8

Click here to load reader

Lecture 6

Embed Size (px)

DESCRIPTION

antenna6

Citation preview

Page 1: Lecture 6

1

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Lecture 6

Capacitance

In this lecture you will learn:

• Capacitance

• Capacitance of Some Simple Structures

• Some Simple Solutions of Laplace’s Equation

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

CapacitanceConsider two metallic objects connected by a voltage source

V+

-

++ + + + + + + + + ++

++

--

- - - - - - - - - --

-

• The total charge on both metal objects have the same magnitude but opposite sign

• The charge is proportional to the applied voltage: VQ ∝

total charge +Q

total charge -Q

• The constant of proportionality is called the capacitance C : CVQ =

• Capacitance has units Coulombs/Volts or Farads

• More generally, capacitance is also defined as:dVdQC =

Page 2: Lecture 6

2

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Capacitance of Parallel Plates

V+ -

φ = V φ = 0area = AdVEx =

dV

oL εσ =dV

oR εσ −=

++++++++

--------

dA

VQ

dVdQC

Vd

AQ

o

o

ε

ε

===

=

d

From previous lectures:

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Capacitance of Concentric Cylinders

+

+

++

+

+

+

+

---

- ----

V+ -

( )⎟⎠⎞

⎜⎝⎛

−=

abr

VrErln

( )abbV

oout lnεσ =

( )abaV

oin lnεσ −=

( ) ( )

( )abVQ

dVdQC

abbVbQ

o

o

ln2 lengthunit per ecapacitanc

ln2 lengthunit per charge

επ

επ

====

==

Since the structure is infinite in the z-direction (i.e. in the direction coming out of the slide) one can only talk about capacitance per unit length (units: Farads/m)

ba

From previous lectures:

Page 3: Lecture 6

3

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Capacitance of Parallel Metal Wires - IConsider two infinitely long metal wires connected by a voltage source(the wires are infinitely long in the z-direction)

d

x

y

metal wires of radius a

V+ -

Need to find the capacitance per unit length between them under the assumption that d >> a

d >> a

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Line Charge Revisited

Start from the line charge ………….

( ) ⎟⎠⎞

⎜⎝⎛=

rrr o

oln

2 επλφ

r

x

y

+λ Coulombs/m

rr

Page 4: Lecture 6

4

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Line Charge Dipole Revisited

Then consider the line dipole……………

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛=

+

rrr

oln

2 επλφ

r

d

x

y

+λ Coulombs/m -λ Coulombs/m

r+

r-

rr

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Capacitance of Parallel Metal Wires - II

Look at the E-fields of the line dipole:

d

x

y

+λ Coulombs/m-λ Coulombs/m

Page 5: Lecture 6

5

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Capacitance of Parallel Metal Wires - III

Draw imaginary cylinders of radius a around each wire:

x

y

+λ Coulombs/m -λ Coulombs/m

The total electric flux per unit length coming out of the left cylinder is +λ

The total electric flux per unit length coming out of the right cylinder is -λ

Note that the E-field lines are approximately (but not exactly) normal to the surface of the cylinders (as long as d >> a)

d

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Capacitance of Parallel Metal Wires - IVNow if one replaces the cylinders and the line charges with metal wires of radius athat carry +λ and –λ coulombs of charge per unit length then the E-field outside remains approximately unchanged

x

y

+λ Coulombs/m -λ Coulombs/m

The total charge carried by the left wire is +λ

The total charge carried by the right wire is -λ

d

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛=

+

rrr

oln

2 επλφ

r

r+

r-

rr

+++ +-- --

d >> a

Page 6: Lecture 6

6

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Capacitance of Parallel Metal Wires - VNow come back to the original problem with a voltage source:

d

x

y

metal wires of radius a

V+ -

r+

r-

rr

( )

2ln

2 cylinderright theat Potential

2ln

2 cylinderleft theat Potential

ln2

Vda

Vad

rrr

o

o

o

−=⎟⎠⎞

⎜⎝⎛=⇒

=⎟⎠⎞

⎜⎝⎛=⇒

⎟⎟⎠

⎞⎜⎜⎝

⎛=

+

επλεπ

λ

επλφ

r

++ ++ - ---

d >> a

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Capacitance of Parallel Metal Wires - VI

d

x

y

metal wires of radius a

V+ -

r+

r-

rr

⎟⎠⎞

⎜⎝⎛==

adV

oln difference Potential

επλ

( ) ⎟⎠⎞

⎜⎝⎛

=====

adadV

QdVdQC o

olnln

lengthunit per eCapacitanc επ

επλ

λ

++ ++ - ---

Finally calculate the capacitance per unit length:

d >> a

Page 7: Lecture 6

7

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Solutions of Laplace’s Equation in Spherical Coordinates - I

( )rAr =

Spherically Symmetric Point Charge Solution:

Following are the solutions of ( ) 02 =∇ rr

φ

+q

A Constant Uniform Electric Field Solution

( ) ( ) zErEr oo −=−= θφ cosr

z

θ

( ) ( ) zErrE o ˆ=−∇=⇒rrr

φ

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Solutions of Laplace’s Equation in Spherical Coordinates - II

A Point Charge Dipole Oriented Along z-Axis Solution:

( ) ( )2

cosr

Ar θφ =r

z

θ+q

-q

A Constant Potential Solution (Trivial Solution):

( ) Ar =r

φ

Page 8: Lecture 6

8

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Solutions of Laplace’s Equation in Cylindrical Coordinates - I

( ) ( )rAr ln=r

φ

Cylindrically Symmetric Line Charge Solution:

Following are the solutions of ( ) 02 =∇ rr

φ

A Constant Uniform Electric Field Solution

( ) ( ) xErEr oo −=−= φφ cosr

y

φ

( ) ( ) xErrE o ˆ=−∇=⇒rrr

φ

x

y

x

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Solutions of Laplace’s Equation in Cylindrical Coordinates - II

A Line Dipole Oriented Along x-Axis Solution:

( ) ( )r

Ar φφ cos=

r

y

φ

-λ +λ

A Constant Potential Solution (Trivial Solution):

( ) Ar =r

φ

x

( )( )

( )( )

rd

dr

dr

rrr

ooo

φεπ

λ

φ

φ

επλ

επλφ cos

2cos2

cos2ln

2ln

2≈

⎟⎟⎟⎟

⎜⎜⎜⎜

+≈⎟⎟

⎞⎜⎜⎝

⎛=

+

−r

d