20
Linear ConstantCoefficient Difference quations Some physical systems can be modelled constant coefficients (LCCDE) These systems are LTI systems

Lecture 6

Embed Size (px)

DESCRIPTION

signals and systems

Citation preview

  • Linear ConstantCoefficient Difference E iEquations

    Some physical systems can be modelled using linear difference equations withusing linear difference equations with constant coefficients (LCCDE)

    These systems are LTI systems

  • LCCDELCCDE LCCDEs can be generally represented by theLCCDE s can be generally represented by the

    following expressions:

    == = Mm mNk k mnxbknya 00 ][][

    MN == += Mm mNk k mnxbknyany 01 ][][][

  • Example of a LCCDEExample of a LCCDE

    ][][][][ 1 kxnxkxny nk

    n

    k+== ==

    ][]1[ 1 kxny nk

    = =][]1[][]1[][][nxnyny

    nynxny=+=

    ][]1[][ nxnyny =

  • Realisation of and LCCDERealisation of and LCCDE

    ]1[][][ += nynxny+

    x[n] y[n]

    One sample delay

    y[n-1]

  • S l i LCCDESolving LCCDEs Solution is given by:

    [ ] i h ( l t )][][][ nynyny ph +=

    yh[n] is homogeneous (or complementary)solution for input x[n]=0, represents natural modes of unforced oscillation

    yp[n] is particular solution due to input x[n], represents forced response

  • SolvingSolving

    LCCDEs are solved in two parts.

    First solve the complementary equation, set to zero.

    Then solve the particular solution.

  • The Homogenous SolutionThe Homogenous Solution

    Assume:][ n

    0

    ][

    ==

    N knn

    a

    ny

    ( ) 0...0

    11

    10

    0

    =++++ =

    NNNNNn

    k k

    aaaa

    a

    ( )110 44444 344444 21 NNCharacteristic polynomial of the system

  • The Homogenous SolutionThe Homogenous Solution Factorizing characteristic polynomial we get:

    ( )( ) ( ) 0:such that = So the homogeneous solution is:

    ( )( ) ( ) 0...-:such that , 21 = Ni g

    nNN

    nnh cccny +++= ...][ 2211

    Where ci are free to match initial conditions (IC)

  • Example Homogenous SolutionExample Homogenous Solution][]1[60][

    :isequationsticcharacterithe

    ][]1[6.0][ nxnyny =

    06.0

    :isequation sticcharacteri the

    10 aa ==+ 6.0=

    )6.0(][, cnnythus h =

  • Repeated RootsRepeated Roots

    Repeated roots in characteristic polynomial:

    ( ) ( )( )

    .....12

    21 L

    L ( )...][ 1112210

    ++++++++=

    nn

    nLLh

    ccncncnccny

    ...312 +++ +LL cc

  • P i l l iParticular solution Represents the forced response of the system

    Solution depends on the form of the input

    W h f f [ ] di th f f [ ] We choose form of yp[n] according the form of x[n]

    Substitute y [n] into nonhomogeneous DE andSubstitute yp[n] into non homogeneous DE and compare coefficients on both sides of the equation

  • LCCDE lLCCDE example Consider following LCCDE:

    ][2]2[06.0]1[5.0][ =+ nxnynyny

    )10(][:isinput where

    ][][][][ yyy

    n

    :are conditions initial and)1.0(][ =nx n

    0]2[1]1[==

    yy

    0]2[y

  • LCCDE example contdLCCDE example cont d

    Characteristic polynomial:

    ( )( ) 02.03.0006.05.02

    ==+

    ( )( )2.0,3.0

    02.03.0

    21 ==

    ( ) ( )nnh ccny 2.03.0][ 21 +=

  • LCCDE example contdLCCDE example cont d

    Particular solution is in the form:

    ( )np Bny eq.nonhomog.tosubstitute,1.0][ = ( )( )nppp

    p

    nynyny

    y

    1.02]2[06.0]1[5.0][

    qg,][

    =+( ) ( ) ( ) ( )

    ( ) ( )nnnn

    BBB

    BBB

    2100601050

    1.021.006.01.05.01.021

    21

    =+=+

    ( ) ( )

    ( )nBB

    BBB

    1,22

    21.006.01.05.0

    ==+

    ( )np ny 1.0][ =

  • LCCDE example contd

    Total solution:

    ( ) ( ) ( )102030][][][ nnn( ) ( ) ( )( ) ( ) ( ) ( )1.02]2[06.0]1[5.01.02.03.0:0

    1.02.03.0][][][000

    20

    1

    21

    yyccn

    ccnynyny nnnph

    =+++=++=+=

    ( ) ( ) ( ) ( )4.8,9.9

    1.02]1[06.0]0[5.01.02.03.0:1

    21

    1112

    11

    cc

    yyccn

    ===+++=

    ( ) ( ) ( )( ) ][1.02.04.83.09.9][ 21 nuny nnn +=

  • LCCDE example contdLCCDE example cont d

    2.5

    2

    1.5

    1

    0

    0.5

    0 0.5 1 1.5 2 2.5 3 3.5 40

    LCCDE solution

  • Impulse response of LCCDEImpulse response of LCCDE

    If input is impulse, and IC are initial rest conditions output is p p , pimpulse response:

    ][][][][ h ][][][][ nhnynnx ==

  • Impulse response exampleImpulse response example

    Consider the same LCCDE:

    nxnynyny ][2]2[06.0]1[5.0][ =+nnx

    :are conditions initial and][][ =

    ( ) ( )nnh ccnynny

    2.03.0][

    0,0][

    21 +=

  • Impulse response exampleImpulse response example

    Find unknown ci][2]2[06.0]1[5.0][ nxnynyny =+

    ( ) ( )2.03.0][0,0][],[][

    21 ccny

    nnynnxnn

    h +=

  • Impulse response exampleImpulse response example

    Finally, solving system of 2 equations for two unknowns we get:

    4,6 21 cc ==( ) ( )( ) ][2.043.06][ 4,6 21 nunh cc nn = ( )