4) Risk characterization - excessive lifetime risk = exposure * toxicity - carcinogenic risk - noncarcinogenic risk uncertainty analysis - sensitivity analysis - Monte Carlo simulation record of decision (ROD) โ€“ โ€œsite-specificโ€ - site investigation - risk assessment - remediation goals - remediation technologies,,,

uncertainty factors - individual sensitivity - extrapolation to humans - extrapolation from high dose to low dose - professional judgementโ€ฆ

Carcinogenic risk calculation

Noncarcinogenic risk calculation

โ–ถ Ecological risk assessment (ERA) - much more difficult and time-consuming - needs lots of database regarding biota and toxicity - food chain vs. target species

[์ฐธ๊ณ ]

Biotransformation of toxicant in body

Routes of Pb exposure in the environment

โ–ถ How to deal with โ€œriskโ€? (example) "During a shower, toxic chemicals are released from the water, exposing the person to chemicals that may be up to 100 times greater than normal exposure.โ€œ Is there a risk in showering? Should individuals be afraid of shower?

RBRS (Risk-Based Remediation Strategy) ๋ฅผ ์ด์šฉํ•œ ํ™˜๊ฒฝ๊ด€๋ฆฌ

Tier 1: ๋ณด์ˆ˜์  ๊ธฐ๋ณธ๊ฐ’์„ ์ด์šฉํ•œ ์œ„ํ•ด์„ฑํ‰๊ฐ€ (โ†’ RBSL) Tier 2: ์˜ค์—ผํ˜„์žฅ ํŠน์ˆ˜์„ฑ์„ ๋ฐ˜์˜ํ•œ ์œ„ํ•ด์„ฑํ‰๊ฐ€ (โ†’ SSTL) Tier 3: Tier 2๋ณด๋‹ค ์„ธ๋ถ„ํ™”๋œ ์œ„ํ•ด์„ฑํ‰๊ฐ€ (ERA ํฌํ•จ)

๊ธฐ์กด๊ทœ์ œ๋†๋„ vs. ์˜ค์—ผ๋†๋„ RBSL/SSTL vs. ์˜ค์—ผ๋†๋„

General procedure

Site characterization

Conceptual Site Model

Target risk & Clean-up goal

Site-specific remediation

โ—‹ Extensive soil, hydrogeological survey

โ—‹ Site-specific CSM

โ€ข Source identification โ€ข Pollutants migration โ€ข Potential exposure routes โ€ข Potential receptors โ€ข Land use

โ—‹ Control effective exposure pathways

โ—‹ Remediation area

โ—‹ Available technology

1. Site characterization

Risk assessment involves โ€œuncertaintyโ€

More reliable assessment possible!

Site-specific parameters & predictions

2. Conceptual site model: An example

1st Source 2nd Source Migration mechanism Exposure route Receptor

โ–  Storage tank (UST, etc) โ–ก Pipelines โ–ก Operation facilities โ–ก Waste storage facilities โ–ก Others

Groundwater

NAPLs

Sediment, Surface water

โ–ก residential โ–ก commercial โ–ก workers โ–ก others

Recreational use

โ–ก recreational โ–ก others

Surface soil Soil ingestion /inhalation

Air inhalation

Drinking water

Surbsurface soil

wind (dust)

volatilization (outdoor air)

volatilization (indoor air)

leaching

free NAPL

rain water flow

โ–ก residential โ–ก commercial โ–ก workers โ–ก others

โ–ก residential โ–ก commercial โ–ก workers โ–ก others

โ—‹ Air: inhalation of indoor/outdoor air

โ—‹ Groundwater: groundwater ingestion

inhalation of pollutants volatilized from groundwater

โ—‹ Subsurface soil: leaching to groundwater

inhalation of pollutants volatilized from subsurface

โ—‹ Surface soil: soil ingestion, dermal contact, particle inhalation

3. Exposure route identification

Target Clean-up Levels โ€ข TCLair (mg/m3)

โ€ข TCLgroundwater (mg/L)

โ€ข TCLsubsurface soil (mg/kg)

โ€ข TCLsurfice soil (mg/kg)

โ™ฆ ๋ฒค์  ์œผ๋กœ ์˜ค์—ผ๋œ ํ† ์–‘์œผ๋กœ๋ถ€ํ„ฐ ์ฃผ๊ฑฐ์ง€ ์‹ค๋‚ด๊ณต๊ธฐ์˜ ํก์ž…์œผ๋กœ ์ธํ•ด ์„ฑ์ธ์ด ์ž…๊ฒŒ ๋˜๋Š” ์œ„ํ•ด์„ฑ์˜ ์‚ฐ์ • ํ˜„์žฅ์ƒํ™ฉ

. ์˜ค์—ผ๋ฌผ์งˆ; ๋ฒค์   (๋ฐœ์•”์„ฑ)

. ์ˆ˜์šฉ์ฒด; ์„ฑ์ธ . ๋…ธ์ถœ๊ฒฝ๋กœ; ์ฃผ๊ฑฐ์ง€ ์‹ค๋‚ด๊ณต๊ธฐ ํก์ž… ์œผ๋กœ ์ธํ•œ ๋…ธ์ถœ

์ž…๋ ฅ๋ณ€์ˆ˜

. ๋ฒค์  ์˜ค์—ผ๋†๋„; 1 ยตg/m3

. ๋ฒค์  ์˜ SFinhalation ; 0.029 kg-day/mg

. ์‹ค๋‚ด๊ณต๊ธฐํก์ž…๋ฅ ; 15 m3/์ผ

. ๋…ธ์ถœ๊ธฐ๊ฐ„; 30 ๋…„

. ๋…ธ์ถœ๋นˆ๋„; 350 ์ผ/๋…„

. ํ‰๊ท ๊ธฐ๊ฐ„; 70 ๋…„

. ์ฒด์ค‘; 70 kg

๋ฐœ์•”์œ„ํ•ด์„ฑ = (1 ยตg/m3) *(350 ์ผ/๋…„)*(30 ๋…„)*(15 m3/์ผ)*(0.029 kg-day/mg)

(70 kg)*(70 ๋…„)*(365 ์ผ/๋…„)*(1,000 ยตg/mg)

= 2.55 x 10-6

์˜ค์—ผ๋†๋„์— ๋”ฐ๋ฅธ ๋ฐœ์•”์œ„ํ•ด์„ฑ ์‚ฐ์ • (์˜ˆ)

โ™ฆ ๋ฒค์  ์œผ๋กœ ์˜ค์—ผ๋œ ํ† ์–‘์œผ๋กœ๋ถ€ํ„ฐ ์ฃผ๊ฑฐ์ง€ ์‹ค๋‚ด๊ณต๊ธฐ์˜ ํก์ž…์œผ๋กœ ์ธํ•œ ์œ„ํ•ด์„ฑ์œผ๋กœ๋ถ€ํ„ฐ ์„ฑ์ธ์„ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉํ‘œ์ •ํ™”์ˆ˜์ค€์˜ ์‚ฐ์ •

ํ˜„์žฅ์ƒํ™ฉ

. ์˜ค์—ผ๋ฌผ์งˆ; ๋ฒค์   (๋ฐœ์•”์„ฑ)

. ์ˆ˜์šฉ์ฒด; ์„ฑ์ธ

. ๋…ธ์ถœ๊ฒฝ๋กœ; ์ฃผ๊ฑฐ์ง€ ์‹ค๋‚ด๊ณต๊ธฐ ํก์ž… ์œผ๋กœ ์ธํ•œ ๋…ธ์ถœ

์ž…๋ ฅ๋ณ€์ˆ˜

. ๋ชฉํ‘œ์œ„ํ•ด์„ฑ; 10-6

. ๋ฒค์  ์˜ SFinhalation ; 0.029 kg-day/mg

. ์‹ค๋‚ด๊ณต๊ธฐํก์ž…๋ฅ ; 15 m3/์ผ

. ๋…ธ์ถœ๊ธฐ๊ฐ„; 30 ๋…„

. ๋…ธ์ถœ๋นˆ๋„; 350 ์ผ/๋…„

. ํ‰๊ท ๊ธฐ๊ฐ„; 70 ๋…„

. ์ฒด์ค‘; 70 kg

๋ชฉํ‘œ์ •ํ™”์ˆ˜์ค€ = (350 ์ผ/๋…„)*(30 ๋…„)*(15 m3/์ผ)*(0.029 kg-day/mg)

(10-6)*(70 kg)*(70 ๋…„)*(365 ์ผ/๋…„)*(1,000 ยตg/mg) = 0.39 ยตg/m3

๋ชฉํ‘œ์œ„ํ•ด์„ฑ์— ๋”ฐ๋ฅธ ์ •ํ™”์ˆ˜์ค€ ์‚ฐ์ • (์˜ˆ)

Parameters Definition (units) Residential Commercial/ Industrial ATc ๋ฐœ์•”์„ฑ๋ฌผ์งˆ์— ๋Œ€ํ•œ ํ‰๊ท ๋…ธ์ถœ๊ธฐ๊ฐ„ (years) 70 (73.5) 70

ATn ๋น„๋ฐœ์•”์„ฑ๋ฌผ์งˆ์— ๋Œ€ํ•œ ํ‰๊ท ๋…ธ์ถœ๊ธฐ๊ฐ„ (years) 30 25

BW ์„ฑ์ธํ‰๊ท ์ฒด์ค‘ (kg) 70 (60.0) 70

ED ๋…ธ์ถœ๊ธฐ๊ฐ„ (years) 30 25

EF ๋…ธ์ถœ๋นˆ๋„ (days/years) 350 d/yr 250 d/yr

IRsoil ํ† ์–‘ ์„ญ์ทจ๋ฅ  (mg/day) 100 50

IRair (indoor) ์ผ์ผ ์‹ค๋‚ด๊ณต๊ธฐ ํก์ž…๋ฅ  (m3/day) 15 20

IRair (outdoor) ์ผ์ผ ์‹ค์™ธ๊ณต๊ธฐ ํก์ž…๋ฅ  (m3/day) 20 20

IRw ์ผ์ผ ๋ฌผ ์„ญ์ทจ๋Ÿ‰ (L/day) 2 (1.26) 1

ํ† ์ง€์ด์šฉ์šฉ๋„๋ณ„

์ฃผ์š”๋…ธ์ถœ์ธ์ž ๊ธฐ๋ณธ๊ฐ’ (1)

ํ† ์ง€์ด์šฉ์šฉ๋„๋ณ„

Parameters Definition (units) Residential Commercial/ Industrial M ํ† ์–‘-ํ”ผ๋ถ€์ ‘์ด‰๊ณ„์ˆ˜ (mg/cm2) 0.5 0.5

SA ํ”ผ๋ถ€ํ‘œ๋ฉด์  (cm2/day) 3160 3160

RAFd ํ”ผ๋ถ€๋ฅผ ํ†ตํ•œ ํก์ˆ˜๊ณ„์ˆ˜, BTEX/PAHs chemical-specific

RAFo ์„ญ์ทจ๋ฅผ ํ†ตํ•œ ํก์ˆ˜๊ณ„์ˆ˜ 1 1

LFsw ํ† ์–‘-์ง€ํ•˜์ˆ˜ ์šฉ์ถœ ๊ณ„์ˆ˜ chemical-specific (mg/L-H2O)/(mg/kg-soil)

VF ํœ˜๋ฐœ๊ณ„์ˆ˜ chemical-specific ํ† ์–‘-๊ณต๊ธฐ (mg/m3-air)/(mg/kg-soil) ์ง€ํ•˜์ˆ˜-๊ณต๊ธฐ (mg/m3-air)/(mg/L-H2O)

์ฃผ์š”๋…ธ์ถœ์ธ์ž ๊ธฐ๋ณธ๊ฐ’ (2)

groundwater ingestion

RBSL = TR*BW*AT

CFPoral*GWingestion rate*EF*ED

groundwater dermal contact

RBSL = TR*BW*AT

CFPdermal*Skin area*Skinabsorption rate*EF*ED

Exposu

re f

acto

r

Exposu

re r

oute

Toxi

city

val

ue

Risk: 9.87 ยตg/L

Risk: 241 ยตg/L

Risk variation by exposure routes (e.g., benzene)

์ˆ˜๋—๋ฌผ๊ณผ ์ƒ์ˆ˜...

(Lecture 12) ESP Ch 19. Soil and groundwater remediation

Site characterization - type, location, amount - NAPL (free product) present? - remedial options

Remediation technologies - principles: containment, removal, treatment Containment technologies - physical barrier - hydraulic barrier - immobilization (solidification/stabilization)โ€ฆ Removal technologies - excavation - pump-and-treat - soil vapor extraction (SVE); permeability - air sparging,

In situ treatment - bioremediation - chemical treatment: Fentonโ€™s reagentโ€ฆ

Others - soil washing - magnetic separation - electrokinetic treatmentโ€ฆ

Phytoremediation - accumulation; hyperaccumulators - stabilization . root exudates . rhizobacterial activity - plants as hydraulic barriers

Monitored natural attenuation (MNA) - restricted application only where appropriate and needed - prerequisites . โ€œAre MNA process occurring at the site?โ€ . โ€œIs the magnitude and rate of MNA sufficient to accomplish the remediation goal?โ€ long-term site monitoring is important geochemical indicators be protective to human health and the environment

โ–  Monitored Natural attenuation (MNA) "needs to show favorable processes are ongoing at the siteโ€œ plume management technique - usu. for ground water remediation rationales - ground water (aquifer) contaminated by DNAPLs -> residual NAPLs limitation of conventional means (e.g., pump-and-treat) - plumes; relatively short, not expanding, and little or no risk * Plume life cycle . expanding: residual source present. mass flux of contaminants exceeds assimilative capacity of aquifer . stable: insignificant change. remediation processes are controlling plume length . shrinking: residual source nearly exhausted. remediation processes significantly reduce plume mass . exhausted: average plume conc. very low (e.g., 1 ppb) and unchanging over time key factors determining applicability . plume stability . required time frame... . site information (monitoring factors for MNA)โ€ฆ

Attenuation processes 1) dispersion; a. mixing process caused by - ground water movement (velocity variations) in porous media - aquifer heterogenicities (--> flow velocity and path) b. results in sharp edge and dilution of solutes at the edge 2) sorption; represented by retardation factor 3) degradation; biotic and abiotic (hydrolysis of chlorinated solvents...) 4) dilution insignificant factors a. diffusion - molecular mass transfer by concentration gradients - can occur in the absence of velocity - only a factor in the case of very low velocities (tight soil, clay liner) or of mass transfer involving very long time periods b. volatilization c. advection; movement of contaminants along with flowing ground water

Geochemical indicators a. consumption of electron acceptors used for oxidative reactions (e.g., dissolved oxygen, nitrate, sulfate in the plume area...) b. production of metabolic by-products (e.g., ferrous iron, methane, c-DCE, VC, ethene...) c. presence of appropriate redox/microbial environments (e.g., dissolved hydrogen...)

SSTL = RBEL x NAF SSTL; site-specific target level NAF; natural attenuation factor (rate; k) RBEL; risk-based exposure limit at POE (usu. standard level..) POE; point of exposure if, measured or calculated source conc. > SSTL-> remediation required if not, no further action required (based on RBCA) monitoring!!!

Attenuation rate calculation a. bulk attenuation rate (k); just indicates whether conc. declines or not... b. biodegradation rate (ฮป); attenuation rate model FATE V... Risk-based corrective action (RBCA); developed by ASTM (1995) a. identification of applicable risk factors on a site-specific basis b. identification of potential mechanisms for exposure on a site specific basis

(K = -slope*seepage velocity)

Summary: Remediation technologies

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (1)

1) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ  (๊ฐœ์š”)

์ •์˜ ๋ฐ ์›๋ฆฌ

(๋ฏธ)์ƒ๋ฌผ์˜ ์˜ค์—ผ๋ฌผ์งˆ ๋ถ„ํ•ด ๋Šฅ๋ ฅ์„ ์ด์šฉํ•˜์—ฌ ์˜ค์—ผํ† ์–‘ ๋˜๋Š” ์ง€ํ•˜์ˆ˜๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๊ธฐ์ˆ 

๊ฐ€์ˆ˜๋ถ„ํ•ด, cleavage, ์‚ฐํ™”, ํ™˜์›, ํƒˆ์ˆ˜์†Œํ™”, ํƒˆ์—ผ์†Œํ™”, dehyrrohalogenation, ์น˜ํ™˜ ๋“ฑ์˜ ํšจ์†Œ ์ด‰๋งค๋ฐ˜์‘

๊ณต๋Œ€์‚ฌ(Cometabolism) : ๋‹ค๋ฅธ ๋ฌผ์งˆ์„ ๋ถ„ํ•ดํ•˜๋Š” ๋ฏธ์ƒ๋ฌผ์˜ ํšจ์†Œ์— ์˜ํ•˜์—ฌ ์šฐ์—ฐํžˆ ์ผ์–ด๋‚˜๋Š” ๋ถ„ํ•ด๊ณผ์ •์œผ๋กœ ํƒ„์†Œ์›์ด๋‚˜ ์—๋„ˆ์ง€์›์œผ๋กœ ์ด์šฉ๋˜์ง€ ์•Š์Œ

์ „์ž์ˆ˜์šฉ์ฒด์— ๋”ฐ๋ผ ํ˜ธ๊ธฐ์„ฑ(O2), ํ˜๊ธฐ์„ฑ(NO3-, SO4

2-, CO2), ๋ฐœํšจ(์œ ๊ธฐ๋ฌผ)๋กœ ๊ตฌ๋ถ„

์žฅ์ 

ํ˜„์žฅ์ฒ˜๋ฆฌ(In-situ/On-site) ๊ฐ€๋Šฅ

์˜ค์—ผ์„ฑ๋ถ„์˜ ๊ถ๊ทน์  ์ œ๊ฑฐ

๋น„๊ต์  ์ €๋ ด

ํƒ€ ๊ธฐ์ˆ ๊ณผ ์—ฐ๊ณ„ ์šฉ์ด

๋ถ€์ง€/ํ† ์–‘ ํŠน์„ฑ๋ณ€ํ˜• ์ตœ์†Œํ™”

์ฃผ๋ฏผ ์นœํ™”์„ฑ ์–‘ํ˜ธ

์ผ๋ถ€ ์˜ค์—ผ์„ฑ๋ถ„์˜ ๋‚œ๋ถ„ํ•ด์„ฑ

์ฒ˜๋ฆฌํšจ๊ณผ๊ฐ€ ๋ถ€์ง€ ํŠน์„ฑ์˜ ์˜ํ–ฅ ๋ฐ›์Œ

์ฒ˜๋ฆฌ/์‚ฌํ›„ ๊ฐ์‹œ๊ธฐ๊ฐ„์ด ๊น€

๋ฏธ์ง€/๋…์„ฑ ์ค‘๊ฐ„๋ฌผ์งˆ ์ƒ์„ฑ ๊ฐ€๋Šฅ์„ฑ

๊ธฐ์ˆ ์˜ ์‹ ๋ขฐ์„ฑ์— ๋Œ€ํ•œ ์ธ์‹๋ฌธ์ œ

๊ธฐ์ˆ  ์ง‘์•ฝ์ 

๋‹จ์ 

์žฅ๋‹จ์ 

๊ณต๋Œ€์‚ฌ Cometaboilsm ํšจ์†Œ์ด‰๋งค๋ฐ˜์‘ Enzyme Reaction

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (2)

2) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ  (์›๋ฆฌ)

โ€ข Hydrolysis : Exoenzyme์— ์˜ํ•ด์„œ ์ด๋ฃจ์–ด์ง€๋Š” ๋ฐ˜์‘. ๋ฌผ์ด ์ฒจ๊ฐ€๋˜์–ด ์œ ๊ธฐ๋ฌผ๋ถ„์ž๊ฐ€ ๊ฐ„๋‹จํ•œ ํ˜•ํƒœ๋กœ ๋Š์–ด์ง€๋Š” ๋ฐ˜์‘

โ€ข Cleavage : ํƒ„์†Œ-ํƒ„์†Œ์˜ ๋‹จ์ผ/์ด์ค‘๊ฒฐํ•ฉ์ด ๋Š์–ด์ง€๋Š” ๋ฐ˜์‘.

โ€ข Oxidation : Electrophilic form์„ ์ด์šฉํ•˜์—ฌ ์œ ๊ธฐ๋ฌผ์ด ๋ถ„ํ•ด๋˜๋Š” ๋ฐ˜์‘

โ€ข Reduction : Nucleophilic form์ด๋‚˜ ์ง์ ‘์ ์ธ ์ „์ž์ „๋‹ฌ์„ ์ด์šฉํ•˜์—ฌ ์œ ๊ธฐํ™”ํ•ฉ๋ฌผ์ด ๋ถ„ํ•ด๋˜๋Š” ๋ฐ˜์‘

โ€ข Dehydrogenation : ์ˆ˜์†Œ ์›์ž 2๊ฐœ๋ฅผ ์žƒ์Œ์œผ๋กœ์จ ๋‘ ๊ฐœ์˜ ์ „์ž์™€ ๋‘ ๊ฐœ์˜ ์ˆ˜์†Œ๋ฅผ ์žƒ๋Š” ์‚ฐํ™”ํ™˜์›๋ฐ˜์‘

โ€ข Dechlorination : ์—ผ์†Œ๊ณ„ ํ™”ํ•ฉ๋ฌผ์ด ์ „์ž์ˆ˜์šฉ์ฒด๋กœ ์ด์šฉ๋˜์–ด ์—ผ์†Œ๊ฐ€ ๋–จ์–ด์ง€๊ณ  ์ˆ˜์†Œ์›์ž๊ฐ€ ๋ถ™๋Š” ๋ฐ˜์‘

โ€ข Dehydrohalogenation : ์œ ๊ธฐํ™”ํ•ฉ๋ฌผ๋กœ๋ถ€ํ„ฐ ์ˆ˜์†Œ์›์ž์™€ ์—ผ์†Œ ์›์ž๊ฐ€ ๋–จ์–ด์ง€๋Š” ๋ฐ˜์‘

โ€ข Substitution : ํ•œ ์›์ž๊ฐ€ ๋‹ค๋ฅธ ์›์ž๋กœ ์น˜ํ™˜๋˜๋Š” ๋ฐ˜์‘

โ€ข์–ด๋–ค ๊ธฐ์งˆ์„ ๋ถ„ํ•ดํ•˜๋Š” ๋ฏธ์ƒ๋ฌผ์˜ ํšจ์†Œ๊ฐ€ ๋‚ฎ์€

๊ธฐ์งˆํŠน์ด์„ฑ ๋•Œ๋ฌธ์— ์—๋„ˆ์ง€ ์ƒ์‚ฐ์ด๋‚˜ ํƒ„์†Œ ๋™ํ™”

๋“ฑ์˜ ์ƒ์žฅ ๊ณผ์ •๊ณผ ๊ด€๊ณ„์—†์ด ๋‹ค๋ฅธ ๊ธฐ์งˆ ์ „ํ™˜

โ€ข์˜ค์—ผ๋ฌผ์˜ ๋ถ„ํ•ด, ๋…์„ฑ ๊ฐ์†Œ ๊ฐ€๋Šฅ

โ€ข์—ผ์†Œ๊ณ„ ์ง€๋ฐฉ์กฑํ™”ํ•ฉ๋ฌผ, ๋‹คํ™˜์„ฑ ๋ฐฉํ–ฅ์กฑ ํ™”ํ•ฉ๋ฌผ

๋“ฑ์˜ ์ฃผ์š” ๋ถ„ํ•ด๊ธฐ์ž‘

์ „์ž์ˆ˜์šฉ์ฒด Electron Acceptor

ํ˜ธ๊ธฐ์„ฑ ์‚ฐ์†Œ O2 ํ˜๊ธฐ์„ฑ Nitrate (์งˆ์‚ฐ) NO3

-

Sulfate (ํ™ฉ์‚ฐ) SO42-

Carbon dioxide (์ด์‚ฐํ™”ํƒ„์†Œ) CO2 ๋ฐœํšจ ๊ธฐ์งˆ์„ ์ „์ž๊ณต์—ฌ์ฒด์™€ ์ „์ž์ˆ˜์šฉ์ฒด๋กœ

๋™์‹œ์— ์ด์šฉํ•˜๋ฉฐ ์ง€๊ทนํžˆ ํ˜๊ธฐ์ ์ธ ์กฐ๊ฑด์—์„œ ๋ฐœ์ƒ

์ƒ๋ฌผ์ •ํ™” ๋Œ€์ƒ์˜ค์—ผ๋ฌผ์งˆ (๋ฏธ๊ตญ)

์œ ๋ฅ˜

ํฌ๋ ˆ์˜ค์†ŒํŠธ๋ฅ˜

์šฉ๋งค๋ฅ˜

๊ธฐํƒ€ (์‚ด์ถฉ์ œ ๋“ฑ)

29%

29%

16%

26%

(์ฐธ๊ณ ) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ  ์ ์šฉ์‚ฌ๋ก€

Superfund ์ •ํ™”๊ธฐ์ˆ  ์ ์šฉ์‚ฌ๋ก€ (โ€˜94)

์ƒ๋ฌผํ•™์  ์ •ํ™”

์†Œ๊ฐ

๊ณ ํ˜•ํ™”/์•ˆ์ •ํ™”

SVE

์—ดํƒˆ์ฐฉ

ํ† ์–‘์„ธ์ฒ™

๊ธฐํƒ€ (ํƒˆ์—ผํ™” ๋“ฑ)

9%

(์›์œ„์น˜ 4%, ์ง€์ƒ 5%)

30%

26%

17%

6%

6%

6%

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (3)

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (4)

3) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ  (์ฃผ์š”์˜ค์—ผ๋ฌผ์˜ ๋ถ„ํ•ด โ‘ )

โ‘  Aliphatic Hydrocarbons ์ง€๋ฐฉ์กฑ ํƒ„ํ™”์ˆ˜์†Œ

Monooxygenase or Dioxygenase

O2

Aliphatic Hydrocarbon

์ข…๋ฅ˜ : Alkanes, Alkenes, Alcohols, Aldehydes, Ketones, Acids ๋ถ„ํ•ด๋˜๋Š” ์ •๋„ โ€ข Long Chain (C9 ์ด์ƒ) > Short Chain โ€ข Straight Chain > Branched Chain โ€ข Saturated Hydrocarbons > Unsaturated Hydrocarbons

ํ† ์–‘์— ๋ถ„ํ•ด ๋ฏธ์ƒ๋ฌผ ๅคš ํ˜ธ๊ธฐ์„ฑ ๋ถ„ํ•ด ์ˆ˜๋ถ„ 50% ์ด์ƒ pH 8.5 ์ดํ•˜

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (5)

3) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ  (์ฃผ์š”์˜ค์—ผ๋ฌผ์˜ ๋ถ„ํ•ด โ‘ก)

โ‘ก Aromatic Hydrocarbons ๋ฐฉํ–ฅ์กฑ ํƒ„ํ™”์ˆ˜์†Œ

Ring Fission

Dihydrodiol

Catechol

BTEX Benzene ์ƒ๋ถ„ํ•ด

Dioxygenase

โ€ข ์น˜ํ™˜๊ธฐ์˜ ์œ„์น˜, ์ˆ˜, ์ข…๋ฅ˜์— ๋”ฐ๋ผ ๋ถ„ํ•ด์„ฑ ์ฐจ์ด โ€ข ํ˜ธ๊ธฐ์„ฑ ๋ถ„ํ•ด โ€ข ํƒˆ์งˆ, ๋ง๊ฐ„ํ™˜์›, ์ฒ ํ™˜์›, ํ™ฉ์‚ฐ์—ผํ™˜์›, ๋ฉ”ํƒ„์ƒ์„ฑ ๋“ฑ ํ˜๊ธฐ์กฐ๊ฑด์—์„œ๋„ ๋ถ„ํ•ด โ€ข ์ „์ž์ˆ˜์šฉ์ฒด์˜ ์ด์šฉ๊ฐ€๋Šฅ์„ฑ๊ณผ ์‚ฐํ™”ํ™˜์›์ „์œ„์— ๋”ฐ๋ผ ๊ฒฐ์ •

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (6)

3) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ  (์ฃผ์š”์˜ค์—ผ๋ฌผ์˜ ๋ถ„ํ•ด โ‘ข)

โ‘ข Polycyclic Aromatic Hydrocarbons ๋‹คํ™˜์„ฑ ๋ฐฉํ–ฅ์กฑ ํƒ„ํ™”์ˆ˜์†Œ

Naphthalene ์ƒ๋ถ„ํ•ด

Ring Fission

โ€ข ๋ฒค์  ๊ณ ๋ฆฌ์™€ ์น˜ํ™˜๊ธฐ์˜ ์ˆ˜, ์ข…๋ฅ˜, ์œ„์น˜์— ๋”ฐ๋ผ ๋ถ„ํ•ด์„ฑ ์ฐจ์ด โ€ข 2~3 rings : ํ˜ธ๊ธฐ์„ฑ ๋ถ„ํ•ด & ํ˜๊ธฐ์„ฑ ๋ถ„ํ•ด, ๋น„๊ต์  ๋น ๋ฅธ ์†๋„ โ€ข 4 rings ์ด์ƒ : ํฐ ๋ถ„ํ•ด์ €ํ•ญ์„ฑ ๊ฐ€์ง โ€ข ์šฉํ•ด๋„ ๋‚ฎ์„์ˆ˜๋ก ๋ฒค์  ๊ณ ๋ฆฌ, ์น˜ํ™˜๊ธฐ ๋ณต์žกํ• ์ˆ˜๋ก ๋ถ„ํ•ด ์–ด๋ ค์›€

Dioxygenase

Ring Fission

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (7)

3) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ  (์ฃผ์š”์˜ค์—ผ๋ฌผ์˜ ๋ถ„ํ•ด โ‘ฃ)

โ‘ฃ Chlorinated Aliphatic Hydrocarbons ์—ผ์†Œ๊ณ„ ์ง€๋ฐฉ์กฑ ํƒ„ํ™”์ˆ˜์†Œ

PCE, TCE ์ƒ๋ถ„ํ•ด

โ€ข ์—๋„ˆ์ง€์›์œผ๋กœ ์‚ฐํ™”/ ํ˜ธ๊ธฐ์กฐ๊ฑด์—์„œ ๊ณต๋Œ€์‚ฌ/ ํ˜๊ธฐ์  ํƒˆ์—ผ์†Œํ™” โ€ข ๋Œ€๋ถ€๋ถ„ ๊ณต๋Œ€์‚ฌ์— ์˜์กด โ€ข (ํ˜ธ๊ธฐ) Oxygenase, Dehalogenase, Hydrolytic

dehalogenase

Reductive Dehalogenation

Vinyl Chloride PCE, TCE๋ณด๋‹ค

๋…์„ฑ์ด ํผ

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (8)

3) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ  (์ฃผ์š”์˜ค์—ผ๋ฌผ์˜ ๋ถ„ํ•ด โ‘ฃ)

(์ฐธ๊ณ ) Cometabolism of TCE by Methane Monooxygenase

MMO

MMO

Methane

TCE

Methanol

TCE epoxide

โ€ข Methanotrophic Bacteria๊ฐ€ ์ƒ์„ฑํ•˜๋Š” MMO์˜ ๊ธฐ์งˆํŠน์ด์„ฑ ๋ถ€์กฑ์œผ๋กœ TCE ๊ณต๋Œ€์‚ฌ๊ฐ€ ์ผ์–ด๋‚จ โ€ข ๋ฉ”ํƒ„๋†๋„๊ฐ€ ๋†’์œผ๋ฉด MMO์— ๋Œ€ํ•˜์—ฌ TCE์™€ ๋ฉ”ํƒ„์ด ๊ฒฝ์Ÿํ•  ์ˆ˜ ์žˆ์Œ โ€ข PCE๋Š” ๋งŽ์ด ์‚ฐํ™”๋œ ์ƒํƒœ์ด๋ฏ€๋กœ ๊ณต๋Œ€์‚ฌ์— ์˜ํ•ด์„œ๋„ ๋ถ„ํ•ด๋˜์ง€ ์•Š์Œ. ํ™˜์›์œผ๋กœ๋งŒ ๋ถ„ํ•ด ๊ฐ€๋Šฅ

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (9)

3) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ  (์ฃผ์š”์˜ค์—ผ๋ฌผ์˜ ๋ถ„ํ•ด โ‘ค)

โ‘ค Chlorinated Aromatic Hydrocarbons ์—ผ์†Œ๊ณ„ ๋ฐฉํ–ฅ์กฑ ํƒ„ํ™”์ˆ˜์†Œ

โ€ข ์ •ํ™”๋Œ€์ƒ๋ฌผ์งˆ - Chlorophenol, Chlorobenzene, Chloroaniline, PCBs, Pesticdes โ€ข PCBs : Polychlorinated Biphenyls, ํƒ„์†Œ์™€ ์—ผ์†Œ์˜ ๋ฌด๊ฒŒ๋น„๋กœ ๊ตฌ๋ถ„ํ•˜๋ฉฐ ์šฉํ•ด๋„๊ฐ€ ์ž‘์•„์„œ ์ง€ํ•˜์ˆ˜๋ณด๋‹ค๋Š” ํ† ์–‘์˜ค์—ผ โ€ข ์—ผ์†Œ์˜ ์น˜ํ™˜ํŠน์„ฑ, ์ˆ˜, ์œ„์น˜์— ์˜ํ•ด ๋ถ„ํ•ด๋„ ๊ฒฐ์ • โ€ข ํ˜ธ๊ธฐ์กฐ๊ฑด์—์„œ ๊ณต๋Œ€์‚ฌ(cometabolism)์— ์˜ํ•ด ๋ถ„ํ•ด โ€ข ํ˜๊ธฐ์กฐ๊ฑด์—์„œ ํƒˆ์—ผ์†Œํ™”(dechlorination)์— ์˜ํ•ด ๋ถ„ํ•ด โ€“ ๋ฉ”ํƒ„์ƒ์„ฑ ์กฐ๊ฑด์—์„œ ํšจ์œจ์ 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

substr

ate

concentr

ati

on

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (10)

4) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ  (Kinetics & Rates)

โ€ข Thermodynamics โ€“ ๋ฐ˜์‘(๋ถ„ํ•ด)์˜ ๊ฐ€๋Šฅ์„ฑ ๋ฌธ์ œ โ€“ ๊ณผํ•™์ž์˜ ์˜์—ญ

โ€ข Kinetics

โ€“ ๋ฐ˜์‘(๋ถ„ํ•ด)์†๋„์˜ ๋ฌธ์ œ โ€“ ๋†๋„, ๋ฏธ์ƒ๋ฌผ, ํ™˜๊ฒฝ์กฐ๊ฑด์˜ ์˜ํ–ฅ โ€“ ๊ณตํ•™์ž์˜ ์˜์—ญ

0์ฐจ ๋ฐ˜์‘: ๋ชจ๋“  ๊ธฐ์งˆ์ด ์ด์šฉ๊ฐ€๋Šฅํ•œ ์ƒํƒœ. ๋Œ€์ˆ˜์  ๊ฐ์†Œ

1์ฐจ ๋ฐ˜์‘: ์†๋„๊ฐ€ ๊ธฐ์งˆ๋†๋„์— ๋น„๋ก€

2์ฐจ ๋ฐ˜์‘: ์‹ค์ œ์™€ ๊ฐ€์žฅ ๋น„์Šท/โ€์œ ์‚ฌ์ผ์ฐจ๋ฐ˜์‘โ€

kdtdC

=โˆ’

kCdtdC

=โˆ’

2kCdtdC

=โˆ’

0์ฐจ 1์ฐจ

2์ฐจ

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (11)

5) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ  (ํ™˜๊ฒฝ์กฐ๊ฑด์˜ ์˜ํ–ฅ)

โ€ข Bacteria ํ˜ธ๊ธฐ์„ฑ vs. ํ˜๊ธฐ์„ฑ ๋…๋ฆฝ์˜์–‘ vs. ์ข…์†์˜์–‘ โ€ข ํ† ์–‘์ž…์žํ‘œ๋ฉด์— ๋ถ™์–ด์žˆ์Œ โ€ข ์ง€ํ‘œ ๊ฐ€๊นŒ์ด์— ๋งŽ์ด ์กด์žฌ

โ€ข C, H, O, N์ด 95%, P, Ca ๋“ฑ์ด 3.5%

โ€ข Bacteria ํ™”ํ•™์‹ C5H7O2N

โ€ข ์งˆ์†Œ, ์ธ ๋“ฑ์ด ๋ถ€์กฑ โ€ข ๋ฏธ์ƒ๋ฌผ์‚ฌ๋ฉธ๋กœ ์›์†Œ์ˆœํ™˜ โ€ข Growth factor ํ•„์š”

โ€ข ์˜จ๋„๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ์ƒํ™”ํ•™๋ฐ˜์‘์†๋„ ์ฆ๊ฐ€

โ€ข ์ตœ์ ์˜จ๋„ Psychrophile(15ยฑ5โ„ƒ) Mesophile(25~40โ„ƒ) Thermophile(40โ„ƒ์ด์ƒ)

โ€ข ์„ธํฌ๊ธฐ๋Šฅ, ์„ธํฌ๋ง‰์„ ํ†ตํ•œ ๋ฌผ์งˆ์ด๋™, ํšจ์†Œ๋ฐ˜์‘์˜ ํ‰ํ˜•, ์„ธํฌ ๋‚ด ์—๋„ˆ์ง€ ์ƒ์‚ฐ ๋“ฑ์— ์˜ํ–ฅ

โ€ข ์ž์—ฐํ™˜๊ฒฝ pH 5~9 โ€ข ์ผ๋ฐ˜์ ์œผ๋กœ ์ตœ์  6.5~7.5

โ€ข ์˜ค์—ผ๋ฌผ์งˆ์˜ ์ƒ๋ฌผํ•™์  ์ด์šฉ์„ฑ, ๊ธฐ์ฒด ์ „๋‹ฌ, ์˜ค์—ผ๋ฌผ์งˆ์˜ ์œ„ํ•ด์„ฑ, ๋ฏธ์ƒ๋ฌผ์˜ ์›€์ง์ž„๊ณผ ์ƒ์žฅ, ๋ฏธ์ƒ๋ฌผ ์ข…์˜ ๋ถ„ํฌ์— ์˜ํ–ฅ

โ€ข ์ค‘๋ ฅ์ˆ˜ ๋น„์œจ, FC๋กœ ์ธก์ •

โ€ข EH๋กœ ํ‘œํ˜„ โ€ข (+)๋Š” ์‚ฐํ™”ํ™˜๊ฒฝ, (-)๋Š” ํ™˜

์›ํ™˜๊ฒฝ โ€ข ์˜ค์—ผ๋ฌผ์˜ ๋ถ„ํ•ด์—ฌ๋ถ€ ๊ฒฐ์ • โ€ข ํŠน์ • ์‚ฐํ™”์ œ/ํ™˜์›์ œ์˜ ๋†

๋„๊ฐ€ ๋ฏธ์ƒ๋ฌผ ๋Œ€์‚ฌ ํ™œ์„ฑ์— ์˜ํ–ฅ

๋ฏธ์ƒ๋ฌผ

pH

์˜จ๋„

์‚ฐํ™”ํ™˜์›์ „์œ„

์˜์–‘๋ถ„

์ˆ˜๋ถ„

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (12)

6) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘  Biodegradation ์ƒ๋ถ„ํ•ด๋ฒ•

์ง€์ค‘์— ์กด์žฌํ•˜๋Š” ์˜ค์—ผ๋ฌผ์งˆ์„ ๋ถ„ํ•ดํ•˜๋Š” ๋Šฅ๋ ฅ์„ ๊ฐ€์ง„ ๋ฏธ์ƒ๋ฌผ์„ ์ด์šฉํ•˜์—ฌ ํ† ์–‘ ๋ฐ ์ง€ํ•˜์ˆ˜ ๋‚ด์˜ ์œ ๊ธฐ์˜ค์—ผ๋ฌผ์งˆ์„ ๋ถ„ํ•ดํ•˜๋Š” ๊ธฐ์ˆ 

์œ ๋ฅ˜ ํƒ„ํ™”์ˆ˜์†Œ, ์šฉ๋งค, ์‚ด์ถฉ์ œ, ๊ธฐํƒ€ ์œ ๊ธฐ๋ฌผ

์˜ค์—ผ๋ฌผ์˜ ํก์ฐฉ์„ฑ, ํ™”ํ•™์  ๋ฐ˜์‘์„ฑ, ์ƒ๋ถ„ํ•ด ๊ฐ€๋Šฅ์„ฑ, ์˜ค์—ผ๋ฌผ์˜ ๋†๋„, ์˜ค์—ผ๋ฌผ์งˆ๊ณผ ๋ฏธ์ƒ๋ฌผ์˜ ์ ‘์ด‰ ์—ฌ๋ถ€, ํ† ์–‘์˜ ํŠน์„ฑ๊ณผ ์„ฑ์ƒ, ์‚ฐํ™”ํ™˜์›์ „์œ„, ๋ฏธ์ƒ๋ฌผ ํ™œ์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋…์„ฑ๋ฌผ์งˆ์˜ ์กด์žฌ ์—ฌ๋ถ€

๊ฐœ์š”

์ฒ˜๋ฆฌ๋ฌผ์งˆ

์˜ํ–ฅ์ธ์ž

โ†’๊ณต๊ธฐ ์ฃผ์ž…: ์ €๋น„์šฉ, ์ ์šฉ ์šฉ์ด, ๋‚ฎ์€ ์‚ฐ์†Œ์ „๋‹ฌ๋ฅ 

โ†’์‚ฐ์†Œ ์ฃผ์ž…: ๊ณ ๋น„์šฉ, ๋†’์€ ์‚ฐ์†Œ์ „๋‹ฌ๋ฅ 

โ†’์•„์„ธํ…Œ์ดํŠธ, ์—ํƒ„์˜ฌ ๋“ฑ ๊ณต๊ธ‰: ํ˜๊ธฐ์  ๊ณต๋Œ€์‚ฌ๋Šฅ ํ–ฅ์ƒ, ํ™˜์›์  ํƒˆ์—ผ์†Œํ™” ์ด‰์ง„

โ†’ํ† ์ฐฉ๋ฏธ์ƒ๋ฌผ ๊ฐœ์ฒด๊ตฐ์„ ์ง€์ƒ์—์„œ ์„ฑ์žฅ์‹œํ‚จ ๊ฒƒ์ด๋‚˜ ๋Œ€์ƒ ์˜ค์—ผ๋ฌผ์งˆ์„ ๋ถ„ํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฏธ์ƒ๋ฌผ์„ ํ† ์–‘์— ์ ‘์ข…

โ†’ ubiquity principle & ์ž์ƒ๋ฏธ์ƒ๋ฌผ์˜ ์˜ค์—ผ๋ฌผ์งˆ ๋ถ„ํ•ดํšจ์†Œ ์ฆ์ง„

โ†’์ฃผ์ž…๋ฏธ์ƒ๋ฌผ ์ด๋™, ๋ถ„ํฌ ๋ฐ ํ˜„์žฅ์ ์‘๋„ ๋ฌธ์ œ

โ†’๋ฉ”ํƒ„, ์•”๋ชจ๋‹ˆ์•„ ๋“ฑ ์˜์–‘์—ผ๋ฅ˜ ๊ธฐ์ฒด๋กœ ๊ณต๊ธ‰: CAH ๊ณต๋Œ€์‚ฌ๋Šฅ ํ–ฅ์ƒ

โ†’ํ˜๊ธฐํ™”: ์„คํƒ• ์ฃผ์ž…

โ†’์งˆ์†Œ, ์ธ, ์นผ๋ฅจ, ๋งˆ๊ทธ๋„ค์Š˜ ๋“ฑ ์–‘๋ถ„ ๊ณต๊ธ‰: ์ฃผ์ž…๊ตฌ ์ฃผ๋ณ€ biofouling ๊ฐ€๋Šฅ์„ฑ, pH ๋ณ€ํ™” ์ฃผ์˜

โ†’๊ณผ์‚ฐํ™”์ˆ˜์†Œ: ์ทจ๊ธ‰ ์šฉ์ด, ์ž์ฒด๋…์„ฑ

โ†’ MgO ๋“ฑ ์‚ฐ์†Œ๋ฐœ์ƒ๋ฌผ์งˆ ์ฃผ์ž…

โ†’์‚ฐ์†Œ ๋…น์•„์žˆ๋Š” ๋ฌผ

โ†’์งˆ์‚ฐ: ํƒˆ์งˆ ํ™œ์„ฑํ™”, ํ˜๊ธฐ์กฐ๊ฑด ์ง€์—ญ๊นŒ์ง€ ์ •ํ™”๊ฐ€๋Šฅ, ์งˆ์‚ฐ๋‚˜ํŠธ๋ฅจ ์˜ค์—ผ๊ธฐ์ค€ ๋ฐ ๋…์„ฑ ๊ณ ๋ ค ํ•„์š”

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (13)

6) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘  Biodegradation ์ƒ๋ถ„ํ•ด๋ฒ•

Biostimulation Bioaugmentation

์‚ฐ์†Œ ๊ณต๊ธ‰

1์ฐจ ๊ธฐ์งˆ๊ณต๊ธ‰

๋ฏธ์ƒ๋ฌผ ๊ณต๊ธ‰

๊ธฐํƒ€ ์˜์–‘๋ถ„ ๊ณต๊ธ‰

์‚ฐ์†Œ๋ฐœ์ƒ๋ฌผ์งˆ ๊ณต๊ธ‰ ์ „์ž์ˆ˜์šฉ์ฒด ๊ณต๊ธ‰

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (14)

6) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ก Bioventing ์ƒ๋ฌผํ•™์  ํ†ตํ’๋ฒ•

Delivery of Nutrient

Valve Monitoring Well

Groundwater Recirculation

System

NAPL Plume

Property Boundary

Vadose Zone

Saturated Zone

Working GW Level

์˜ค์—ผ๋œ ๋ถˆํฌํ™”์ง€๋ฐ˜์— ์‚ฐ์†Œ๋ฅผ ๊ณต๊ธ‰ํ•จ์œผ๋กœ์จ ํ† ์–‘์— ํ•จ์œ ๋œ ์œ ๋ฅ˜ ํƒ„ํ™”์ˆ˜์†Œ ์ƒ๋ถ„ํ•ด๋ฅผ ํ™œ์„ฑํ™”ํ•˜๋Š” ๊ธฐ์ˆ 

์œ ๋ฅ˜ ํƒ„ํ™”์ˆ˜์†Œ, ๋น„์—ผ์†Œ๊ณ„ ์šฉ๋งค, ์‚ด์ถฉ์ œ ๋“ฑ ์œ ๊ธฐํ™”ํ•ฉ๋ฌผ์งˆ

์˜ค์—ผ๋ฌผ์˜ ์ƒ๋ถ„ํ•ด์„ฑ, ์ถฉ๋ถ„ํ•œ ์‚ฐ์†Œ, ํ† ์–‘์˜ pH์™€ ์˜จ๋„, ํ†ต๊ธฐ์„ฑ, ์ˆ˜๋ถ„ํ•จ๋Ÿ‰ ๋ฐ ์˜์–‘๋ถ„

๊ฐœ์š”

์ฒ˜๋ฆฌ๋ฌผ์งˆ

์˜ํ–ฅ์ธ์ž ๋‚ฎ์€ ์••๋ ฅ์œผ๋กœ ์ถฉ๋ถ„ํ•œ ์‚ฐ์†Œ๊ณต๊ธ‰ ๊ฐ€๋Šฅ

๋ฏธ์ƒ๋ฌผ ๋ถ„ํ•ด ์™ธ์—๋„ ํœ˜๋ฐœ์„ฑ ๋ฌผ์งˆ ์ œ๊ฑฐ ๊ฐ€๋Šฅ ๋ฌด๊ธฐ๋ฌผ ํก์ฐฉ, ํก์ˆ˜, ์‘์ง‘, ๋†์ถ• ๊ฐ€๋Šฅ

์žฅ์ 

ํฌํ™”๋Œ€์—์„œ๋Š” Air Sparging ๋“ฑ ๋ณ‘ํ–‰ ํ•„์š” ๋ฐฉ์ถœ๊ฐ€์Šค ์ฒ˜๋ฆฌ์‹œ์„ค ํ•„์š” ๋ฌด๊ธฐ๋ฌผ ๋ถ„ํ•ด ์–ด๋ ค์›€

๋‹จ์ 

ํ˜„์žฅ์ง€์งˆ์กฐ๊ฑด ๊ณ ๋ คํ•œ ๊ด€์ •์˜ ์ˆ˜์™€ ์œ„์น˜ ์„ค๊ณ„ ํ† ์–‘ํ•จ์ˆ˜๋น„์™€ ์˜์–‘๋ถ„์— ๋Œ€ํ•œ ์ •๊ธฐ์  ๋ชจ๋‹ˆํ„ฐ๋ง ํ•„์š”

์„ค๊ณ„ ๋ฐ

์šด์ „

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (15)

6) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ข Composting ํ‡ด๋น„ํ™”

๋ฏธ์ƒ๋ฌผ์— ์ ์ •์กฐ๊ฑด์„ ์ œ๊ณตํ•จ์œผ๋กœ

์จ ํ˜๊ธฐ์„ฑ ๋ถ„ํ•ด ๋˜๋Š” ๋ฐœํšจ๋ฅผ ์ด์šฉ

ํ•˜์—ฌ ์˜ค์—ผ๋ฌผ์งˆ์„ ์ƒ๋ฌผํ•™์  ๋ถ„ํ•ด

์œ ๊ธฐ๋ฌผ ๋˜๋Š” ์ƒ๋ถ„ํ•ด ๊ฐ€๋Šฅํ•œ ๋ฌผ์งˆ

์˜ค์—ผ๋ฌผ์งˆ์˜ ๋†๋„, ํ† ์–‘์˜ ํ˜•ํƒœ, ์˜

์–‘๋ถ„, ๋ฏธ์ƒ๋ฌผ์˜ ๋ถ„ํ•ด๋Šฅ๋ ฅ

๊ฐœ์š”

์ฒ˜๋ฆฌ ๋ฌผ์งˆ

์˜ํ–ฅ ์ธ์ž

๋„“์€ ๋ถ€์ง€ ํ•„์š”

ํŒฝํ™”์žฌ ์‚ฌ์šฉ์œผ๋กœ ์ „์ฒด ๋ถ€ํ”ผ ์ฆ๊ฐ€

์ค‘๊ธˆ์† ๋ถ„ํ•ด ๋ถˆ๊ฐ€๋Šฅ

ํ•œ๊ณ„

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (16)

6) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ฃ Controlled Solid Phase Biological Treatment

ํ† ์–‘์„ ๊ตด์ฐฉํ•˜์—ฌ ํ† ์–‘๊ฐœ์„ 

์žฌ์™€ ํ˜ผํ•ฉํ•˜๊ณ  ์นจ์ถœ์ˆ˜์ฒ˜๋ฆฌ

์žฅ์น˜, ํญ๊ธฐ์žฅ์น˜๋ฅผ ์„ค์น˜ํ•˜์—ฌ

์ƒ๋ถ„ํ•ด๋ฅผ ํ™œ์„ฑํ™”ํ•˜๋Š” ๊ณต๋ฒ•

์œ ๊ธฐ๋ฌผ ๋˜๋Š” ์ƒ๋ถ„ํ•ด ๊ฐ€๋Šฅํ•œ

๋ฌผ์งˆ

๊ฐœ์š”

์ฒ˜๋ฆฌ๋ฌผ์งˆ

ํ† ์–‘๊ตด์ฐฉ ํ•„์š” (๋น„์šฉ)

๊ฐ์ข… ์žฅ์น˜ ์„ค์น˜ ํ•„์š”

๋„“์€ ๋ถ€์ง€ ํ•„์š”

๊ธด ์ฒ˜๋ฆฌ๊ธฐ๊ฐ„

ํ•œ๊ณ„

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (17)

6) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ค Landfarming ํ† ์–‘๊ฒฝ์ž‘๋ฒ•

์˜ค์—ผํ† ์–‘์„ ๊ตด์ฐฉ

ํ•˜์—ฌ ์ •๊ธฐ์ ์œผ๋กœ

ํ˜ผํ•ฉํ•ด ์คŒ์œผ๋กœ์จ

ํ˜ธ๊ธฐ์  ์ƒ๋ถ„ํ•ด๋ฅผ

์œ ๋„ํ•˜๋Š” ๊ณต๋ฒ•

์œ ๋ฅ˜ ํƒ„ํ™”์ˆ˜์†Œ

์‚ด์ถฉ์ œ

์˜ค์—ผ๋ฌผ์งˆ์˜ ๋†๋„์™€ ๋…์„ฑ

๋ฌด๊ธฐ๋ฌผ์งˆ์˜ ์กด์žฌ ์—ฌ๋ถ€

ํ† ์–‘์˜ ์œ ๊ธฐ๋ฌผ ํ•จ๋Ÿ‰

๊ฐœ์š”

์ฒ˜๋ฆฌ ๋ฌผ์งˆ

์˜ํ–ฅ ์ธ์ž

์‹œ์„ค ์„ค์น˜๋ฅผ ์œ„ํ•œ ๋„’์€ ๋ถ€์ง€ ํ•„์š” ๋ฐฐ์ถœ๊ฐ€์Šค ์ •ํ™”์‹œ์„ค ํ•„์š” ์ƒ๋Œ€์ ์œผ๋กœ ๊ธด ์ •ํ™”๊ธฐ๊ฐ„ ์ค‘๊ธˆ์† ๋“ฑ ๋ฌด๊ธฐ๋ฌผ ๋ถ„ํ•ด ๋ถˆ๊ฐ€๋Šฅ

ํ•œ๊ณ„

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (18)

6) ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ฅ White Rot Fungus

๋ฆฌ๊ทธ๋‹Œ์„ ๋ถ„ํ•ด

ํ•˜๋Š” ํšจ์†Œ๋ฅผ ๊ฐ€

์ง„ ๋ฏธ์ƒ๋ฌผ์„ ์ด

์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ

์œ ๊ธฐ๋ฌผ์งˆ์„ ๋ถ„

ํ•ดํ•˜๋Š” ๊ณต๋ฒ•

TNT, RDX,

HMX ๋“ฑ ํญ์•ฝ๋ฅ˜

DDT, PAHs,

PCBs, PCP ๋“ฑ

์œ ๊ธฐ์˜ค์—ผ๋ฌผ

๊ฐœ์š”

์ฒ˜๋ฆฌ ๋ฌผ์งˆ

์˜ค์—ผ๋ฌผ์งˆ์˜ ๋†๋„

ํ† ์ฐฉ๋ฏธ์ƒ๋ฌผ๊ตฐ์˜ ๋ฐ•ํ…Œ๋ฆฌ์•„ ์ˆ˜

์˜ค์—ผ๋ฌผ์งˆ์˜ ํ™”ํ•™์  ํก์ฐฉ

๋‹ค๋ฅธ ์˜ค์—ผ๋ฌผ์งˆ์ด๋‚˜ ํ† ์–‘ ํŠน์„ฑ

์˜ํ–ฅ ์ธ์ž

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (19)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘  Air Sparging ๊ณต๊ธฐ๋ถ„๋ฌด๋ฒ•

ํœ˜๋ฐœ, ์ƒ๋ถ„ํ•ด๋ฅผ ์ด์šฉํ•˜์—ฌ ํฌํ™”๋Œ€ ๋‚ด์˜ ์šฉํ•ด์ƒ, ์ž์œ ์ƒ, ํก์ฐฉ์ƒ ์˜ค์—ผ๋ฌผ์งˆ ์ •ํ™”ํ•˜๋Š” ๊ธฐ๋ฒ•

ํ—จ๋ฆฌ์ƒ์ˆ˜ 10-5 atm-m3/mole ์ด์ƒ ์ฆ๊ธฐ์•• 0.5~1.0 mmHg ์šฉํ•ด๋„๊ฐ€ ๋‚ฎ์€ ๋ฌผ์งˆ (BTEX, PCE, TCE ๋“ฑ์€ ์ €ํšจ์œจ) ํ˜ธ๊ธฐ์„ฑ ์ƒ๋ถ„ํ•ด๊ฐ€ ์ž˜ ์ผ์–ด๋‚˜๋Š” ๋ฌผ์งˆ

๋Œ€์ˆ˜์ธต ์ข…๋ฅ˜ (์ž์œ ๋ฉด vs. ํ”ผ์••) ํ† ์–‘ ์ข…๋ฅ˜ (์ž…๋„๋ถ„ํฌ/ ๊ท ์งˆ vs. ๋ถˆ๊ท ์งˆ) ์ง€ํ•˜์ˆ˜๋ฉด ๊นŠ์ด, ํˆฌ์ˆ˜์„ฑ, ํ†ต๊ธฐ์„ฑ pH, ์˜จ๋„, ์‚ฐ์†Œ, ์ˆ˜๋ถ„ํ•จ๋Ÿ‰, ์˜์–‘๋ถ„ ์œ ๊ธฐํƒ„์†Œ ํ•จ๋Ÿ‰ ์˜ค์—ผ๋ฌผ์˜ ํœ˜๋ฐœ์„ฑ, ์šฉํ•ด๋„ ๋ฐ ์ƒ๋ถ„ํ•ด์„ฑ

๊ฐœ์š”

์ฒ˜๋ฆฌ๋ฌผ์งˆ

์˜ํ–ฅ์ธ์ž

ํ”ผ์••๋Œ€์ˆ˜์ธต, ๋‚ฎ์€ ํˆฌ์ˆ˜์„ฑ ์ง€๋ฐ˜ ๋ถˆ๊ฐ€๋Šฅ ๋ถˆ๊ท ์งˆ ๋งค์งˆ์— ์ ์šฉ ์–ด๋ ค์›€ ์˜ค์—ผ๋ฌผ ํ™•์‚ฐ๊ฐ€๋Šฅ์„ฑ, channeling ํ˜„์ƒ ์ฃผ๋ณ€๊ตฌ์กฐ๋ฌผ์˜ ์•ˆ์ •์„ฑ์— ์˜ํ–ฅ ํœ˜๋ฐœ์„ฑ ํฐ ์˜ค์—ผ๋ฌผ ์ ์šฉ ์–ด๋ ค์›€ ๋‘๊ป˜ 1ft ์ด์ƒ์˜ NAPLs ํšจ์œจ ๋‚ฎ์Œ

ํ•œ๊ณ„

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (20)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘  Air Sparging ๊ณต๊ธฐ๋ถ„๋ฌด๋ฒ•

๋ชฉํ‘œ์ •ํ™”์ˆ˜์ค€ ๋ฐ ์ •ํ™”์‹œ๊ฐ„ ์ฃผ์ž…ํ˜•ํƒœ (continuous vs. pulsed) Standard vs. Site specific design ์˜ค์—ผ๋ฌผ์งˆ ์ข…๋ฅ˜ ์ฃผ์ž…์ •, ์ถ”์ถœ์ •, ๊ด€์ธก์ • ์œ„์น˜ ๋ฐ ๊ฐœ์ˆ˜ ์ฃผ์ž…์ •์˜ clogging ์—ฌ๋ถ€

์„ค๊ณ„ ์š”์†Œ

์˜ค์—ผ๋ฌผ์˜ ์ข…๋ฅ˜, ์œ„์น˜, ๋ถ„ํฌ์–‘์ƒ ๋Œ€์ˆ˜์ธต ์ข…๋ฅ˜, ์ง€ํ•˜์ˆ˜๋ฉด ๊นŠ์ด, ํ† ์–‘์˜ ์ข…๋ฅ˜์™€ ํŠน์„ฑ ๋“ฑ ์ˆ˜๋ฆฌ์ง€์งˆํ•™์  ์กฐ๊ฑด ๋ถˆ๊ท ์งˆ์„ฑ์— ๋”ฐ๋ฅธ air plume ๋ถ„ํฌ์–‘์ƒ ์ฃผ์ž…๋ฅ ์— ๋”ฐ๋ฅธ air channel ๋ถ„ํฌ ์–‘์ƒ Pilot test (์••๋ ฅ, ์šฉ์กด์‚ฐ์†Œ๋Ÿ‰, ์ง€ํ•˜์ˆ˜๋ฉด, ์˜ค์—ผ๋ฌผ ๋†๋„ ๋ณ€ํ™” ๊ด€์ธก) ๊ณต๊ธฐ ๋ถ„ํฌ ์–‘์ƒ ๋ฐ ์˜ํ–ฅ๋ฐ˜๊ฒฝ ์˜ค์—ผ๋ฌผ์˜ ํœ˜๋ฐœ๋ฅ ๊ณผ ์‚ฐ์†Œ๊ณต๊ธ‰๋ฅ 

์‚ฌ์ „ ์กฐ์‚ฌ

์˜ค์—ผ์ง€๋Œ€ ๊นŠ์ด๊ฐ€ 30ft ์ดํ•˜์ผ ๋•Œ ๋‚ฎ์€ ํˆฌ์ˆ˜์„ฑ ์ง€๋ฐ˜์— ์ ์šฉ

ํƒ€ ๊ธฐ์ˆ ๊ณผ ๋ณ‘ํ–‰

๊ณต๊ธฐ์ฃผ์ž…์— ๋น„์ ํ•ฉํ•œ ์ง€์—ญ์—์„œ casing์„ ์ด์šฉ, ๊ณต๊ธฐํ๋ฆ„

ํ˜•์„ฑ

์ƒ๋ถ„ํ•ด๋งŒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜์—ฌ ํฌํ™”๋Œ€์— ๋‚ฎ์€ ์œ ์†์œผ๋กœ ๊ณต๊ธฐ ์ฃผ

์ž…

์–•์€ ์ง€ํ•˜์ˆ˜๋Œ€, ์ž‘์€ ์ž…์ž๋กœ ๊ตฌ์„ฑ๋œ ์ง€์—ญ์— ๊ฐ‡ํžŒ ์ฆ๊ธฐ ์ œ๊ฑฐ

Horizontal Trench Sparging

In-Well Air Sparging

Biosparging Vapor Recovery

via Trenches

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (21)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ก Soil Vapor Extraction (SVE) ํ† ์–‘์ฆ๊ธฐ์ถ”์ถœ๋ฒ• VOC/SVOC๋กœ ์˜ค์—ผ๋œ ๋ถˆํฌํ™”๋Œ€์— ์ฃผ์ž…์ •๊ณผ ์ถ”์ถœ์ •์„ ์„ค์น˜ํ•˜๊ณ  ๊นจ๋—ํ•œ ๊ณต๊ธฐ๋ฅผ ์ง€์ค‘์— ๋„ฃ์€ ๋’ค ์ง„๊ณต์••์„ ์ด์šฉํ•ด ๊ณต๊ธฐ๋ฅผ ๋นจ์•„๋“ค์ž„์œผ๋กœ์จ ํœ˜๋ฐœ์„ฑ ์˜ค์—ผ๋ฌผ์งˆ์ด ๊ณต๊ธฐ์™€ ์„ž์—ฌ ๋ฐฐ์ถœ๋˜๋„๋ก ํ•˜๋Š” ๊ณต๋ฒ•

๋ถˆํฌํ™”๋Œ€์˜ ํœ˜๋ฐœ์„ฑ NAPL ์ง€์ค‘์— ์ž”๋ฅ˜ํ•˜๊ฑฐ๋‚˜(trapped), ์ž์œ  ์ƒํƒœ(free-product)๋กœ ์กด์žฌํ•˜๋Š” NAPL

๊ฐœ์š”

์ฒ˜๋ฆฌ๋ฌผ์งˆ

์ฆ๊ธฐ์•• 0.5mmHg ์ดํ•˜ ์˜ค์—ผ๋ฌผ ๋ถ€์ ํ•ฉ ๊ท ์งˆ/ํˆฌ์ˆ˜์„ฑ ๋ถˆํฌํ™” ์ง€๋ฐ˜์— ์ ์šฉ ๊ฐ€๋Šฅ ์ ํ† ์ง€๋ฐ˜์—์„œ๋Š” ํŒŒ์‡„๊ณต๋ฒ• ๋ณ‘ํ–‰ ํ•„์š” ์ค‘๊ธˆ์†, DNAPL, PCBs, Dioxins ๋ถ€์ ํ•ฉ Bioventing ๋“ฑ์œผ๋กœ ์ถ”๊ฐ€ ์ •ํ™” ํ•„์š” ๋ฐฉ์ถœ๊ฐ€์Šค ์ฒ˜๋ฆฌ์‹œ์„ค ํ•„์š”

ํ•œ๊ณ„

์ถ”๊ฐ€๋กœ ์ฃผ์ž…๋˜๋Š” ์‹œ์•ฝ์ด ์—†์Œ ๋ถ€์ž‘์šฉ์ด ๊ฑฐ์˜ ์—†์Œ ์„ค์น˜ ์šฉ์ด, ๋น„์šฉ ์ €๋ ด, ์‹ ์† ์ผ๋ฐ˜๊ตด์ฐฉ๋ณด๋‹ค ๊นŠ์ด ์ •ํ™” ๊ณต๊ธฐ ์ฃผ์ž…์„ ํ†ตํ•œ ์ƒ๋ถ„ํ•ด ํ™œ์„ฑํ™” ์ ‘๊ทผํ•˜๊ธฐ ์–ด๋ ค์šด ์ง€์—ญ์— ์ ์šฉ ๊ฐ€๋Šฅ

์žฅ์ 

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (22)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ก Soil Vapor Extraction (SVE) ํ† ์–‘์ฆ๊ธฐ์ถ”์ถœ๋ฒ•

๊ณต๊ธฐ ์ถ”์ถœ๋ฅ /๋Ÿ‰, ์˜ํ–ฅ๋ฐ˜๊ฒฝ์„ ๊ณ ๋ คํ•œ ์ถ”์ถœ์ •์˜ ์ˆ˜, ๊ฐ„๊ฒฉ๊ณผ ํ˜•์ƒ, ์„ธ์ •์‹œ๊ฐ„, ๋ฐฉ์ถœ๊ฐ€์Šค ์ฒ˜๋ฆฌ, ์ง€ํ•˜์ˆ˜์œ„ ๋ณ€๋™์˜ ์˜ํ–ฅ์„ ๊ณ ๋ คํ•œ ์Šคํฌ๋ฆฐ ๋ฒ”์œ„ ๊ฒฐ์ •, ๋ฌผ ์นจํˆฌ ์ œ์–ด

์„ค๊ณ„ ์š”์†Œ

์˜ค์—ผ๋ฌผ ํœ˜๋ฐœ์„ฑ, ์ฆ๊ธฐ์••, Henry ์ƒ์ˆ˜ ์˜ค์—ผ๋ฌผ ๊ณต๊ธฐ/๋ฌผ ๋ถ„๋ฆฌ๊ณ„์ˆ˜, ์šฉํ•ด์„ฑ ์˜ค์—ผ๋ฌผ ๋ถ„ํฌ ๊นŠ์ด, ํ˜•์ƒ, ๋ฉด์  ์ง€๋ฐ˜ ๊ณต๊ธฐํˆฌ๊ณผ์„ฑ, ํˆฌ์ˆ˜์„ฑ, ๊ณต๊ทน๋ฅ  ์œ ๊ธฐํƒ„์†Œํ•จ์œ ๋Ÿ‰, ํ•จ์ˆ˜๋น„, ์ž…๋„๋ถ„ํฌ ์ง€๋ฐ˜๊ณผ ์ง€์—ญ ๋‚ด๋กœ์˜ ์ ‘๊ทผ์„ฑ

์‚ฌ์ „ ์กฐ์‚ฌ

์ง€ํ•˜์ˆ˜์œ„ ์ €ํ•˜๋กœ SVE๋ฅผ ํ†ตํ•œ ์ •ํ™”์˜

์—ญ ํ™•์žฅ

ํƒ€ ๊ธฐ์ˆ ๊ณผ ๋ณ‘ํ–‰

๊ณต๊ธฐ์˜ ์ˆœํ™˜์ฃผ๊ธฐ๊ฐ€ ๋„ˆ๋ฌด ์งง์•„์ง€๋Š” ๊ฒƒ์„

๋ฐฉ์ง€

์†กํ’๊ธฐ๋กœ ๊ณต๊ธฐ ๋ฐ ์˜ค์—ผ๋ฌผ์งˆ์˜ ํ๋ฆ„์„ ์›

ํ™œํ•˜๊ฒŒ ์œ ๋„

์ง€ํ•˜์ˆ˜๋Œ€ ์ƒ๋ถ€์˜ ์˜ค์—ผ๋ฌผ์งˆ์„ ํœ˜๋ฐœ์‹œ์ผœ

ํ•จ๊ป˜ ์ •ํ™”์ฒ˜๋ฆฌ

SVE ์ ์šฉ ์ „ ์‚ฌ์ „ ์–‘์ˆ˜

ํ‘œ๋ฉด์— ๋ถˆํˆฌ์ˆ˜์„ฑ ์žฅ๋ฒฝ ์„ค์น˜

๊ณต๊ธฐ ์†กํ’๊ธฐ ์„ค์น˜

Air Sparging

์˜ค์—ผ๋ฌผ ๋†๋„, ํœ˜๋ฐœ์„ฑ, ๋ถ„ํฌ ๋ฐ ๋ฉด์ , ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๋Œ€์ˆ˜์ธต ๊นŠ์ด, ํ† ์–‘ ํ˜•ํƒœ์™€ ์„ฑ๋ถ„, ์ˆ˜๋ถ„/์œ ๊ธฐ๋ฌผ ํ•จ๋Ÿ‰, ๊ณต๊ธฐํˆฌ๊ณผ๋„, ์ถฉ๋ถ„ํ•œ ์‚ฐ์†Œ์™€ ์˜์–‘๋ถ„์˜ ์กด์žฌ ์œ ๋ฌด

์˜ํ–ฅ ์ธ์ž

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (23)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ข Pump and Treat (P&T) ์–‘์ˆ˜์ฒ˜๋ฆฌ๋ฒ•

์˜ค์—ผ์ง€์—ญ์— ์ถ”์ถœ์ •์„ ์„ค์น˜, ์˜ค์—ผ๋œ ์ง€ํ•˜์ˆ˜๋ฅผ ์ง„๊ณตํŽŒํ”„๋กœ ์–‘์ˆ˜ํ•˜์—ฌ ๋ฌผ๋ฆฌํ™”ํ•™์  ํ˜น์€ ์ƒ๋ฌผํ•™์  ์ฒ˜๋ฆฌ๋ฅผ ๊ฑฐ์ณ ์ •ํ™”ํ•œ ํ›„ ๋‹ค์‹œ ์ง€ํ•˜์ˆ˜๋กœ ์œ ์ž…์‹œํ‚ค๋Š” ์ˆœํ™˜๊ณผ์ •

๊ฐœ์š”

์ง€ํ•˜์ˆ˜๋Œ€ ๊ฐ„๊ทน์ˆ˜์— ์šฉํ•ด๋˜์–ด ์žˆ๋Š” ์˜ค์—ผ๋ฌผ๊ณผ ๋‹ฌ๋ฆฌ ํ† ์–‘์ž…์ž์— ํก์ฐฉ๋˜๊ฑฐ๋‚˜ ๊ฐ„๊ทน ์†์— ๊ฐ‡ํžŒ ์šฉํ•ด๋˜์ง€ ์•Š์€ ์ƒํƒœ์˜ ์˜ค์—ผ

๋ฌผ์ด ์žฅ๊ธฐ๊ฐ„ ๋ฐฐ์ถœ๋˜์ง€ ์•Š๋Š” ํ˜„์ƒ

Tailing Effect

์•ˆ์ •ํ•œ NAPL ํ™œ์„ฑํ™”๋กœ ํšจ์œจ์  ์ œ๊ฑฐ ์ง€ํ•˜์ˆ˜์œ„ ์ €ํ•˜๋กœ ๋ถˆํฌํ™”๋Œ€์— ๋‚จ์€ LNAPL์— ํƒ€ ๊ธฐ์ˆ  ์ ์šฉ ์ง€ํ•˜์ˆ˜์œ„ ๊ฒฝ์‚ฌ์— ๋”ฐ๋ฅธ LNAPL ์ถ”์ถœ ์šฉ์ด DNAPL pool ์ง์ ‘ ์ œ๊ฑฐ ์šฉ์ด ์ ์šฉ์ดˆ๊ธฐ์— ์˜ค์—ผ๋ฌผ ์‹ ์†ํžˆ ์ œ๊ฑฐ ๊ฐ€๋Šฅ

์žฅ์ 

์ง€ํ•˜์ˆ˜์œ„ ์ €ํ•˜๋ฅผ ์œ„ํ•œ ๋‹ค์ˆ˜์˜ ์ถ”์ถœ์ • ํ•„์š” ๋น„๊ท ์งˆ, ์ €ํˆฌ์ˆ˜์„ฑ ์ง€๋ฐ˜์—์„œ ๋น„ํšจ์œจ์  Tailing Effect๋กœ ํƒ€ ๊ธฐ์ˆ ๊ณผ ๋ณ‘ํ–‰ ํ•„์š”

ํ•œ๊ณ„

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (24)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ฃ Soil Washing / Flushing ํ† ์–‘์„ธ์ฒ™/์ˆ˜์„ธ๋ฒ•

๋ฌผ์ด๋‚˜ ๋‹ค๋ฅธ ์ˆ˜์šฉ์ฒด ๋˜๋Š” ๋น„์ˆ˜์šฉ์•ก๊ณผ ๊ฐ™์€ ์ ์ ˆํ•œ ์šฉ๋งค๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ง€๋ฐ˜ ๋‚ด ์˜ค์—ผ๋ฌผ์งˆ์„ ์”ป์–ด๋‚ด๋Š” ๋ฐฉ๋ฒ•

SVOC, ์ค‘๊ธˆ์† ๋“ฑ๊ณผ ํŠน์ • VOC, ์œ ๋ฅ˜์˜ค์—ผ๋ฌผ, ์‚ด์ถฉ์ œ, ๋ฐฉ์‚ฌ๋Šฅ ์˜ค์—ผ๋ฌผ์„ ํฌํ•จํ•œ ๋ฌด๊ธฐ๋ฌผ, ๊ด‘๋ฒ”์œ„ํ•œ ์œ ๊ธฐ ๋ฐ ๋ฌด๊ธฐ์˜ค์—ผ๋ฌผ

์„ธ์ฒ™์šฉ์•ก๊ณผ ์˜ค์—ผ๋ฌผ์˜ ์ ‘์ด‰, ์˜ค์—ผ๋ฌผ์— ๋”ฐ๋ฅธ ์ ์ ˆํ•œ ์šฉ์•ก์˜ ์„ ์ •, ์˜ค์—ผ๋ฌผ์˜ ์ง€๋ฐ˜ํก์ฐฉ๊ณ„์ˆ˜, ์ง€๋ฐ˜์˜ ํˆฌ์ˆ˜๊ณ„์ˆ˜

๊ฐœ์š”

์ฒ˜๋ฆฌ ๋ฌผ์งˆ

์˜ํ–ฅ ์ธ์ž

์˜ค์—ผ๋ฌผ์˜ ๋†๋„, ํŠน์„ฑ, ๊นŠ์ด, ํ˜•์ƒ, ๋ฉด์ , ์„ธ์ฒ™์šฉ๋งค์™€ ์ง€๋ฐ˜ ์‚ฌ์ด ์˜ค์—ผ๋ฌผ์˜ ๋ถ„๋ฆฌ์„ฑ, ์ง€๋ฐ˜์˜ ํŠน์„ฑ์— ๋ฏธ์น˜๋Š” ์„ธ์ฒ™์•ก์˜ ์˜ํ–ฅ, ์‹œ์Šคํ…œ์„ค์น˜์™€ ์นจ์ˆ˜์— ๋Œ€ํ•œ ํ˜„์žฅ ์ ํ•ฉ์„ฑ, ์ง€์—ญ ๋‚ด ํŠน์ˆ˜์ง€๋ฐ˜์˜ ์œ ๋Ÿ‰๊ณผ ํ๋ฆ„๋ฐฉํ–ฅ, ์ง€๋ฐ˜๊ณผ ์ง€์—ญ์˜ ์ ‘๊ทผ์„ฑ

์‚ฌ์ „ ์กฐ์‚ฌ

์„ฑ๊ณต ์‹œ ์ถ”๊ฐ€๊ณต์ • ๋ถˆํ•„์š”, ์˜ค์—ผ๋ฌผ์˜ ์˜๊ตฌ์  ์ œ๊ฑฐ, ํˆฌ์ˆ˜์„ฑ ์ง€๋ฐ˜์— ์ ํ•ฉ, ์ค‘๊ฐ„์ •๋„์˜ ๋น„์šฉ

์žฅ์ 

์„ธ์ฒ™์šฉ์•ก์˜ ๋…์„ฑ, ์˜ค์—ผ๋ฌผ ํ™•์‚ฐ ๊ฐ€๋Šฅ, ๊ณ„๋ฉดํ™œ์„ฑ์ œ ํ† ์–‘๋ถ€์ฐฉ์œผ๋กœ ๊ณต๊ทน ๊ฐ์†Œ, ํ† ์–‘/๊ณ„๋ฉดํ™œ์„ฑ์ œ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์˜ค์—ผ๋ฌผ ์œ ๋™์„ฑ ๊ฐ์†Œ

๋‹จ์ 

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (25)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ฃ Soil Washing / Flushing ํ† ์–‘์„ธ์ฒ™/์ˆ˜์„ธ๋ฒ•

์˜ค์—ผํ† ์–‘์„ ๊ตด์ฐฉํ•˜์—ฌ ๋ถ€์ˆœ ๋‹ค์Œ ์„ธ์ฒ™์ œ๋กœ ์˜ค์—ผ๋ฌผ ๋ถ„๋ฆฌ ํ›„ ์ •ํ™”๋œ ํ† ์–‘์€ ํ˜„์žฅ์— ๋˜๋Œ๋ฆฌ๋Š” ๋ฐฉ๋ฒ• ์‚ฌ์งˆํ† +ํœ˜๋ฐœ์„ฑ ์˜ค์—ผ๋ฌผ์— ์ ํ•ฉ ํœด๋ฏน๋ฌผ์งˆ ๋งŽ์œผ๋ฉด ์ „์ฒ˜๋ฆฌ ํ•„์š” ๊ณ ๋†๋„ ์˜ค์—ผ๋ฌผ ์ „์ฒ˜๋ฆฌ ํ•„์š” ์„ธ์ฒ™์œ ์ถœ์ˆ˜ ์‘์ง‘์ œ ํ•„์š” ๊ตด์ฐฉ ๋ฐ ํ›„์ฒ˜๋ฆฌ ํ•„์š”

์˜ค์—ผ์ง€์—ญ์— ์„ธ์ฒ™์šฉ์•ก์„ ์ฃผ์ž…, ์ถ”์ถœ์ •/๋ฐฐ์ˆ˜๊ด€์œผ๋กœ ๋ฐฐ์ˆ˜ ํ›„ ์ถ”์ถœ๋œ ์˜ค์—ผ์ˆ˜๋ฅผ ์ฒ˜๋ฆฌํ•˜์—ฌ ์ •ํ™”์ง€์—ญ์— ์žฌ์ˆœํ™˜ ์˜ค์—ผ๋ฌผ ์šฉํ•ด, ์œ ์ œํ˜•์„ฑ, ์„ธ์ฒ™์šฉ์•ก๊ณผ ํ™”ํ•™๋ฐ˜์‘ ์„ธ์ฒ™์šฉ์•ก ์ง‘์ˆ˜์‹œ์„ค ํ•„์š”

ex-situ Soil Washing in-situ Soil Flushing

๊ณ„๋ฉด์˜ ์ž์œ ์—๋„ˆ์ง€๋ฅผ ๋‚ฎ์ถ”๊ณ  ์„ฑ์งˆ์„ ๋ณ€ํ™”์‹œ์ผœ ์˜ค์—ผ๋ฌผ์„ ํ† ์–‘์œผ๋กœ๋ถ€ํ„ฐ ๋ถ„๋ฆฌ, ์šฉํ•ด์‹œํ‚ค๋Š” ์—ญํ• , ์ •ํ™”์ž‘์—…์— ์•…์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์‹ ์ค‘ํ•˜๊ฒŒ ์„ ํƒ

์„ธ์ฒ™์ œ ์„ธ์ฒ™์šฉ์•ก ๋Œ€์ƒ์˜ค์—ผ๋ฌผ

๋ฌผ ์ˆ˜์šฉ์„ฑ ๋ฌผ์งˆ

์‚ฐ์„ฑ์šฉ์•ก ๊ธˆ์†, ์—ผ๊ธฐ์„ฑ ์œ ๊ธฐ๋ฌผ์งˆ

์—ผ๊ธฐ์„ฑ์šฉ์•ก ๊ธˆ์†, ํŽ˜๋†€, ํ‚ฌ๋ ˆ์ดํŠธ ํ™”ํ•ฉ๋ฌผ

๊ณ„๋ฉดํ™œ์„ฑ์ œ ํก์ฐฉ๋œ ์†Œ์ˆ˜์„ฑ ์œ ๊ธฐ์˜ค์—ผ๋ฌผ

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (26)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ค Hydraulic and Pneumatic Fracturing ์ˆ˜์••/๊ณต๊ธฐ ํŒŒ์‡„๊ณต๋ฒ•

์ €ํˆฌ์ˆ˜์„ฑ ์ง€๋ฐ˜์— ์••์ถ•๊ณต๊ธฐ๋‚˜ ์•ก์ฒด๋ฅผ ์˜ค์—ผ์ง€์—ญ์— ์ฃผ์ž…ํ•˜์—ฌ ๊ธฐ์กด ๊ท ์—ด์„ ํ™•์žฅํ•˜๊ณ  2์ฐจ ๊ท ์—ด๋ง๊ณผ Channel ํ˜•์„ฑํ•˜์—ฌ ํˆฌ์ˆ˜์„ฑ๊ณผ ์˜ํ–ฅ๋ฐ˜๊ฒฝ์„ ์ฆ๊ฐ€์‹œํ‚ด์œผ๋กœ์จ ํƒ€ ์ •ํ™”๊ณต๋ฒ•์˜ ํšจ์œจ์„ ์ฆ๋Œ€์‹œํ‚ค๋Š” ๊ธฐ์ˆ 

Injection flow rate, ํ† ์–‘์˜ ์ ์ฐฉ๋ ฅ, ์ธ์žฅ๊ฐ•๋„, ์ƒ์žฌ์••, ํ† ์–‘์ž…์ž ํฌ๊ธฐ, ํ† ์–‘ ์•ก์†Œ์„ฑ ํ•œ๊ณ„, ์ผ์ถ•์••์ถ•๊ฐ•๋„, ์ ์„ฑ, ์ฃผ์ž…๊ธฐ์ฒด/์•ก์ฒด์˜ ์ข…๋ฅ˜

๊ฐœ์š”

์˜ํ–ฅ ์ธ์ž

๋ชฉ์ ์‹ฌ๋„๊นŒ์ง€ ์‹œ์ถ” โ†’ ์›ํ•˜๋Š” fracture ์ง€์ ์— injector์„ค์น˜ โ†’ Packer๋กœ 1โˆผ2ft๋ฅผ ๋ฐ€ํ โ†’ ๋ฐ€ํ๋œ ๊ณต๊ฐ„์— ์••์ถ•๊ณต๊ธฐ ์•ฝ 30์ดˆ ๊ฐ„ ์ฃผ์ž… โ†’ ๋‹ค์Œ ์ง€์  injector ์„ค์น˜ ๋ฐ ์œ„ ๊ณผ์ • ๋ฐ˜๋ณต Fracture cycle์€ ์•ฝ 15๋ถ„, ํ•˜๋ฃจ ํ•œ ๊ฐœ์˜ ์‹œ์ถ”๊ณต์— 15โˆผ20 fracture ์ƒ์„ฑ

๊ณต์ • ๊ณผ์ •

ํˆฌ์ˆ˜์„ฑ ์ฆ๊ฐ€๋กœ ์ธํ•œ SVE ์˜ํ–ฅ๋ฐ˜๊ฒฝ ์ฆ๊ฐ€, ์‚ฐ์†Œ/์˜์–‘๋ถ„ ๋“ฑ ๊ณต๊ธ‰์œผ๋กœ ๋ฏธ์ƒ๋ฌผ๋ถ„ํ•ด ์ด‰์ง„, ์ฒ ์„ ์ฃผ์ž…ํ•จ์œผ๋กœ์จ CAHs ํ™˜์›์  ํƒˆ์—ผ์†Œํ™” ์œ ๋„, ์œ ๋ฆฌํ™”๋ฒ•/๋™์ „๊ธฐ์—์„œ ์ „๊ทน์œผ๋กœ ์‚ฌ์šฉ๊ฐ€๋Šฅ

์žฅ์ 

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (27)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ฅ Solvent Extraction ์šฉ๋งค์ถ”์ถœ๋ฒ•

์˜ค์—ผ๋ฌผ์งˆ์„ ๋ถ„ํ•ดํ•˜์ง€๋Š” ์•Š์ง€๋งŒ ํ† ์–‘, ์Šฌ๋Ÿฌ์ง€, ํ‡ด์ ๋ฌผ์งˆ๋กœ๋ถ€ํ„ฐ ์˜ค์—ผ๋ฌผ์งˆ์„ ๋ถ„๋ฆฌ์‹œ์ผœ ๋ถ€ํ”ผ๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๋ฉฐ ์œ ๊ธฐํ™”ํ•™๋ฌผ์งˆ์„ ์šฉ๋งค๋กœ ์‚ฌ์šฉํ•˜๋Š” ๊ณต๋ฒ•

PCBs, ํœ˜๋ฐœ์„ฑ ์œ ๊ธฐ๋ฌผ์งˆ, ํ• ๋กœ๊ฒ ์šฉ๋งค, ์œ ๋ฅ˜์™€ ๊ฐ™์€ ์œ ๊ธฐ์˜ค์—ผ๋ฌผ์งˆ

ํ† ์–‘์˜ ์ž…๊ฒฝ, pH, ๋ถ„๋ฐฐ๊ณ„์ˆ˜, ์–‘์ด์˜จ์น˜ํ™˜๋Šฅ๋ ฅ, ์œ ๊ธฐ๋ฌผ ํ•จ๋Ÿ‰, ์ˆ˜๋ถ„ ํ•จ๋Ÿ‰ ๊ธˆ์†, ํœ˜๋ฐœ์„ฑ ๋ฌผ์งˆ, ์ ํ† , ๋ณตํ•ฉ์˜ค์—ผ๋ฌผ์งˆ์˜ ์กด์žฌ ์—ฌ๋ถ€

๊ฐœ์š”

์ฒ˜๋ฆฌ ๋ฌผ์งˆ

์˜ํ–ฅ ์ธ์ž

์ˆ˜๋ถ„ํ•จ๋Ÿ‰์ด ๋†’์œผ๋ฉด ๊ณต์ •์— ์•…์˜ํ–ฅ, ์ฒญ์ •์ œ/์œ ํ™”์ œ ์กด์žฌ ์‹œ ์ถ”์ถœ๋ฐ˜์‘์— ์•…์˜ํ–ฅ, ์ถ”์ถœ์šฉ๋งค ๋…์„ฑ, ๊ณ ๋ถ„์ž ์œ ๊ธฐ๋ฌผ์งˆ๊ณผ ์นœ์ˆ˜์„ฑ ๋ฌผ์งˆ์— ๋ถ€์ ํ•ฉ

ํ•œ๊ณ„

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (28)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ฆ Thermal Desorption ์—ดํƒˆ์ฐฉ๊ณต๋ฒ•

ํ† ์–‘์— ์—ด์„ ๊ฐ€ํ•ด ์˜ค์—ผ๋ฌผ์„ ์ฆ๋ฐœ์‹œ์ผœ ๊ฐ€์Šค๋ฅผ ๋ฐœ์ƒ์‹œํ‚จ ํ›„, ๊ฐ€์Šค๋ฅผ ์ฒ˜๋ฆฌ์žฅ์น˜๋กœ ์ˆ˜์ง‘ํ•˜์—ฌ ์ฒ˜๋ฆฌํ•˜๋Š” ๊ณต๋ฒ•

HTTD: ๊ธˆ์†(์ˆ˜์€ ๋“ฑ) ์ฒ˜๋ฆฌ ๊ฐ€๋Šฅ Coal tar, ๋ชฉ์žฌ, creosote, (SVOCs, PAHs, PCBs, ๋†์•ฝ ๋“ฑVOCs) LTTD: ๊ฐ€๋Šฅ๋น„์—ผ์†Œ๊ณ„ ํœ˜๋ฐœ์„ฑ ์œ ๊ธฐํ™”ํ•ฉ๋ฌผ, ์—ฐ๋ฃŒ, (SVOCs)

ํ† ์–‘ ์ ์ฐฉ๋ ฅ, ์ž…๋„๋ถ„ํฌ, ํ•จ์ˆ˜๋น„, ์—ด ์šฉ์ ์œจ, ์œ ๊ธฐ๋ฌผ ๋†๋„, ์˜ค์—ผ๋ฌผ ๋†๋„, ๋“๋Š” ์  ๋ฒ”์œ„, ์ฆ๊ธฐ์••, ์—ด์— ๋Œ€ํ•œ ์•ˆ์ •์„ฑ, Dioxins ๋ฐœ์ƒ ๊ฐ€๋Šฅ์„ฑ

๊ฐœ์š”

์ฒ˜๋ฆฌ ๋ฌผ์งˆ

์˜ํ–ฅ ์ธ์ž

ํ˜„์žฅ์œ„์น˜์™€ ์กฐ๊ฑด, ์˜ค์—ผ๋ฌผ์˜ ์ˆ˜์ง์  ๋ถ„ํฌ์— ๋”ฐ๋ฅธ ๊ณ ๋ ค์‚ฌํ•ญ, ๋ชฉํ‘œ์ •ํ™”์ˆ˜์ค€, ํƒˆ์ˆ˜์—ฌ๋ถ€, ์ฒ˜๋ฆฌ๋œ ํ† ์–‘์˜ ์ฒ˜๋ฆฌ๋ฌธ์ œ

์„ค๊ณ„ ์ธ์ž

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (29)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ง Solidification/Stabilization ๊ณ ํ˜•ํ™”/์•ˆ์ •ํ™”

Injector Head

Emissions, Dust

and VOC Control

Auger Caisson

Reagent and/or Binder

ํ™”ํ•™์ , ๋ฌผ๋ฆฌ์ ์ธ ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด์„œ ์œ ๋™์„ฑ์„ ๊ฐ์†Œ์‹œํ‚ด์œผ๋กœ์จ ์œ„ํ•ด์„ฑ์„ ๋‚ฎ์ถ”๋Š” ์˜ค์—ผ์ฒ˜๋ฆฌ๋ฐฉ๋ฒ•

๋ฐฉ์‚ฌ๋Šฅ ๋ฌผ์งˆ์„ ํฌํ•จํ•œ ๋ฌด๊ธฐ๋ฌผ์งˆ

ํ† ์–‘์˜ ์ž…๊ฒฝ, ์ˆ˜๋ถ„ ํ•จ๋Ÿ‰, ์ค‘๊ธˆ์† ๋†๋„, ํ™ฉ ํ•จ์œ ๋Ÿ‰, ์œ ๊ธฐ๋ฌผ ๋†๋„, ์••์ถ•๊ฐ•๋„, ํˆฌ์ˆ˜์„ฑ, ํ† ์–‘์˜๋ฌผ๋ฆฌํ™”ํ•™์  ํŠน์„ฑ

๊ฐœ์š”

์ฒ˜๋ฆฌ ๋ฌผ์งˆ

์˜ํ–ฅ ์ธ์ž

In-Situ: ๊นŠ์ด์— ๋”ฐ๋ผ ํŠน์ • ์žฅ์น˜ ์„ค์น˜ํ•„์š”, ex-situ์— ๋น„ํ•ด ์‹œ์•ฝ ์ฃผ์ž…/ํ˜ผํ•ฉ์ด ์–ด๋ ค์›€, ์ฒ˜๋ฆฌํšจ์œจ ํ™•์ธ Ex-Situ: ๋ถ€ํ”ผ ์ฆ๊ฐ€(์œ ๊ธฐ๋ฌผ ๋ถ€ํ”ผ์˜ 2๋ฐฐ๊นŒ์ง€), ํœ˜๋ฐœ์„ฑ์œ ๊ธฐ๋ฌผ์งˆ์€ ๊ณ ์ •ํ™”๋˜์ง€ ์•Š์Œ. ํ˜ผํ•ฉ๋˜๋ฉด ์ฒ˜๋ฆฌ์‹œ๊ฐ„์ด ๊ธธ์–ด์ง

ํ•œ๊ณ„

๋ฌผ๋ฆฌ์ ์œผ๋กœ ์•ˆ์ •ํ•œ ์ƒํƒœ์˜ ๋ฌผ์งˆ ๋‚ด์—์„œ ๊ณ ํ˜•ํ™”ํ•˜๋‚˜ ์•ˆ์ •ํ™”์ œ๋ฅผ ์ฒจ๊ฐ€ํ•˜์—ฌ ํ™”ํ•™๋ฐ˜์‘์— ์˜ํ•ด ์˜ค์—ผ๋ฌผ์งˆ์˜ ์œ ๋™์„ฑ์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ• ํ›„์ฒ˜๋ฆฌ ํ•„์š”

์˜ค์—ผ์ง€์—ญ์— ์•ฝํ’ˆ์„ ์ฃผ์ž…ํ•˜์—ฌ ๊ณ ํ˜•ํ™”(์ด๋™์„ฑ ๊ฐ์†Œ), ์•ˆ์ •ํ™”(๋…์„ฑ๋ฌผ์งˆ ์ด๋™์„ฑ๊ฐ์†Œ ๋ฐ ์ฒ˜๋ฆฌ)

ex-situ in-situ

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (30)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘จ Vitrification ์œ ๋ฆฌํ™”

์˜ค์—ผํ† ์–‘ ๋ฐ ์Šฌ๋Ÿฌ์ง€๋ฅผ ์ „๊ธฐ์ ์œผ๋กœ ์šฉ

์œต์‹œํ‚ด์œผ๋กœ์จ ์šฉ์ถœํŠน์„ฑ์ด ๋งค์šฐ ์ ์€

๊ฒฐ์ •๊ตฌ์กฐ๋กœ ๋งŒ๋“œ๋Š” ๊ณต๋ฒ•

VOCs, SVOCs, Dioxins, PCBs

๊ฐœ์š”

์ฒ˜๋ฆฌ ๋ฌผ์งˆ

๊ฐ€์Šค๋กœ๋ถ€ํ„ฐ ์ž…์ž๋‚˜ ๋‹ค๋ฅธ ์˜ค์—ผ๋ฌผ์„ ์ œ๊ฑฐํ•˜๋Š” ๋ฐฉ์ถœ๊ฐ€์Šค ์ฒ˜๋ฆฌ ์žฅ์น˜ ํ•„์š” ์ž๊ฐˆ๋น„๊ฐ€ 20%๊ฐ€ ๋„˜์œผ๋ฉด ๋ถ€์ ํ•ฉ ์žฌ์˜ค์—ผ ๋ฐฉ์ง€์ˆ˜๋‹จ ํ•„์š” ์˜ค์—ผ๋ฌผ ํ™•์‚ฐ ๊ฐ€๋Šฅ ์œ ๋ฆฌํ™”๋ฌผ์งˆ ์ œ๊ฑฐ ํ›„ ํ† ์–‘ ์žฌ์ด์šฉ ๊ฐ€๋Šฅ

ํ•œ๊ณ„

ํ† ์–‘์˜ ์ž…๊ฒฝ, ์ˆ˜๋ถ„ ํ•จ๋Ÿ‰, ์œ ๊ธฐ๋ฌผ ํ•จ๋Ÿ‰, ๋ฐ€๋„, ํˆฌ์ˆ˜์„ฑ, ๋ฌผ๋ฆฌํ™”ํ•™์  ํŠน์„ฑ, ์ž…๋„๋ถ„ํฌ

์˜ํ–ฅ ์ธ์ž

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (31)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ฉ Chemical Oxidation/Reduction ํ™”ํ•™์  ์‚ฐํ™”/ํ™˜์›

์˜ค์กด, ๊ณผ์‚ฐํ™”์ˆ˜์†Œ, ์ฐจ์•„์—ผ์†Œ์‚ฐ์—ผ, ๊ทธ๋ฆฌ๊ณ  ์ด์‚ฐํ™”์—ผ์†Œ ๋“ฑ์„ ์ด์šฉํ•˜์—ฌ ์˜ค์—ผ๋ฌผ์งˆ์„ ํ™”ํ•™์ 

์œผ๋กœ ๋” ์•ˆ์ •ํ•˜๊ณ , ์œ ๋™์„ฑ์ด ์—†์œผ๋ฉฐ, ๋น„ํ™œ์„ฑ ๋ฌผ์งˆ๋กœ ๋ณ€ํ™”์‹œํ‚ค๋Š” ๋ฐ˜์‘์„ ์ด์šฉํ•˜๋Š” ๊ณต๋ฒ•

์ฃผ๋กœ ๋ฌด๊ธฐ์˜ค์—ผ๋ฌผ์„ ๋Œ€์ƒ

VOCs, SVOCs, ์œ ๋ฅ˜ ํƒ„ํ™”์ˆ˜์†Œ ๋“ฑ์˜ ๋น„์—ผ์†Œ๊ณ„ ๋ฌผ์งˆ์—๋Š” ๋น„ํšจ๊ณผ์ 

ํ† ์–‘์˜ ์ˆ˜๋ถ„ ํ•จ๋Ÿ‰, ์•Œ์นผ๋ฆฌ ๊ธˆ์†, ๋ถ€์‹ํ†  ํ•จ๋Ÿ‰, ์ด ์œ ๊ธฐํ• ๋กœ๊ฒํ™”ํ•ฉ๋ฌผ

์˜ค์—ผ๋ฌผ์งˆ์˜ ์ข…๋ฅ˜์™€ ํ˜•ํƒœ, ํ† ์–‘์ž…์ž์˜ ์ž…๊ฒฝ, ์šฉ๋งค์˜ ์šฉํ•ด๋„ ์˜ค์—ผ๋ฌผ์˜ ๋†๋„ ๊ตฌ๋ฐฐ

์•ฝํ’ˆ์˜ ์ข…๋ฅ˜

๊ฐœ์š”

์ฒ˜๋ฆฌ ๋ฌผ์งˆ

์˜ํ–ฅ ์ธ์ž

์˜ค์—ผ๋ฌผ์งˆ๊ณผ ์‚ฌ์šฉ๋œ ์‹œ์•ฝ์— ๋”ฐ๋ผ ๋ถˆ์™„์ „์‚ฐํ™” ํ˜น์€ ์ค‘๊ฐ„๋ฌผ์งˆ์ด ํ˜•์„ฑ๋  ์ˆ˜ ์žˆ์Œ

์‹œ์•ฝ์ด ๋งŽ์ด ํ•„์š”ํ•˜๋ฏ€๋กœ ์˜ค์—ผ๋ฌผ์งˆ์˜ ๋†๋„๊ฐ€ ๋†’์„ ๋•Œ๋Š” ๋น„๊ฒฝ์ œ์ 

ํ† ์–‘์—๋Š” ๊ธฐ๋ฆ„๊ณผ ๊ทธ๋ฆฌ์Šค ์„ฑ๋ถ„์ด ์ ์–ด์•ผ ํ•จ

ํ•œ๊ณ„

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (32)

7) ๋ฌผ๋ฆฌํ™”ํ•™์  ์ •ํ™”๊ธฐ์ˆ 

โ‘ช Incineration ์†Œ๊ฐ

์‚ฐ์†Œ๋ฅผ ๊ณต๊ธ‰ํ•˜์—ฌ ์œ ๊ธฐ๋ฌผ์งˆ์„ ์—ฐ์†Œ/๋ถ„ํ•ดํ•˜

๋Š” ์—ด์ ์œผ๋กœ ํŒŒ๊ดดํ•˜๋Š” ๊ณต์ •, ํ† ์–‘ ๋‚ด์˜ ์œ 

ํ•ด์œ ๊ธฐ์˜ค์—ผ๋ฌผ์„ 871~1,204โ„ƒ์˜ ๊ณ ์˜จ์œผ

๋กœ ์†Œ๊ฐํ•˜์—ฌ ์ด์‚ฐํ™”ํƒ„์†Œ, ์ˆ˜์ฆ๊ธฐ, ํ™ฉํ™”์ˆ˜

์†Œ, ํ• ๋กœ๊ฒํ™” ์ˆ˜์†Œ๋กœ ๋ถ„ํ•ด

ํญ๋ฐœ์„ฑ ๋ฌผ์งˆ, ์—ผ์†Œ๊ณ„ ํƒ„ํ™”์ˆ˜์†Œ, PCBs , Dioxins

๊ฐœ์š”

์ฒ˜๋ฆฌ ๋ฌผ์งˆ

๋ถˆ์™„์ „์—ฐ์†Œ๋กœ ์ค‘๊ธˆ์†, ๋…์„ฑ ์žฌ ์ƒ์„ฑ ๊ฐ€๋Šฅ ์˜ค์—ผํ† ์–‘ ํˆฌ์ž…๋Ÿ‰์— ๋”ฐ๋ผ ์†Œ๊ฐ๋กœ์˜ ํฌ๊ธฐ๊ฐ€ ์ปค์ง€๋ฏ€๋กœ ์ฒ˜๋ฆฌ๋น„์šฉ ์ฆ๊ฐ€ ๊ธˆ์†์€ ์—ผ์†Œ, ํ™ฉ๊ณผ ๋ฐ˜์‘ํ•˜์—ฌ ์œ ํ•ด๋ฌผ์งˆ ์ƒ์„ฑ ๊ฐ€๋Šฅ, ๊ฐ€์Šค์ •ํ™”์žฅ์น˜ ํ•„์š” ์ €์˜จ์—์„œ Na, K ์žฌ๋ฅผ ํ˜•์„ฑํ•˜๊ณ  ์ ์ฐฉ์„ฑ์ด ๊ฐ•ํ•œ ์ž…์ž๋ฅผ ํ˜•์„ฑํ•˜์—ฌ ๋•ํŠธ๋ฅผ ๋ง‰ํžˆ๊ฒŒ ํ•จ

ํ•œ๊ณ„

8) ๊ธฐํƒ€ ์ •ํ™”๊ธฐ์ˆ 

โ‘  Phytoremediation ์‹์ƒ์ •ํ™”๋ฒ•

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (33)

์˜ค์—ผ ํ† ์–‘/์ง€ํ•˜์ˆ˜ ์ •ํ™”๋ฅผ ์œ„ํ•˜์—ฌ ์‹๋ฌผ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ๋Œ€๋ถ€๋ถ„์˜ ์ •ํ™”๋Š” ์‹๋ฌผ ๋ฟŒ๋ฆฌ๊ฐ€ ๋ป—๋Š” ๋ถ€๋ถ„์˜ ํ† ์–‘์ธต์ธ rhizosphere์—์„œ ๋ฐœ์ƒ

์ค‘๊ธˆ์†, ๊ณผ์ž‰ ์˜์–‘๋ถ„(์งˆ์‚ฐ, ์•”๋ชจ๋‹ˆ์•„, ์ธ์‚ฐ), ์†Œ์ˆ˜์„ฑ ์˜ค์—ผ๋ฌผ(BTEX, ์—ผ์†Œ๊ณ„ ์œ ๊ธฐ์šฉ๋งค, PAHs, nitrotoluene, ammunition wastes), ์ œ์ดˆ์ œ, ์œ ๊ธฐ์šฉ๋งค, ๋™์œ„์›์†Œ

๊ฐœ์š”

์ฒ˜๋ฆฌ ๋ฌผ์งˆ

๋Œ€์ƒ ์˜ค์—ผ๋ฌผ์˜์ถ”์ถœ, ํก์ˆ˜, ํ™”ํ•™์  ๋ถ„ํ•ด์— ์ ํ•ฉํ•œ ์‹๋ฌผ์˜ ์ข… ์„ ํƒ ์˜ค์—ผ๋ฌผ์ด ๊ถ๊ทน์ ์œผ๋กœ ์ œ๊ฑฐ๋˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ฏ€๋กœ ์‹๋ฌผ ์†Œ๊ฐ ๋“ฑ ํ›„์ฒ˜๋ฆฌ ํ•„์š”

์„ค๊ณ„ ๋ฐ

์šด์ „

๋น„์šฉ ์ €๋ ด, ๋ฏธ๊ด€์ƒ ์žฅ์  ์˜ค์—ผ๋ฌผ ๋ˆ„์ถœ ์ตœ์†Œํ™”, ํ† ์–‘ ์•ˆ์ •ํ™”

์žฅ์ 

์ ์ ˆํ•œ ๊ธฐํ›„์กฐ๊ฑด, ์žฅ๊ธฐ๊ฐ„์˜ ๊ณต์ •๊ด€๋ฆฌ ํ•„์š” ๋ฟŒ๋ฆฌ๋ณด๋‹ค ๊นŠ์€ ๊ณณ์˜ ์˜ค์—ผ๋ฌผ ์ถ”์ถœ ๋ถˆ๊ฐ€๋Šฅ

ํ•œ๊ณ„

8) ๊ธฐํƒ€ ์ •ํ™”๊ธฐ์ˆ 

โ‘ก Monitored Natural Attenuation ์ž์—ฐ์ €๊ฐ๋ฒ•

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (34)

์˜ค์—ผ๋ฌผ์˜ ์ž์—ฐ์ ์ธ ์ •ํ™”๋‚˜ ์ด๋™ ์ง€์ฒด๋ฅผ ์ด์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•. ๋ฐฉ์น˜์™€๋Š” ๋‹ค๋ฅธ ๊ฐœ๋…. ๋‹ค๋ฅธ ์ ๊ทน์ ์ธ ์ •ํ™”๋ฐฉ๋ฒ•์— ๋น„๊ตํ•˜์—ฌ ํ•ฉ๋ฆฌ์ ์ธ ์‹œ๊ฐ„ ๋‚ด์— ๋ชฉํ‘œ์ •ํ™”์ˆ˜์ค€์— ๋„๋‹ฌํ•  ์ˆ˜ ์žˆ๋Š” ์ž์—ฐ์ €๊ฐ๊ณผ์ •

๊ฐœ์š”

๋ฏธ์ƒ๋ฌผ ๋ถ„ํ•ด, ๋ถ„์‚ฐ, ํฌ์„, ํก์ฐฉ, ํœ˜๋ฐœ, ๋ฐฉ์‚ฌ์„ฑ ๋ถ•๊ดด, ํ™”ํ•™์ /์ƒ๋ฌผํ•™์  ์•ˆ์ •ํ™”, ๋ณ€ํ˜•, ํŒŒ๊ดด

์ฃผ์š”๊ธฐ์ž‘

Protocol: ์ž‘์—…์— ๊ด€๋ จ๋œ ๊ทœ์•ฝ, MNA๋ฅผ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด ๊ณ ๋ คํ•ด์•ผ ํ•  ์‚ฌํ•ญ Pattern: ์˜ค์—ผ๋ฌผ์˜ ์ƒํ™ฉ๊ณผ ํ˜•ํƒœ์— ๋”ฐ๋ฅธ MNA ์‚ฌ์šฉ ์—ฌ๋ถ€ ํŒ๋‹จ

์ ์šฉ ์—ฌ๋ถ€ ํŒ๋‹จ

๋น„์šฉ๊ฒฝ์ œ์ , ์žฅ๋น„ ๋“ฑ์ด ๊ฑฐ์˜ ๋ถˆํ•„์š” ๊ฐ์‹œ ๊ฐ•๋„์— ๋”ฐ๋ฅธ ์œ ์—ฐํ•œ ์‹œ๊ณต๋น„

์žฅ์ 

8) ๊ธฐํƒ€ ์ •ํ™”๊ธฐ์ˆ 

โ‘ข Permeable Reactive Barrier ํˆฌ์ˆ˜์„ฑ ๋ฐ˜์‘๋ฒฝ์ฒด

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (35)

์˜ค์—ผ๋ฌผ์งˆ ์˜ค์—ผ์› ๊ตฌ์„ฑ์š”์†Œ ๋ฐ˜์‘๋ฌผ์งˆ ๋ฐ˜์‘๊ธฐ์ž‘

์—ผํ™”์œ ๊ธฐ๋ฌผ ๊ณต๋‹จ์ง€์—ญ, ์ฃผ์œ ์†Œ, ์ •์œ ๊ณต์žฅ ๋“ฑ์˜ ์‚ฐ์—…์‹œ์„ค ๋ฐ ๊ตฐ์‚ฌ์‹œ์„ค

TCE, PCE Fe0, GP dust, HRM Sludge ํƒˆ์—ผ์†Œํ™”

PCBs Pd/Fe Bimetal, Nanoscale Fe ์ด‰๋งค์  ํƒˆ์—ผ์†Œํ™”

์˜์–‘์—ผ๋ฅ˜

๋งค๋ฆฝ์ง€ ์นจ์ถœ์ˆ˜, ์ถ•์‚ฐํ์ˆ˜

T-N, Ammonia Zeolite ์ด์˜จ๊ตํ™˜, ํก์ฐฉ, ์ฒ ์— ์˜ํ•œ ํƒˆ์งˆ

์ถ•์‚ฐํ์ˆ˜ T-P Wastelime, SM Slag ํก์ฐฉ ๋ฐ ์นจ์ „

์ค‘๊ธˆ์† ์‚ฐ์—… ๋ฐ ๊ตฐ์‚ฌ์‹œ์„ค, ํ๊ด‘์‚ฐ ์‚ฐ์„ฑํ์ˆ˜

Cr6+ HRM Sludge, SM Slag ํ™˜์›

Cd, Hg, Mn, As, Cu, CN, Pb

Zeolite, SM Slag ์ด์˜จ๊ตํ™˜, ํก์ฐฉ

ํ™ฉ์‚ฐ์—ผ ํ๊ด‘์‚ฐ ์‚ฐ์„ฑํ์ˆ˜ Sulfate AlOH, SM Slag, Wastelime ์นจ์ „, ์ค‘ํ™”

์˜ค์—ผ๋œ ์ง€ํ•˜์ˆ˜๊ฐ€ ํ˜๋Ÿฌ๊ฐ€๋Š” ๊ณณ์— ์˜ค์—ผ๋ฌผ์„ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ์ˆ˜์ง ํˆฌ์ˆ˜์„ฑ ๋ฐ˜์‘๋ฒฝ์ฒด๋ฅผ ์„ค์น˜ํ•˜์—ฌ ์˜ค์—ผ์ง€ํ•˜์ˆ˜๊ฐ€ ๋ฒฝ์ฒด๋ฅผ ํ†ต๊ณผํ•˜๋ฉด์„œ ์ƒ๋ฌผํ•™์  ๋˜๋Š” ํ™”ํ•™์ ์œผ๋กœ ๋ถ„ํ•ด๋˜๋„๋ก ํ•˜๋Š” ํ˜„์žฅ ๊ตฌ์กฐ๋ฌผ

๊ฐœ์š”

8) ๊ธฐํƒ€ ์ •ํ™”๊ธฐ์ˆ 

โ‘ฃ Electrokinetics ๋™์ „๊ธฐ๋ฒ•

์˜ค์—ผ์ง€์—ญ ์ •ํ™” ๋ฐ ๋ณต์›๊ธฐ์ˆ  (36)

์ง€์ธต ์†์— ์ „๊ทน์„ ์„ค์น˜ํ•œ ํ›„ ์ „๋ฅ˜๋ฅผ ๊ฐ€ํ•˜์—ฌ ์ง€์ธต์˜ ๋ฌผ๋ฆฌโ€คํ™”ํ•™์  ๋ฐ ์ˆ˜๋ฆฌํ•™์  ๋ณ€ํ™”๋ฅผ ์œ ๋„ํ•œ ํ›„ ์ „๋„ํ˜„์ƒ์„ ์ผ์œผ์ผœ ์˜ค์—ผ๋ฌผ์งˆ์„ ์ด๋™ ์ถ”์ถœโ€ค์ œ๊ฑฐํ•˜๋Š” ๊ธฐ์ˆ  ์ „๊ธฐ์‚ผํˆฌ / ์ „๊ธฐ์ด๋™ / ์ „๊ธฐ์˜๋™

์ค‘๊ธˆ์†, ํ•ต์ข…, ํŽ˜๋†€, TCE, ํ†จ๋ฃจ์—”, ๊ธฐํƒ€ ์œ ๊ธฐ ๋ฐ ๋ฌด๊ธฐ๋ฌผ

๊ฐœ์š”

์ฒ˜๋ฆฌ ๋ฌผ์งˆ

์ „๊ธฐ์‚ผํˆฌ ํ๋ฆ„์— ์˜ํ•œ ๊ฐ„๊ทน์ˆ˜ ์ด๋ฅ˜ (advection)

์™ธ์ ์œผ๋กœ ์ œ๊ณ  ๋˜๋Š” ๋‚ด์ ์œผ๋กœ ์ƒ์„ฑ๋œ ์ˆ˜์œ„์ฐจ์— ์˜ํ•œ ๊ฐ„๊ทน์ˆ˜ ์ด๋ฅ˜ (hydro-potential)

๋†๋„๊ฒฝ์‚ฌ์— ์˜ํ•œ ํ™•์‚ฐ (diffusion)

์ „๊ธฐ๊ฒฝ์‚ฌ์— ์˜ํ•œ ์ด์˜จ์ด๋™ (migration)

๋ฌผ์งˆ ์ด๋™ ๊ธฐ์ž‘

์ ํ† ์˜ ์™„์ถฉ๋Šฅ๋ ฅ, ์–‘์ด์˜จ ๊ตํ™˜๋Šฅ๋ ฅ, ์œ ๊ธฐ๋ฌผ ํ•จ๋Ÿ‰, ํฌํ™”๋Œ€ ๋‚ด ์ ํ† ๊ด‘๋ฌผ ํ‘œ๋ฉด์˜ ์ „ํ•˜๋ฐ€๋„, ์–‘์ด์˜จ ๋ฌผ์งˆ์˜ ํŠน์„ฑ๊ณผ ๋†๋„, ์œ ๊ธฐ์งˆ/ํƒ„์‚ฐ์—ผ์˜ ์กด์žฌ, pH

์˜ํ–ฅ ์ธ์ž