31
Lecture 6.0 Lecture 6.0 Properties of Dielectrics

Lecture 6.0

Embed Size (px)

DESCRIPTION

Lecture 6.0. Properties of Dielectrics. Capacitors On chip On Circuit Board Insulators Transistor gate Interconnects. Materials Oxides SiO 2 Boro-Silicate Glass Nitrides BN polymers. Dielectric use in Silicon Chips. Importance of Dielectrics to Silicon Chips. Size of devices - PowerPoint PPT Presentation

Citation preview

Page 1: Lecture 6.0

Lecture 6.0Lecture 6.0

Properties of Dielectrics

Page 2: Lecture 6.0

Dielectric use in Silicon ChipsDielectric use in Silicon Chips

Capacitors– On chip– On Circuit Board

Insulators– Transistor gate– Interconnects

Materials– Oxides

–SiO2

– Boro-Silicate Glass

– Nitrides–BN

– polymers

Page 3: Lecture 6.0

Importance of Dielectrics to Silicon ChipsImportance of Dielectrics to Silicon Chips

Size of devices– Electron Tunneling dimension

Chip Cooling- Device Density– Heat Capacity– Thermal Conductivity

Chip Speed – Capacitance in RC interconnects

Page 4: Lecture 6.0

Band theory of DielectricsBand theory of Dielectrics

Forbidden Zone–Energy Gap-LARGE

ValenceBand

ConductionBand

Page 5: Lecture 6.0

Difference between Difference between Semiconductors and Semiconductors and DielectricsDielectrics

Material Eg(eV)

Ge 0.67

Si 1.12

GaAs 1.43

SiO2 8

UO2 5.2

Ga2O3 4.6

Fe2O3 3.1

ZnO 3.2

NiO 4.2

Al2O3 8

kBT =0.0257 eV

at 298˚K

Page 6: Lecture 6.0

Fermi-Dirac Probability Fermi-Dirac Probability Distribution for electron energy, EDistribution for electron energy, E

Probability, F(E)=

(e{[E-Ef]/k

BT}+1)-1

–Ef is the

Fermi Energy

Page 7: Lecture 6.0

Number of Occupied StatesNumber of Occupied States

Fermi-Dirac

Density of States

T>1000K only

Page 8: Lecture 6.0

Probability of electrons in Probability of electrons in Conduction BandConduction Band

Lowest Energy in CBE-Ef Eg/2

Probability in CBF(E)= (exp{[E-Ef]/kBT} +1)-1 )

= (exp{Eg/2kBT} +1)-1

exp{-Eg/2kBT} for Eg>1 eV @ 298K

exp{-(4eV)/2kBT}= exp{-100} @ 298KkBT =0.0257 eV

at 298˚K

Page 9: Lecture 6.0

Intrinsic Conductivity of DielectricIntrinsic Conductivity of Dielectric

Charge Carriers – Electrons– Holes– Ions, M+i, O-2

= ne e e + nh e h # electrons = # holes

ne e (e+ h)– ne C exp{-Eg/2kBT}

Page 10: Lecture 6.0

Non-Stoichiometric DielectricsNon-Stoichiometric Dielectrics

Metal Excess M1+x O Metal with Multiple valence

Metal Deficiency M1-x O Metal with Multiple valence

Reaction Equilibrium Keq (PO2)±x/2

)(2

122

)(2

2..'

222

gOVTiOTi

gOx

TiOTiO

OTiOTi

x

ONigOx

NiO

OZngOx

ZnO

x

x

12

12

)(2

)(2

+4

+2

+3

+3

Page 11: Lecture 6.0

Density Changes with PoDensity Changes with Po22

SrTi1-xO3

Page 12: Lecture 6.0

Non-Stoichiometric DielectricsNon-Stoichiometric Dielectrics

ExcessM1+x O

DeficientM1-x O

Page 13: Lecture 6.0

Non-Stoichiometric DielectricsNon-Stoichiometric Dielectrics

Ki=[h+][e-]

K”F=[O”i][V”O]

Conductivity=f(Po2 )

Density =f(Po2 )

Page 14: Lecture 6.0

Dielectric Conduction due to Non-stoichiometryDielectric Conduction due to Non-stoichiometryN-type P-type

Page 15: Lecture 6.0

Dielectric Intrinsic Conduction due to Non-stoichiometryDielectric Intrinsic Conduction due to Non-stoichiometryN-type P-type

ExcessZn1+xO

DeficientCu2-xO

+ h

+ h

Page 16: Lecture 6.0

Extrinsic ConductivityExtrinsic Conductivity

Donor Doping Acceptor Dopingn-type p-type

Ed = -m*e e4/(8 (o)2 h2)Ef=Eg-Ed/2 Ef=Eg+Ea/2

Page 17: Lecture 6.0

Extrinsic Conductivity of Non-stoichiometry oxidesExtrinsic Conductivity of Non-stoichiometry oxidesAcceptor Dopingp-type

p= 2(2 m*h kBT/h2)3/2 exp(-Ef/kBT)

Law of Mass Action, Nipi=ndpd or =nndn

@ 10 atom % Li in NiO conductivity increases by 8 orders of magnitude@ 10 atom % Cr in NiO no change in conductivity

ONiNiLiOx

NiOxOLix

xxx )(4

)1(2

322122

Page 18: Lecture 6.0

CapacitanceCapacitance

C=oA/d

=C/Co

=1+e

e =electric susceptibility

Page 19: Lecture 6.0

PolarizationPolarization

P = e E

e = atomic polarizability

Induced polarizationP=(N/V)q

Page 20: Lecture 6.0

Polar regions align with E fieldPolar regions align with E field

P=(N/V) Eloc

i(Ni/V) i=3 o (-1)/(+2)

Page 21: Lecture 6.0

Local E FieldLocal E Field

Local Electric Field

Eloc=E’ + E

E’ = due to surrounding dipoles

Eloc=(1/3)(+2)E

Page 22: Lecture 6.0

Ionic PolarizationIonic Polarization

P=Pe+Pi

Pe = electronic

Pi= ionic

Pi=(N/V)eA

Page 23: Lecture 6.0

Thermal vibrations prevent Thermal vibrations prevent alignment with E fieldalignment with E field

Page 24: Lecture 6.0

Polar region follows E fieldPolar region follows E field

opt= (Vel/c)2

opt= n2

n=Refractive index

Page 25: Lecture 6.0

Dielectric ConstantDielectric Constant

Material (=0) opt=n2

Diamond 5.68 5.66

NaCl 5.90 2.34

LiCl 11.95 2.78

TiO2 94 6.8

Quartz(SiO2) 3.85 2.13

Page 26: Lecture 6.0

Resonant Absorption/dipole relaxationResonant Absorption/dipole relaxation

Dielectric Constantimaginary number

’ real part dielectric storage

” imaginary partdielectric loss

o natural frequency

Page 27: Lecture 6.0

Dipole RelaxationDipole Relaxation

Resonant frequency,o Relaxation time,

22"

22'

1

)(

1

opts

optsopt

22222

222"

22222

222'

)(

)(

o

o

io

opto

o

io

m

e

V

N

m

e

V

N

tiem

ex

dt

dx

dt

xd 202

2

Page 28: Lecture 6.0

Relaxation Time, Relaxation Time,

Page 29: Lecture 6.0

Dielectric Constant vs. Dielectric Constant vs. FrequencyFrequency

Page 30: Lecture 6.0

Avalanche BreakdownAvalanche Breakdown

Page 31: Lecture 6.0

Avalanche BreakdownAvalanche Breakdown

Like nuclear fission