24
Lecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3. Mie Scattering 4. Dust to Gas Ratio 5. Appendices References Spitzer Ch. 7, Osterbrock Ch. 7 DC Whittet, Dust in the Galactic Environment (IoP, 2002) E Krugel, Physics of Interstellar Dust (IoP, 2003) B Draine, ARAA, 41, 241, 2003

Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

  • Upload
    doque

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Lecture 5. Interstellar Dust: Optical Properties

1. Introduction2. Extinction3. Mie Scattering4. Dust to Gas Ratio5. Appendices

ReferencesSpitzer Ch. 7, Osterbrock Ch. 7DC Whittet, Dust in the Galactic Environment (IoP, 2002)E Krugel, Physics of Interstellar Dust (IoP, 2003)B Draine, ARAA, 41, 241, 2003

Page 2: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

1. Introduction: Brief History of DustNebular gas long accepted but existence of absorbing interstellar dust controversial. Herschel (1738-1822) found few stars in some directions, later extensively demonstrated by Barnard’s photos of dark clouds.

Trumpler (PASP 42 214 1930) conclusively demonstrated interstellar absorption by comparing luminosity distances & angular diameter distances for open clusters:

• Angular diameter distances are systematically smaller

• Discrepancy grows with distance• Distant clusters are redder• Estimated ~ 2 mag/kpc absorption• Attributed it to Rayleigh scattering by gas

Page 3: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Some of the Evidence for Interstellar Dust

Extinction (reddening of bright stars, dark clouds) Polarization of starlightScattering (reflection nebulae)Continuum IR emissionDepletion of refractory elements from the gas

Dust is also observed in the winds of AGB stars, SNRs, young stellar objects (YSOs), comets, interplanetary Dust particles (IDPs), and in external galaxies.

The extinction varies continuously with wavelength andrequires macroscopic absorbers (or “dust” particles).

Page 4: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Examples of the Effects of Dust

Extinction B68 Scattering - Pleiades

Page 5: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Extinction: Some Definitions

Optical depth, cross section, & efficiency:

nd is the volumetric dust density

The magnitude of the extinction Aλ :

τ λext = ndustσ λ

extds∫ = σ λext ndust∫

= πa2Qext (λ) Ndust

I(λ) = I0(λ) exp −τ λext[ ]

Aλ = −2.5log10 I(λ) /I0(λ)[ ]= 2.5log10(e)τ λ

ext =1.086τ λext

Page 6: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

2. Extinction (Continuum Opacity)

General Properties1. uniform shape2. λ-1 trend in the

optical/NIR3. steep UV rise with peak at ~ 800 Å4. spectral features:λ = 220 nm ∆ λ = 47 nmλ = 9.7 µm, ∆ λ ~ 2-3 µm5. polarization with large extinction

Optical IR

Magnitudes of extinction vs, wavelength(schematic)

UV220 nm “bump”

Page 7: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Extinction = Scattering + AbsorptionFor spherical grains, define efficiencies, Qext,Qsca, Qabs such that

Qext = Qsca + Qabs

σ abs = Qabsπa2

σ sca = Qsca πa2

σ ext = Qext πa2 = (Qabs + Qsca )πa2

albedo =σ sca

σ ext

=Qsca

Qext

≤1

Page 8: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Scattering Phase Function

The scattered intensity is a function of the angle θ between the incident and scattered wave, and is quantified by the phase function g

– Isotropic scattering ⟨cosθ ⟩ = 0– Forward scattering ⟨cosθ ⟩ = 1– Back scattering ⟨cosθ ⟩ = -1

θ

g = cosθ =I(θ)cosθdΩ

0

π∫I(θ)dΩ

0

π∫

Page 9: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Measuring the ExtinctionThe absolute extinction requires the distance & absolute magnitude, mλ = Mλ + 5 log d - 5 + Aλ.; instead use:

The normalized extinction, 1/RV, measures the steepness of the extinction

RV = A(V) / [A(B)-A(V)] = A(V) / E(B-V)

It is steep in the diffuse ISM: RV = 3.1±0.2, shallower in dark clouds: RV ≈ 5

The relative extinction or “selective extinction” is deduced from observations of reddened stars of known spectral type, i.e., starting from the known color excess, (B-V)0

E(B-V) = A(B)-A(V) = (B-V) - (B-V)0

Page 10: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Copernicus Observations of Two Similar Stars

Raw (uncorrected, unnormalized) count rates from the UV satellite for two O7 stars,S Mon (top, “un-reddened”) ξ Per (bottom, “reddened”).

Upper panel: 1800 - 2000 Å

Bottom panel :1000 – 2000 Å

Page 11: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Representative Interstellar Extinction Curves

Based on extinction measurements from bands from UV to NIRReference: Fitzpatrick, PASP 111, 63, 1999 & Draine, ARAA, 41, 241, 2003

Page 12: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Empirical Extinction to Gas RatioThe extinction measurements for the diffuse interstellar medium yield a constant extinction to gas ratiofor diffuse clouds near the Sun (with RV ≈ 3.1):

A (V) ≈ NH / 2 x 1021 mag cm-2

This suggests that the dust-to-gas mass ratio is approximately constant since A(V) is relatedto the column density of the absorbing dust:

A(V) = 1.086 ∑ nd ∆s σ ext = 1.086 Nd σ ext

Dividing by the gas column, NH = ∑ nH ∆s, yields the mean extinction cross section per H nucleus

< nd/nH σext > ~ 5 x 10-21 cm2

See also Appendix 3.

Page 13: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

3. Electromagnetic Scattering by Small ParticlesAN Mie (Ann Phys 25 377 1908), considering uniform spheres of radius a with any index of refraction

m = n - i k with m = m (λ) ,used a multipole expansion of the scattered wave (“vector spherical harmonics” times radial Bessel functions) and applied boundary conditions at the surface of the sphere to get E and B for all space. Best reference is:

HC van de Hulst, “Light Scattering from Small Particles”

Basic parameter: x = 2πa/λ

x << 1: long wavelengths; need only a few termsdiffraction limit

x >> 1: short wavelengths; need many termsgeometrical optics limit

Page 14: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Asymptotic Formulae For x << 1

Qabs = −4x Im m2 −1m2 + 2

⎝ ⎜

⎠ ⎟ ∝ λ−1

Qsca =83

x 4 Re m2 −1m2 + 2

⎝ ⎜

⎠ ⎟

2⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪ ∝ λ−4 (Rayleigh scattering)

In this (long wavelength) limit, the absorption cross section depends only on the mass of the grain:

σ abs = Qabsπa2 ∝ a3 ∝ mdust

We need to be able to calculate the optical properties of a wide variety of dust particle models in order to deduce the physical properties of IS dust from the observed extinction.

Page 15: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Pure vs. Dirty Dielectrics

Qext =Qsca

Qext

Qsca

Page 16: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Angular Distributions (m = 1.33)

The angular distribution becomes highly peaked in the forward direction for x >> 1.Note the difference between the E field perpendicularand parallel to the scattering plane.

Page 17: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

4. Dust to Gas Ratio (Purcell 1969)Use the Kramers-Kronig relation (ApJ 158 433 1960) to relate

the integrated extinction coefficient for spherical grains with constant index m to the dust column Nd

(only a lower limit on grain volume for other shapes)Reintroduce the measured Aλ

Qext dλ0

∞∫ = 4π 2a m2 −1m2 + 2

⎝ ⎜

⎠ ⎟

τ ext = Qext πa2 Nd , Nd = ρd L /md

τ ext dλ0

∞∫ = 4π 3a3 Ndm2 −1m2 + 2

⎝ ⎜

⎠ ⎟

Aλ =1.086τ λ =1.086Qext πa2Nd

Page 18: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Gas to Dust Ratio (cont’d)Aλ dλ

0

∞∫L

= 3π 31.086 m2 −1m2 + 2

⎝ ⎜

⎠ ⎟ ndVgr

ndVgr =nd mgr

mgr /Vgr

=ρd

ρgr

=average dust density

density of solid

NB error: π3 -> π2

where Vgr = (4π/3) a3.

The average extinction Aλ (lower limit to integral) gives the mean dust density.

Dividing the integral by mnH = mNH/L, gives the mean dust to gas mass ratio (m = gas particle mass)

For example, assuming silicate dust with real index = 1.5 & ρgr= 2.5 g cm-3 yields: ρ d / ρg = 0.006.

Page 19: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Implications of Interstellar AbundancesWith ρ d / ρg = 0.006, a significant fraction of O and the

refractories is locked up in interstellar dust, unless the present (compact, spherical) grain model is grossly incorrect.

For reference, the mass fraction of heavy elements Z = 0.017 (solar) and Z = (B stars / ISM).

Many attempts have been made to make compositionmodels within the abundance budget, e.g., typically

– Silicates: Mg, Si, Fe(95%), O (20%) in (Mg,Fe)2SiO4– Carbonaceous material (graphite & organics): C (60%) – plus some SiC

Page 20: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Exemplary Interstellar Dust Composition

Element Abundance A M/MH

C 0.6 x 4.0×10–4 12

24

56

28

16

Mg 4.0×10–5

0.0029

0.0010

0.0019

0.0011

0.0022

Fe 3.4×10–5

Si 3.8×10–5

O 0.2 × 8.0×10–4

Total 0.009

NB Both the abundances and the fractions of O and C used in this example are probably too high.

Page 21: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Another Interstellar Dust CompositionElement Abundance A M/MH

C 0.25 x 2.5×10–4 12

24

56

28

16

Mg 3.4×10–5

0.0008

0.0008

0.0016

0.0010

0.0022

Fe 2.8×10–5

Si 3.4×10–5

O 0.28 × 4.9×10–4

Total 0.0064

NB Here we’ve used the interstellar abundances fromLecture 01 and also adjusted the fractions of O and C, the latter from Draine’s 2003 review article.

Page 22: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Appendix 1. Selective Extinction

Page 23: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Appendix 2.Combining Average Extinction and Gas Measurements

Page 24: Lecture 5. Interstellar Dust: Optical Propertiesw.astro.berkeley.edu/~ay216/05/NOTES/Lecture05.pdfLecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3

Appendix 3Poor Man’s Estimate

of the Dust to Gas Ratio