71
1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of Thermodynamics Lecture 0331 L 337 6. Thermodynamics of Polymer Solutions

Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

  • Upload
    trananh

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

1

Polymer Thermodynamics

Prof. Dr. rer. nat. habil. S. Enders

Faculty III for Process ScienceInstitute of Chemical EngineeringDepartment of Thermodynamics

Lecture

0331 L 337

6. Thermodynamics of Polymer Solutions

Page 2: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

2Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.1. Introduction

P = constant

( )

F F I I II II F I IIA A A

F I IF I II I I II II A AA A A II I II

A A

x n x n x n n n n

x x nx n n x n x nx x n

= + = +

−+ = + → =

0.0 0.2 0.4 0.6 0.8 1.0250

260

270

280

290

300

310

320

tie line

critical point

meta-stable

meta-stable

stable

stableinstable

spinodalebinodale

T / K

XA

Page 3: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

3Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.1. Introduction

phase equilibrium conditions

1 2

1 2

1 2

L LA AL LB BL LP P P

μ μ

μ μ

=

=

= = S2

T,P=constant

S1II

I

free

mix

ing

enth

alpy

composition

instability limit

2

2

( ) 0MIX g xx

⎛ ⎞∂ Δ=⎜ ⎟∂⎝ ⎠

3

3

( ) 0MIX g xx

⎛ ⎞∂ Δ=⎜ ⎟∂⎝ ⎠

critical conditions

Page 4: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

4Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.1. Introduction

0( , , ) ( , ) ln lni i i i iT P x T P RT x RTμ μ γ= + +

( ) ( )1 1 1 2 2 2

0 0

1 1 2 2 1 1

1 1 2

2 2

2

( , ) ln ln ( , ) ln ln

ln ln ln ln ln ln

L L L L L LA A A A A A

L L L L L L L LA A A

L L L L

A A A

A A A A

A A

T P RT x RT T P RT x RT

x x

x x

x x

μ γ μ γ

γ γ γ γ

γ γ

+ + = + +

+ = + →

=

=

gE-model for the determination of the activity coefficients is necessary

( )( ) ( ) 1E

A B A Ag A T x x A T x xRT

= = −2

2

ln ( )

ln ( )B A

A B

A T x

A T x

γ

γ

=

=i.e.

Page 5: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

5Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.1. Introduction

( ) ( ) ( )

( ) ( ) ( )

1 2 21 2 2 12

1 2 21 2 2 12

ln ( ) 2

ln ( ) 2

LL L L LBB B B BL

B

LL L L LAA A A AL

A

x A T x x x xx

x A T x x x xx

⎛ ⎞ ⎡ ⎤= − +⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠⎛ ⎞ ⎡ ⎤= − +⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

system of equations made from 2 equations → 2 quantities can be calculated

1) T and xAL1→ fixed xA

L2

2) T and xAL2→ fixed xA

L1

3) xAL1 and xA

L2→ fixed T

3 possibilities:

Page 6: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

6Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.1. Introduction

spinodale2

2

( ) 0MIX g xx

⎛ ⎞∂ Δ=⎜ ⎟∂⎝ ⎠

( )

( )2

2

1 1 2 ( ) 0

ln ln ln ln

1 1 2 ( ) 21 1

1 ( )

MIX A A B B A A B B

MIXA A

AA A A A

g RT x x x x x x

g A T x A T xx

Ax x

Tx x

γ γΔ = + + +

⎛ ⎞ ⎛ ⎞∂ Δ= + − − − =⎜ ⎟ ⎜ ⎟∂ −

−⎠ −⎠

+⎝

=⎝

2 2ln ( ) ln ( )B A A BA T x A T xγ γ= =

critical point

( )

3

23 2

( ) 1 1 01

12

CMI

A AA

X g x xx x x

⎛ ⎞∂ Δ= − + = →⎜ ⎟∂ −⎝ ⎠

=

( ) 2 ( ) ( ) spontaneous demixing( ) ( ) stable or metastable

C C

C

A T A T A TA T A T

= > ⇒< ⇒

Page 7: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

7Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

1. Why are polymers usually do not dissolve in normal solvent ?2. Do we have phase separation (LLE) for polymer solutions ?3. How depends phase separation on the molecular weight?

Problems:

Differences between low-molecular weight mixtures and polymer solution

structure of polymer depends on solvent concentration

the structure of both components do not depend on concentration

both components show a big difference in size→ additional parameter molecular weight distribution

both components have approximately the same size

i.e. PS in cyclohexanei.e. benzene + toluene

polymer solutionlow-molecular weight mixture

6.1. Introduction

Page 8: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

8Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

Taking into account the differences in size:

division of polymers into segments

standard

ii

LrL

=

Properties1. possibility L= molar volume

disadvantage: volumes depend on temperature2. possibility L = molar mass3. possibility L = degree of polymerization4. possibility L = van der Waals-volume (quantity b in the van der

Waals – equation of state)advantage: available by experiments using X-ray diffraction or by prediction

from molecular data (group-contribution method by Bondi)do not depend on temperature

Lstandard = property of an arbitrarily chosen standard segment (i.e. solvent or monomer unit)

6.1. Introduction

Page 9: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

9Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

division of polymers into segments

standard

ii

LrL

=segment-related thermodynamic quantities(segment-molare quantities)

polymer solution made from solvent (A) + polymer (B)

AA A

A A B B A A B B

r x zx zr x r x r z r z

= ⇒ =+ +

i.e. cyclohexane + polystyrene MPS=100000g/mol xB=0.00001 Lstandard= molar mass of solvent =84.16g/mol-1

100000 / 84.16 /1188.2 184.16 / 84.16 /PS CH

g mol g molr rg mol g mol

= = = =

1188.2*0.00001 0.011741*(1 0.00001) 1188.2*0.00001PSx = =

− +

Taking into account the differences in size:6.1. Introduction

Page 10: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

10Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

the structure of polymer depends on concentration

diluted polymer solutionno entanglements of the polymer chain

semi-diluted polymer solution,entanglements of the polymerchain

overlapping concentration c‘‘

6.1. Introduction

Page 11: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

11Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

vapor pressure of polymer solution

exp. data: B. A. Wolf, et al. University of Mainz, 1995

ideal mixturevery strong

derivation from the behavior of ideal

mixture

?

6.1. Introduction

CH/PS 233

0 0.2 0.4 0.6 0.8 1φPS

4

8

12

16

P [a.u.]

35°C45°C

55°C

65°C

Page 12: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

12Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

phase diagramcyclohexane + PSat different molecular weightsin [kg/mol] of PS

example: MPS=37000 g/molwPS=0,1 T=280 K

Experimental result: demixing

2

2

( )/ 0mix

PS

meta stableg RT spinodale

xinstable

>⎛ ⎞∂ Δ

=⎜ ⎟∂⎝ ⎠ <

6.1. Introduction

Page 13: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

13Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

real low-molecular weight mixture

WWAB≠WWAA≠WWBB

derivations from the behavior of an ideal mixture are caused by intermolecular interaction

model of regular mixtureHildebrand (1933)

The real behavior can be explained completelyby enthalpic effects.

0E E Es g h= → =

AB AA BBWW WW WW=

6.1. Introduction

Page 14: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

14Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

Hildebrand model of regular mixtureThe real behavior can be explained completely by enthalpic effects.

0E E Es g h= → =E

A B ABg v DRT

φ φ=

0

01

i

i ik

i ii

x v

x vφ

=

=

∑0

1 10

k kE

i i i ii i

v v x v x v= =

= → = =∑ ∑

( )2A B

ABDRT

δ δ−=

δi solubility parameter

δCH=16.7 (J/cm3)1/2 δPS=17.4 (J/cm3)1/2

( )2

3 3

16.7 17.4 mol0.000218.314 280 cmCHPS

JmolKD

cm J K−

= =

6.1. Introduction

Page 15: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

15Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

E

A B ABg v DRT

φ φ= 3

mol0.00021cmCHPSD =

2 2 20 0

2 3

/ 21 011

Mix AB A B

B B B

g RT D v vx x x v

⎛ ⎞∂ Δ= + −⎜ ⎟∂ −⎠

<⎝

3

3

3 3

111 1.0556

37000 350511.0556

CH PS

PSPS

PS

cm gvmol cm

M g cm cmvmol g mol

ρ

ρ

= =

= = =

Table book:

CH CH PS PSv x v x v= +

example: MPS=37000 g/molwPS=0,1 T=280 K

Hildebrand model of regular mixtureThe real behavior can be explained completely by enthalpic effects.

6.1. Introduction

Page 16: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

16Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

3 3

3

mol0.00021 111 35051cmCHPS CH PS

cm cmD v vmol mol

= = =

2 2 2

2 3

/ 21 1 01

Mix CHPS CH PS

PS PS PS

g RT D v vx x x v

⎛ ⎞∂ Δ= + −⎜ ⎟∂ −⎠

<⎝

CH CH PS PSv x v x v= +

example: MPS=37000 g/mol wPS=0.1 T=280 K

3 2

2

/ 2cm0.00025267 v=119.828m

6o

65l

3.

PS PS PS

PS PS PS PSPS

PS CH PS CH PS CHPS CH

PS CH PS CH PS CH

PMix

PS

S

m w m wn M M Mx m m w m w m w wn n

M M M M M

T

M

gx

x R⎛ ⎞∂ Δ=⎜ ⎟∂⎝ ⎠

= = = =+ + + +

=

conflict to experimental

findings

interaction are not the reasons for the strong real effects

6.1. Introduction

Page 17: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

17Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

real polymer solution

WWAB=WWAA=WWBB

derivation from ideal behaviorcaused by differences in size

model of ideal-athermic mixture

J.P. Flory (1930)M.L. Huggins

The real behavior can be explained completely by entropic effects.

0E E Eh g Ts= → = −

→ Flory-Huggins mixture

6.2. Flory-Huggins Theory

Page 18: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

18Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

WWAB=WWAA=WWBB

model of ideal-athermic mixture

0E E Eh g Ts= → = −

Polymer chains will be arranged on latticesites of equal sizes (i.e. v0A). The number of occupied lattice site dependson segment number r.

Boltzmann’s definition of entropy

lnBS k= Ω

kB Boltzmann’s constantΩ thermodynamic probability

monomer solution

polymer solution

polymer coil

6.2. Flory-Huggins Theory

Page 19: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

19Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

Statistical Interpretation of Entropy

ε1

ε2

ε3

Number of possible configuration for 3 distinguishable particles in 3 rooms

P=N! = 3*2*1 = 6

Number of possible configurations corresponds to the permutations of the number of particles:

probability:

1 2 3

!! ! ! !i

NWN N N N

=…

W is called „thermodynamic probability“ and it is the number of possible configuration for a given macroscopic state.

6.2. Flory-Huggins Theory

Page 20: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

20Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

Example: distribution of 4 particles with identical energy in 4 volumes.

WC= 4!/(2!1!1!0!)= 4!/2! =12

WA= 4!/(4!0!0!0!)= 4!/4! =1

C

D

A

B WB= 4!/(3!0!1!0!)= 4!/3! =4

WD= 4!/(1!1!1!1!)= 4!/1! =24

The macroscopic state D can be realized by the most configurations.

The macroscopic state D has the highest thermodynamic probability.

6.2. Flory-Huggins Theory

Page 21: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

21Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

Model of ideal-athermic mixture

0E E Eh g Ts= → = − lnBS k= Ω

Ω represents the number of distinguishable possibilities of the system to fill the lattice places with particles.

size of the lattice place: v0A

Every lattice place is occupied either with polymer segmentor with a solvent molecule.The polymer segments of a polymer chain are connected bychemical bond and hence they can not move freely.

NA-solvent molecules + NB- polymer chains (every chain consist of r-segments)

number of total lattice places: N0=NA+r*NBevery lattice place is surrounded by q next neighbors (coordination number)

cubic lattice q=6

6.2. Flory-Huggins Theory

Page 22: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

22Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

model of ideal-athermic mixture

0E E Eh g Ts= → = − lnBS k= Ω

( ) 21 0 1 rN q qν −= −the first polymer chain has ν1 possibility to arrange

0 ( 1)fN N i r= − −number of empty lattice places Nf, if the lattice is filled with i-1 polymer chains

the probability to find an empty place is equal to Nf/N0

number of possibilities to arrangefor the chain i: ( )

12

0

1r

rfi f

NN q q

−−⎛ ⎞

= −⎜ ⎟⎝ ⎠

1

!2

Bi N

ii

rBN

υ=

=

⎡ ⎤⎢ ⎥⎣ ⎦Ω =∏

(1 ) ln(1 ) lnBMix B B B

xs R x x xr

⎡ ⎤Δ = − − − +⎢ ⎥

⎢ ⎥⎣ ⎦

6.2. Flory-Huggins Theory

Page 23: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

23Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

(1 ) ln(1 ) lnBMIX B B B

xg RT x x xr

⎡ ⎤Δ = − − +⎢ ⎥

⎢ ⎥⎣ ⎦

(1 ) ln(1 ) lnBMix B B B

xs R x x xr

⎡ ⎤Δ = − − − +⎢ ⎥

⎢ ⎥⎣ ⎦

( ) ( )( )

( )2

2

/ 1 1ln 1 1 ln

1/ 1 1 10 011 1

MIXB B

B

B BMIX

B

B B B BB

g RT x xr rx

rx xg RT xrx rx x rxx

⎛ ⎞∂Δ⎜ ⎟ = − − − + +⎜ ⎟∂⎝ ⎠

⎛ ⎞ + −∂ Δ⎜ ⎟ = + = → = → = −⎜ ⎟ −− −∂⎝ ⎠

r ³1 negativesegment mole fractionis nonsense

ideal-athermicmixture can not demixed

model of ideal-athermic mixture6.2. Flory-Huggins Theory

Page 24: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

24Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

model of real polymer solutions

(1 ) ln(1 ) ln RBMIX B B B

xg RT x x x gr

⎡ ⎤Δ = − − + +⎢ ⎥

⎢ ⎥⎣ ⎦

Rg description of the derivation of a real polymer solution from anideal-athermic mixture

[ ]12AB A B

B

A B

qk T

ε ε ε ε

εχ

Δ = − +

Δ=

interaction energy between lattice places

χ Flory-Huggin‘s interaction parameter

bad solventχ>0

Ideal - athermic mixtureχ=0

good solventχ<0

0 (1 )R RB Bg h N q x x ε= = − Δ

6.2. Flory-Huggins Theory

Page 25: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

25Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

model of real polymer solutions

(1 ) ln(1 ) ln RBMIX B B B

xg RT x x x gr

⎡ ⎤Δ = − − + +⎢ ⎥

⎢ ⎥⎣ ⎦

0 0(1 ) (1 ) (1 )

B

B

R R BB B B B B B

q k Tk T q

k Tg h N q x x N q x x RT x xq

ε χχ ε

χε χ

Δ= Δ =

= = − Δ = − = −

χ Flory-Huggins interaction parameter

(1 ) ln(1 ) ln (1 )MIX BB B B B B

g xx x x x xRT r

χΔ= − − + + −

Flory-Huggins-equation

6.2. Flory-Huggins Theory

Page 26: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

26Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

(1 ) ln(1 ) ln (1 )MIX BB B B B B

g xx x x x xRT r

χΔ= − − + + −

( ) ( ) ( )

( ) ( )

2

2

3

2 23

/ 1 1ln 1 1 ln 1 2

/ 1 1 2 01

/ 1 1 01

MIXB B B

B

MIX

B BB

MIX

B B B

g RT x x xr rx

g RT

x rxx

g RT

x x r x

χ

χ

⎛ ⎞∂Δ⎜ ⎟ = − − − + + + −⎜ ⎟∂⎝ ⎠⎛ ⎞∂ Δ⎜ ⎟ = + − =⎜ ⎟ −∂⎝ ⎠⎛ ⎞∂ Δ⎜ ⎟ = − =⎜ ⎟∂ −⎝ ⎠

spinodal condition

critical condition

6.2. Flory-Huggins Theory

Page 27: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

27Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

(1 ) ln(1 ) ln (1 )MIX BB B B B B

g xx x x x xRT r

χΔ= − − + + −

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( )( )

3 2 2 2

2 23

2 2

1,2 2

1,2

/ 1 1 0 1 1 21

1 20 1 2 1 01 1

2 4 1 1 1 11 12 1 1 1 1 14 1

0 1 11

11B

MIXB B B B

B B B

BB B

B

c

B

B

g RT r x x x xx x r x

xx r x xr r

rx rr r r r rr

r rxr r

x

⎛ ⎞∂ Δ⎜ ⎟ = − = → = − = − +⎜ ⎟∂ −⎝ ⎠

→ = − + − → = − +− −

±= ± − = ±

− −= =

− − =− − − − −−

< <−

6.2. Flory-Huggins Theory

Page 28: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

28Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

0 1000 2000 3000 4000

0,00

0,05

0,10

0,15

0,20

0,25

Flory-Huggins theory

criti

cal c

once

ntra

tion

segment number r

11B c

rxr−

=−

6.2. Flory-Huggins Theory

Page 29: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

29Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

(1 ) ln(1 ) ln (1 )MIX BB B B B B

g xx x x x xRT r

χΔ= − − + + −

( )

11 12lim 01 1 2B Bc cr

r rx für r xr r→∞

−= →∞⇒ = = =

2

2

/ 1 1 12 0 21 1

0 1/ 2

MIX

B B

C

BB

B

g RT für rx rx xx

x

χ χ

χ

⎛ ⎞∂ Δ⎜ ⎟ = + − = →∞⇒ =⎜ ⎟ − −∂⎝ ⎠

→ ⇒ =0.5

instablespinodalstable

χ>=<for polymers with r →∞

6.2. Flory-Huggins Theory

Page 30: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

30Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

1.3725rubber + acetone

0.4425rubber + benzene

0.2820rubber + CCl4

0.1526PVC + THF

0.4425polystyrene + toluene

0.525polyisobutylene + benzene

0.2725cellulose nitrate + acetonecT [°C]system

Flory-Huggins parameter for polymer + solvent - systems

6.2. Flory-Huggins Theory

Page 31: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

31Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

B. A. Wolf, University of Mainz, 1995

χ can also depends on polymer concentrationand molecular weight

conflict to FH-theory

6.2. Flory-Huggins Theory

χ

0.0

0.2

0.4

0.6

0.8

1

φPVME

0.0 0.2 0.4 0.6 0.8 1

CH/PVME

MW [kg/mol]

81 51

28

T = 65°C

Page 32: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

32Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

B. A. Wolf, University of Mainz, 1995

6.2. Flory-Huggins Theory

χ

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8

TL / PDMS 170

T=35°C

T=45°C

T=55°C

wPDMS

Page 33: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

33Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

formal division of χ in a enthalpic- and a entropic part

( )

22

2

H S

S

H

h Ts h sRT RT R

s hh RT

R T RT T

RTh T TRT RT T

χ χ χ χ

χ χχ

χ

χ χ χ

χ χχ

χχχ

−= + = = −

∂ ∂⎛ ⎞ ⎛ ⎞= − = − → = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∂⎛ ⎞− ⎜ ⎟ ∂∂ ⎛ ⎞⎝ ⎠= = = − ⎜ ⎟∂⎝ ⎠

temperature dependence of χ available

special case: 0H Sχ χ χ− = ⇒ = pseudo-ideal state = Theta-state

1H S

h s h hs s

RT R R T Tχ χ χ χ

χ χχ χ χ⎛ ⎞

= + = − = − ⇒ =⎜ ⎟⎝ ⎠

Theta-temperature

6.2. Flory-Huggins Theory

Page 34: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

34Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

0.2

0.03

0.03

0.03

0.04

-0.02

-0.08

cH

0.310.51m-xylole

0.450.48Acetone

0.420.45toluene

0.420.45THF

0.390.43dioxane

0.450.43benzene

0.440.36chloroform

cScsolvent

Flory-Huggins parameter for PMMA + solvent systems

entropic effectsare more importantthan enthalpic effects

6.2. Flory-Huggins Theory

Page 35: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

35Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

B. A. Wolf, Universität Mainz, 1995

6.2. Flory-Huggins Theory

c

fPDMS

0.2 0.4 0.6 0.8-3

-2

-1

0

1

2

3

4

cS

cH

TL/PDMS 170T = 35°C

Page 36: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

36Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.2. Flory-Huggins Theory

Prediction of χ

Cohesive Energy eCoh: internal energy of the material if all of its intermolecularforces are eliminated

solubility parameter δ1/ 2

3/ 2cohe Jv mol

δ δ⎡ ⎤

= ⎢ ⎥⎣ ⎦

solubility of polymer P in solvent S ( )2P Sδ δ− has to be small,

as small as possible

( ) ( )22

(1 ) (1 ) BR

BB B B

AAB

h x x xvRT

xRT vRT

δ δχχ

δ δ−=

⎡ ⎤−= − ≈ − →⎢ ⎥

⎢ ⎥⎣ ⎦

2

(298 )CohFe

v K= F molar attraction constant

v molar volume

Page 37: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

37Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.2. Flory-Huggins Theory

Prediction of χ example: solubility of polystyrene at 25°CFirst step: Calculation of atomic indices δ and valence atomic δV

Second step: Calculation of connectivity indicesV V V

ij i j ij i jβ δ δ β δ δ= =

0 0 1 1

0 0 1 1

1 1 1 1

5.3973 4.6712 3.9663 3.0159

V V

V Vvertices vertices edges edges

V V

χ χ χ χδ βδ β

χ χ χ χ

≡ ≡ ≡ ≡

= = = =

∑ ∑ ∑ ∑

Page 38: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

38Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.2. Flory-Huggins Theory

Prediction of χ example: solubility of polystyrene at 25°CFourth step: Calculation of molar volume

1.42 0.15Wg

Tv vT

⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

( )

( )

30 1

3 3

3.861803* 13.748435*

3.861803*5.3973 13.748435*3.0159 62.31

VW

cmvmol

cm cmmol mol

χ χ= +

= + =

Tg=373.15K

3 329862.31 1.42 0.15 95.95373

cm K cmvmol K mol

⎛ ⎞⎛ ⎞= + =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Page 39: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

39Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.2. Flory-Huggins Theory

Prediction of χ example: solubility of polystyrene at 25°CThird step: Calculation of molar attraction constant F

( )( )( )

( )( )( )

0 0 1 1 3

2

3

2

3

2

97.95 2

134.61

97.95 5.3973 2 4.6712 3.9663 3.0159

134.61 0 0 0

1754.2

V V

Si Br Cyc

Jcmwhere FmolN N N

JcmFmol

JcmFmol

χ χ χ χ⎡ ⎤− + + +⎢ ⎥=⎢ ⎥+ − −⎣ ⎦

⎡ ⎤− + + += ⎢ ⎥

+ − −⎢ ⎥⎣ ⎦

=

Page 40: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

40Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.2. Flory-Huggins Theory

Prediction of χ example: solubility of polystyreneFifth step: Calculation cohesive energy eCoh

( )

2

3 3

2

2 3

2 3

(298 )

1754.2 95.95

1754.232.07

95.95

Coh

Coh

Fev K

Jcm cmF vmol mol

Jcm mol kJemol cm mol

=

= =

= =

3 3

32.07 18.2895.95

cohe kJmol Jv mol cm cm

δ = = =

Sixth step: Calculation of solubility parameter δ

Page 41: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

41Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.2. Flory-Huggins Theory

Prediction of χ example: solubility of polystyrene

Seventh step: Calculation of interaction parameter χ( )2

B A

vRTδ δ

χ−

=

4,96690,17690,00300,00050,4520

χ solvent qualityδA [J/cm3]solvent

poor-LLE29,60methanolgood20,42dioxane

excellent18,56benzeneexcellent18,17toluenemiddle14,86n-hexane

Page 42: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

42Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.2. Flory-Huggins Theory

Application of Flory-Huggins Theory to LLEphase equilibrium conditions

low molecular weight mixtures polymer solutions1 2

1 2

1 2

L LA AL LB BL LP P P

μ μ

μ μ

=

=

= =

1 2

1 2

1 2

L LA A

L LB BL LP P P

μ μ

μ μ

=

=

= =

(1 ) ln(1 ) ln (1 )MIX BB B B B B

g xx x x x xRT r

χΔ= − − + + −

0 0 0 0

, , A

A BB MIX A B MIXA B

B T P n

G G G G G n g n g n gn

μ⎛ ⎞∂⎜ ⎟= → = + + Δ = + + Δ⎜ ⎟∂⎝ ⎠

Page 43: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

43Polymer Thermodynamics6. Thermodynamics of Polymer Solutions

6.2. Flory-Huggins Theory

( ) ( )

( ) ( )

( ) ( )

0 0

2

0

, ,

0

2

,

0

,

(1 ) ln(1 ) ln (1 )

1ln 1

1 1l

1/ / ln 1

n 1

B

A

BA B B B B B BA B

A A B BA

A T P n

B B A AB

B T P n

AA A B B

xG n g n g RT n x x x x xr

G g RT x x xrn

G g RT x x xr

RT RT x x x

n

r

r

μ μ

χ

μ χ

μ

χ

⎡ ⎤= + + − − + + −⎢ ⎥

⎢ ⎥⎣ ⎦⎛ ⎞∂ ⎛ ⎞⎛ ⎞⎜ ⎟= = + + − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠∂⎝ ⎠

⎛ ⎞∂ ⎛ ⎞⎜ ⎟= = + − − +⎜ ⎟⎜ ⎟ ⎝ ⎠∂

⎛ ⎞= + + +⎜⎝ ⎠

⎝ ⎠

− ⎟

( ) ( )2

0

2

1 1/ / ln 1BB B A ART RT x x xr r

μ μ χ

χ

⎛ ⎞

⎡ ⎤⎢ ⎥⎣ ⎦

= + − − +⎜ ⎟⎝ ⎠

Application of Flory-Huggins Theory to LLE

Page 44: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

44Polymer Thermodynamics6. Thermodynamics of Polymer Solutions

6.2. Flory-Huggins Theory

10LA

RTμ ( ) ( )2 2

1 1 1 01ln 1L

L L L AA B Bx x x

r RTμχ⎛ ⎞+ + − + =⎜ ⎟

⎝ ⎠ ( ) ( )( ) ( ) ( )

22 2 2

1

2 212 2 1

2

0

1

1ln 1

1ln 1L

L L L LAB B B B

L

L L LB

A

A B

LB

x x x x xrx

x x xr

RT

χ

χ

μ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ = − − + −⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠

⎛ ⎞+ + − +⎜ ⎟⎝ ⎠

⎝→

( ) ( )2 21 1 1 01 1ln 1

LL L L BB A Ax x x

r r RTμχ⎛ ⎞+ − − + =⎜ ⎟

⎝ ⎠ ( ) ( )( ) ( ) ( )

22 2

2 211 2

2

2 1

2

1 1ln 1

1 11

L L LB A A

LL L L LBA A A A

LB

x x x x xr rx

x x xr r

χ

χ⎛ ⎞ ⎛ ⎞⎛ ⎞⎜

⎛ ⎞+ − − +⎜ ⎟⎝ ⎠

→ ⎟ = − − + −⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

Application of Flory-Huggins Theory to LLE

2 equations and 3 unknowns → select one concentration in one phase→ calculation of the concentration in the other phase and the parameter χ using

both equations, where a numerical procedure must be appliedor reduce the system of equations to one equation

equation 1

equation 2

Page 45: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

45Polymer Thermodynamics6. Thermodynamics of Polymer Solutions

6.2. Flory-Huggins Theory

( )( ) ( )

( )( ) ( )

1 12 1 1 2

2 2

2 2 2 22 1 2 1

1 1 1ln 1 1L L

L L L LA BB B A A

L LA B

L L L LB B A A

x xx x x xr r rx x

x x x x

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟− − − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠=⎛ ⎞ ⎛ ⎞

− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Application of Flory-Huggins Theory to LLE

reduce the system of equations to one equation → rearrangement of both equationsaccording χ → to equate both results

from equation 1 from equation 2

equation 3

Now: solve equation 3 in order to calculate the unknown concentration usingroot-searching method, like Newton-Procedurecalculate χ using equation 1 or equation 2

Page 46: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

46Polymer Thermodynamics6. Thermodynamics of Polymer Solutions

6.2. Flory-Huggins TheoryApplication of Flory-Huggins Theory to LLE

321 2( )T

T Tββχ β= + +

special cases:β3=0 only one critical point can be calculated

β2>0 UCSTβ2<0 LCST

β3≠0 two critical points can be calculatedclosed miscibility gap or UCST+LCST

T / K

XA

UCST

XA

T/K

LCST

T / K

XA

XA

T [K

]

Page 47: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

47Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

0 5 10 15 20 25

30

40

50

60

70

80

χ(T)=1.186-207.87/T

MW=500 kg/mol

PAA + Dioxan

T / °

C

wPAA [%]

6.2. Flory-Huggins Theory

Page 48: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

48Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.2. Flory-Huggins Theory

vapor pressure of polymer solutions

liquid mixture (A+B) « pure vapor phase (A)

solvent A + solute B PBVL ≈ 0

equilibrium condition: ( , , ) ( , )L VA A Ad T P x d T Pμ μ= T = constant

0 0

0

00

1V L L VVL

V VA A A A AA AVL V

A A A

VLL L LA A AVL

A

ideal gas

a xP with

P a

P

xP

ϕ γ ϕ ϕ ϕϕ ϕ

γ

= = =

=

=

→ =

Page 49: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

49Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions6.2. Flory-Huggins Theory

vapor pressure of polymer solutions

0

VLLAVL

A

P aP

=application to polymer solution

( ) ( )2

01ln 1AA A B BRT x x xr

μ μ χ⎡ ⎤⎛ ⎞= + + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

low-molecular weight mixtures0( , , ) ( , ) lni i i iT P x T P RT aμ μ= +

solvent in polymer solution

( ) ( )( ) ( )

2

2

0

1ln ln 1

1ln ln 1

LA A B B

VL

A B BVLA

a x x xr

P x x xP r

χ

χ

⎛ ⎞⎛ ⎞ = + − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎛ ⎞→ = + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠possibility to determine χ from experimental data, like vapor pressure of polymer solutions

Page 50: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

50Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

vapor pressure of polymer solutions

liquid mixture (A+B) « pure vapor phase (A)

solvent A + solute B PBVL ≈ 0

equilibria condition: ( , , ) ( , )L VA A Ad T P x d T Pμ μ= T = constant

0 0

0

00

1V L L VVL

V VA A A A AA AVL V

A A A

VLL L LA A AVL

A

ideal gas

a xP with

P a

P

xP

ϕ γ ϕ ϕ ϕϕ ϕ

γ

= = =

=

=

→ =

( ) ( )2

0

1ln ln 1VL

A B BVLA

P x x xP r

χ⎛ ⎞ ⎛ ⎞= + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

Flory-Huggins theory

6.2. Flory-Huggins Theory

Page 51: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

51Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

vapor pressure of polymer solutions

0,0 0,2 0,4 0,6 0,8 1,00

5

10

15

20

T = 298K

r=1 χ=0 ideal mixture r=100 χ=0 ideal-athermic mixture r=100 χ=0.452 real mixture

PS + n-hexanePVL

[kPa

]

segment mole fraction of PS

6.2. Flory-Huggins Theory

Page 52: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

52Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

measurement of χ: inverse gas chromatography (IGC)IGC refers to the characterization of the chromatographic stationary phase (polymer)using a known amount of mobile phase (solvent).The stationary phase is prepared by coating an inert support with polymer and packingthe coated particles into a conventional gas chromatography column.The activity of the given solvent can be related to its retention time on the column.

→ infinity dilution regarding to the solvent

experimental information: N R GV V V= −VR retention volume [m3]VG gas holdup [m3]VN net retention volume [m3]

0NV net retention volume extrapolated to zero column pressure

00

NL GAL G L

A

Vn VkV n V

= = at infinity dilution: A AA A

A A

Pax xγ ϕ

∞ ∞

∞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

fugacity coefficient =1

0

LA A A

A NA A

P x P RTnax x V

∞ ∞

∞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

6.2. Flory-Huggins Theory

Page 53: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

53Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

experimental estimation of χ shows −χ depends on temperature−χ depends on polymer concentration−χ depends on molecular weight

more complex models are needed

321 2( )T

T Tββχ β= + +

6.2. Flory-Huggins Theory

Page 54: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

54Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

Flory-Krigbaum Model (1950): a diluted polymer solution is considered as adispersion of clouds consisting of polymer segments surrounded byregions of pure solvent

( ) ( ) ( )( )2

1 11ln ln 1A A B Ba x x xr

κ ψ⎛ ⎞= + − + −⎜ ⎟⎝ ⎠

enthalpic parameter entropic parameter

1

1

T Theta Temperatureκθ θψ

= = −

Difficulty: the interaction parameter depends not on concentration

6.3. Extensions of Flory-Huggins Theory

Page 55: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

55Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

( )(1 ) ,B BR

Bg RT x x Txχ= −

1. Possibility: ( ) ( )2

0 1 2, ( ) ( ) ( ) ...B B Bx T T T x T xχ χ χ χ= + + + +

advantage: very flexibledisadvantage: empirical, a lot of parameters

2. Possibility: ( ) ( ),1

B

B

Tx Tx

βχγ

=−

advantage: very flexible, semi-empiricaleasy parameter fitting procedure using the critical point

Koningsveld-Kleintjens-Eq.

6.3. Extensions of Flory-Huggins Theory

Page 56: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

56Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

0,00 0,02 0,04 0,06 0,08 0,10287,5

288,0

288,5

289,0

289,5

290,0

290,5

TD/PMMA 1770

γ = 0.32281 β1 = 0.24844 β2 = 143.307 / K

T/K

wPMMA

( ) ( ),1

B

B

Tx Tx

βχγ

=−

6.3. Extensions of Flory-Huggins Theory

Page 57: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

57Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

M. Schnell, S. Stryuk, B.A. Wolf, Ind. Eng. Chem. Res. 43 (2004) 2852.

high-pressure production of PE

equation of state is necessary

6.3. Extensions of Flory-Huggins Theory

Page 58: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

58Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

Flory-Equation of State

Starting point: partition function

( ) ( )31/3* 1 exprncrnc

combrncZ Z gv vvT

⎛ ⎞= − ⎜ ⎟⎝ ⎠

combinatory factor Zcomb geometrical factor g characteristic volume v*

3rnc = total number of degrees of freedom ( r = segment-number, n = number of molecules, c = mean number of external degrees per segment)

* * *v Tv T P

PP

v T= = =

v*, T* and P* are characteristic quantities = parameters of the polymer

6.3. Extensions of Flory-Huggins Theory

Page 59: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

59Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

Flory-Equation of StateStarting point: partition function

( ) ( )31/3* 1 exprncrnc

combrncZ Z gv vvT

⎛ ⎞= − ⎜ ⎟⎝ ⎠

6.3. Extensions of Flory-Huggins Theory

ln

T

ZP kTV

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

from statistical thermodynamics:

1/3

1/3

11

Pv vT v Tv

= −−

Page 60: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

60Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

Flory-Equation of State

6.3. Extensions of Flory-Huggins Theory

chemical potential for solvent:

1/3* ** *1 1 1

1 1 2 1 1 1* 1/31

22

2

12 1 1 1ln 1 3 ln1

Xv v vRT v P Tv v v v v

μ φ θφ⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞ −

Δ = + − + + + −⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

Flory-Huggins term

binary parameters

free volume terminteraction term

1/3* ** *2 2 2

2 2 1 2 2 2* 1/32

21

1

12 1 1 1ln 1 3 ln1

Xv v vRT v P Tv v v v v

μ φ θφ⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞ −

Δ = + − + + + −⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

chemical potential for polymer:

Page 61: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

61Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

Flory-Equation of State

6.3. Extensions of Flory-Huggins Theory

calculation of the mixing volume1 1 2 21E v vv v

vφ φ+⎡ ⎤= −⎢ ⎥⎣ ⎦

other equations of state useful in polymer thermodynamics

Sanchez-Lacombe Equation of state (SL-EOS)lattice theory, which allows additionally empty sites

Statistical associated fluid theory (SAFT-EOS)takes into account additionally specific interactions like hydrogen bonding

and associationPerturbed-Chain Statistical associated fluid theory (PC-SAFT-EOS)

further development of SAFT-EOS, takes the chain connectivity into account

( )2

1 1/ 1ln1

rP VT V V V T

−= − −

Page 62: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

62Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

6.3. Extensions of Flory-Huggins Theory

Polydispersity effects

three liquid phases for the system polyethylene + diphenyletherat constant temperature and pressure ???

R. Koningsveld, W.H. Stockmayer, E. Nies,Polymer Phase Diagrams, Oxford University Press, 2001

Gibbs ‘s phase rule: F = K – Ph + 2binary system: K=2 F=4-Phfixed P,T: F=2 ® PhMax=2

polymer solutions arenot binary systems

Page 63: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

63Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,18 0,20295

300

305

310

315

320

T / K

X Ensemble

critical point

spinodal

cloud-point curve

shadow-curve

coexisting curve

6.3. Extensions of Flory-Huggins TheoryPolydispersity effects

Page 64: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

64Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

0 200 400 600 800 1000 1200 1400 1600 1800 20000

5

10

15

20

25

30

Feed Phase I Phase II

103 W

(r)

r

fractionation effectPolydispersity effects

6.3. Extensions of Flory-Huggins Theory

phase Ipolymers withhigher chain lengths

phase IIpolymers withlower chain lengths

In both phasesare different polymers.

Page 65: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

65Polymer Thermodynamics6. Thermodynamics of Polymer Solutions

6.4. Swelling Equilibria

solvent

polymer network

V/V00.2 0.5 1 2

T [°C]

20

30

40

50

Page 66: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

66Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

6.4. Swelling Equilibria

Application to drug-delivery systems

Page 67: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

67Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

T = constant

polymer gelP1

P2liquid phase

+

+

+

+

--

- -+

+-

-

''' ''ln ( , ', ') ln ( , '', '') i eli i

T

v Fa T P n a T P nRT V

∂Δ⎛ ⎞= + ⎜ ⎟∂⎝ ⎠

MIX

MIX

el

deformed relaxed

FF F

F FF

Δ = Δ += Δ +

Δ−

ΔelF elastic free energy (deformation of rubber, rubber elasticity)

i.e. Flory-Huggins-theory

2/3

10

1el F VCRT V

⎡ ⎤⎛ ⎞Δ ⎢ ⎥= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

6.4. Swelling Equilibria

first approximation

more information available: G. Maurer, J.M. Prausnitz, Fluid Phase Equilibria 115 (1996) 13-133.

C1 – fit parameterV volume of swollen networkV0 volume of non-swollen network

Page 68: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

68Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

starting point:Li

Si ff = phase equilibrium condition

iso-fugacity criteria

Li0

Li

Li

Li fxf γ=liquid phase:

Si0

Si

Si

Si fxf γ=solid phase:

00 0

0

L S SL L L S S S i i ii i i i i i S L L

i i i

f xx f x ff x

γγ γγ

= → =

Calculation of pure-component properties

0 00 0 0 0

00 0 0

0

( , ) ln ( , ) ln

ln

S LS id L idi ii i i i

LL S i

LS i i i Si

f fg g T P RT g g T P RTP P

fg g g RTf

= + = +

→ Δ = − =

6.5. Solid-Liquid Equilibria

Page 69: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

69Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

0

0

L S Si i iS L Li i i

f xf x

γγ

=0

0 0 0 00

00 0 0

00 0

0

ln

1

1ln

Li

LS i LS i LS i LS iSi

LS iLS i LS i LS iLS LS

LS iL LSi LS iSi

fg RT g h T sf

h Tg h T hT T

Thf g Tf RT RT

Δ = Δ = Δ − Δ

Δ ⎛ ⎞Δ = Δ − = Δ −⎜ ⎟⎝ ⎠

⎛ ⎞Δ −⎜ ⎟Δ ⎝ ⎠= =

0 1ln

LS i S SLSi iL Li i

ThxT

RT xγγ

⎛ ⎞Δ −⎜ ⎟ ⎛ ⎞⎝ ⎠ = ⎜ ⎟⎝ ⎠

SLE for binary systems

6.5. Solid-Liquid Equilibria

Page 70: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

70Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

solids are pure-components 1S Si ix γ =

0

0

ln 1L L LS ii i LS

i

h TxRT T

γ⎛ ⎞Δ

= − −⎜ ⎟⎝ ⎠

SLE

Application to polymer solution using Flory-Huggins theory

( )

0

0

20

0

ln 1 ln

ln 1

L LLS iB BLS

i

L LLS iB ALS

i

h TxRT T

h Tx xRT T

γ

χ

⎛ ⎞Δ= − − −⎜ ⎟

⎝ ⎠

⎛ ⎞Δ= − − −⎜ ⎟

⎝ ⎠

6.5. Solid-Liquid Equilibria

Page 71: Lecture - Institut Prozess- & Verfahrenstechnik: Thermodynamik … · 2009-04-17 · 1 Polymer Thermodynamics Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science

71Polymer Thermodynamics

6. Thermodynamics of Polymer Solutions

solvent1) xylene only SLE2) amyl acetate or nitrobenzene

A-B SLEC-B LLEor eutectic mixture

6.5. Solid-Liquid EquilibriaT[°C]

80

100

120

140

160

180

200

0.2 0.4 0.6 0.8 wPE

xylene

amylacetate

nitrobenzene

AB

B

C

C