33
Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Embed Size (px)

Citation preview

Page 1: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Lecture 5 Damping Ring Basics

Susanna Guiducci (INFN-LNF)May 21, 2006

ILC Accelerator school

Page 2: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Outline

• Betatron motion• Synchrotron motion• Radiation damping • Beam energy spread• Beam emittance• Intrabeam scattering

Page 3: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Synchrotron motion

Page 4: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Synchrotron Radiation

• Emission of Synchrotron Radiation (S.R.) exerts a strong influence on electron beam dynamics in storage rings.

• Emission of synchrotron radiation leads to damping of synchrotron and betatron oscillations and determines the beam sizes.

• At present energies, these effects strongly affect the design of electron machines, while are negligible for proton machines.

• For the next proton collider LHC synchrotron radiation effects have to be taken into account.

• In the following we will refer to electrons.

Page 5: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Radiated Power

Synchrotron radiation is the energy emitted by a relativistic particle in motion on a circular

trajectory

P =2

3

e2c

4πε0

β 4γ 4

ρ 2=

e2c 3

2πCγ E 2B2

Cγ = 8.85 ⋅10−5GeV −3m

S.R. is emitted on a broad frequency spectrum and in a narrow cone of aperture ~1/ with respect to

the electron velocity

The instantaneous rate of power emitted by S.R. is:

β =vc

≈1 11

12>>

−=

β;

Page 6: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Energy Loss Per Turn

I2 is the second radiation integral. The radius of curvature is related to the field of the bending magnets by:

cE = B ; E [GeV] = .3 B [Tm]

For isomagnetic lattice (uniform bending radius):

U

0

=

P

β c∫

ds =

C

2 π

E

4

ds

2

U

0

eV[ ] = 8 . 85 ⋅ 10

4

E

4

GeV

[ ]

m[ ]

U0 =Cγ

2πE 4I2

I2 =1

ρ 2∫ ds

Page 7: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Energy loss per turn and related parameters for various electron storage rings

E (GeV)

( )m

L( )m

T0(μ )s

U0,dip*(MeV)

Adone .51 5 105 .35 .001DAΦNE .51 1.4 98 .31 .004PEP B LE 3.1 30.5 2200 13.6 .27PEP B HE 9.0 165 2200 13.6 3.5LEP 100. 3100 3 104 89 2855

E (GeV)

( )m

L( )m

T0( )s

U0,dip(MeV)

LHC 7700 2568 3 104 89 .011

The same quantities for the next proton storage ring.

* dip = from dipoles, excluding contributions from wigglers

Page 8: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Synchrotron Oscillations

e V

U0

t0 t

s y n c h r o n o u s e l e c t r o n

T0

/ h

E

0

GeV[ ] =

. 3

2 π

Bds Tm[ ]

L

The energy lost by S.R. has to be replaced by means of the electric field in the Radio Frequency (RF) cavities.

The synchronous particle travels on the reference trajectory (closed orbit) with energy E0 and revolution period T0 = 1/f0 = L/c

The RF frequency must be a multiple of the revolution frequency fRF = hf0

The synchronous particle arrives at the RF cavity at time t0 so that the energy gained is equal to the energy U0 lost per

turn by S.R.

Page 9: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

= 0L0, t0 = eV(t0) = U0

> 0L > L0, t > t0 = eV(t) < U0

< 0L < L0, t < t0 = eV(t) > U0

Synchrotron Oscillations

T

T0

=ΔL

L0

= αε

E0

The arrival time for an off-momentum particle is given by the momentum compaction c

The momentum compaction is generally positiveE = E0+

E = E0

c = I1/L0

Page 10: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

τ = Δs/c > 0 is the time distance for an e- ahead of the synchronous particle

Assuming that changes in ε and τ occur slowly with respect to T0:

d τ

d t

= −

E

0

On average in one turn:

For small oscillations the we assume linear RF voltage:

Synchrotron Oscillations

d

d t

=

e V τ( ) − U ( )

T

0

() ττ 00 VeUeV &+=

Page 11: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

00

02

22

2

021

02

EVTe

ddU

Tdtd

dtd

&=Ω=

=Ω++Combining these equations we obtain the usual equation of harmonic motion for the energy oscillations with an additional damping term

Synchrotron Oscillations

The solution is:

t( ) = A e

− α

e

t

c o s Ω t − φ( )

τ t( ) =

− α

E

0

Ω

A e

− α

e

t

s i n Ω t − φ( )€

˙ V 0 = ωRFV0 cosφs

sinφs =U0

V0

Page 12: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Damping of Synchrotron Oscillations

The rate of energy loss changes with energy because• it is itself a function of energy• the orbit deviates from the reference orbit and there may be a change in path length

dU ( )

d

=

1

c

2 P

0

E

0

ds =

2 U

0

E

0

and€

U ε( ) =1

cPdl∫

P = P0 +2P0

E0

εP is a function of E2 and B2

Page 13: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Damping Time

( )D+== 22

1

2

1

0

0

00 E

U

Td

dU

T εα ε

τε =1

αε

≈T0E0

U0

For separated function lattice D << 1:

Taking into account also the path lengthening the damping coefficient is:

τ is the time in which the particle radiates all its energy

= I4/I2

D =D 1− 2n( ) ρ 3ds∫

1 ρ 2ds∫

Page 14: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Damping of Vertical Betatron Oscillations

z = A β (cos φ s( ) + φ0

) z ' =

A

β

sin( φ s( ) + φ0

)

A is the amplitude of the oscillation A2 = z2 + 2 zz’ + z’2

Effect of energy loss due to S.R. and

energy gain in the RF cavity

After the RF cavity, since z’ = p/p, we have:

δz '= −z 'δε

E0

δA

A= −

1

2

δε

E0

average over one turn

A

A= −

U0

2E0

z =U0

2E0T0

The damping decrement is

Page 15: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Damping partition

In the horizontal plane the damping coefficient has an additional term which accounts for the path length variation

In general:

i =J iU0

2E0T0

i = x,z or and Ji are the damping partition numbers:

Jx = 1 - D ; Jz = 1 ; J = 2 + D ; D = I4/I2

The sum of the damping rates for the three planes is a costant:

Jx + Jz + J = 4

For damping in all planes simultaneously: all Ji > 0 and hence -2 < D < 1

Page 16: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Radiation Damping Effects• Equilibrium beam sizes• Multicycle injection• Damping rings• Counteracts the beam instabilities• Influence Of S.R. Emission On Machine Design

– RF system– vacuum system: heating and gas desorption– radiation damage– radiation background in collider experiments.

• High Energy Storage Rings– The radius of curvature is increased to keep the power of the

emitted radiation below an acceptable level r ナ E2.• Low Energy Storage Rings

– It is often useful to insert in the ring special devices, wiggler magnets, in order to increase the power emitted by S.R. and reduce the damping times.

Page 17: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Wiggler Magnets

• A wiggler magnet is made of a series of dipole magnets with alternating polarity so that the total bending angle (i.e. the field integral along the trajectory) is zero.

• This device can be inserted in a straight section of the ring with minor adjustments of the optical functions.

• The damping time becomes faster because U0 increases.

• Any number of periods can be added in order to get the desired damping time.

Page 18: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

DAΦNE wiggler

Field and Trajectory

-15

-10

-5

0

5

10

15

-1 -0.5 0 0.5 1

z(m)

x(mm)

B(KGauss)

dipoles wigglersB (T) 1.2 1.8 (m) 1.4 .94 (L m) 8.8 8

U0 (KeV) 4.3 5.0

Page 19: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Energy Oscillation Parameters for Various Electron Storage Rings

U0 = U0, dip +U0, wig = Cγ E4 1

ρ d

+1

ds

ρ w20

Lw∫ ⎛

⎝ ⎜

⎠ ⎟

τ =T0E0

U0

E (GeV)

U0,dip (MeV)

U0 (MeV)

T0 ( s)

Tsynch (ms)

(ms)

/T0

Adone .51 .001 .001 .35 .05 180 5 105 DA NE .51 .004 .009 .31 .03 18 6 104

PEP B LE 3.1 .27 1.24 7.3 .15 18 2.5 103 PEP B HE 9.0 3.5 3.5 7.3 .14 19 2.6 103

LEP 100. 2855 2855 89 1 3.1 35

Page 20: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Quantum Excitation and Beam Dimensions

Radiation damping is related to the continuous loss and replacement of energy.

Since the radiation is quantized, the statistical fluctuations in the energy radiated per turn cause a growth of the oscillation amplitudes.

The equilibrium distribution of the particles results from the combined effect of quantum excitation and radiation damping.

Page 21: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Mean Square Energy Deviation

A2 = ε 2 t( ) +E0Ω

ατ 2 t( )

δA2 = −2εu + u2

dA2

dt= −

2A2

τ ε

+ N u2

2 =A2

2=

τ ε

4N u2

The invariate oscillation amplitude is

When a photon of energy u is emitted the change in A2 is:

and the total rate of change of A2:

The equilibrium is reached for dA2/dt = 0 and the mean-square energy deviation is:

Page 22: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

N = n ( u ) du =

15 3

8∫

P

u

c

Radiation Emission

The radiation is emitted in photons with energy The total number of photons emitted per electron per second is:

n u( ) =

P

u

c

2

S u u

c

( )

u u

c

( )

u

2

=

u

2

⋅ n u( ) du

N

=

11

27

u

c

2

And the mean square photon energy is:

u = hω

uc = hωc; ,

The mean photon energy is:

u =u ⋅n u( )du∫

N=

P

N=

8

15 3uc

Page 23: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Beam Energy Spread

• The energy deviation at a given time can be considered as the sum of all the previous photon emissions, and all the energy gains in the RF cavities.

• This sum contains a large number of statistically independent small terms.

• Therefore, for the Central Limit Theorem, the distribution of the energy deviation is Gaussian with standard deviation σε.

σ2 = ε 2 =

55

32 3hcγ 3

1 ρ 3

1 ρ 2

E0

And the relative energy deviation

σ

E0

⎝ ⎜

⎠ ⎟

2

= Cq

γ 2

1 ρ 3

1 ρ 2

Cq =55

32 3

h

mc= 3.84 ⋅10−13 m

=Cqγ2 I3

Jε I2

Page 24: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Bunch Length

A Gaussian distribution in energy results in a similar distribution in τ with standard deviation:

τ σσ0EΩ= with

momentum compaction, depends on lattice

Ω synchrotron frequency

V0 RF peack voltage €

Ω2 =2πα

T02E0

heV0 cosφs

sinφs =U0

V0

Page 25: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Beam Emittance Horizontal plane

Effect of energy loss on the off-energy orbit and betatron motion in the horizontal plane

The betatron oscillation invariant is:

δxβ = −D s( )u

E0

δx'β = −D ' s( )u

E0

A2 = γx2 + 2αxx'+βx'2

and the change due to photon emission:

δA2 = γD 2 + 2αDD '+βD '2( )u2

E02

= H s( )u2

E02

Page 26: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Horizontal Emittance

The average rate of increase of A2 is:

Equating to radiation damping the equilibrium mean square value is obtained.

This defines the beam emittance x:

d A

2

d t

=

N u

2

H

E

0

2

x

=

A

2

2

= C

q

2

J

x

H /

3

1 /

2

=Cq

γ 2

Jx

I5

I2

Page 27: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Emittance and beam sizes

The emittance is constant for a given lattice and energy.The projection of the distribution on the x, x’ axis

respectively is Gaussian with rms :

σxε = Dσ ε

E0

σ 'xε = D 'σ ε

E0

At points in the lattice where dispersion is non zero the contribution of the synchrotron motion is added in quadrature

σx = εβ s( )

x = Cq

γ 2

Jx

I5

I2

σx

= √ εβ

σ 'x

= √ εγ

x

x'

σ 'x = εγ s( )

I5 =H

ρ3∫ ds ; H = γDx

2 + 2αDx D'x +γD'x2

Page 28: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Vertical Emittance• Generally storage rings lie in the horizontal plane

and have no bending and no dispersion in the vertical plane.

• A very small vertical emittance arises from the fact that the photons are emitted at a small angle with respect to the direction of motion (θrms ≈ 1/γ)

• The resulting vertical equilibrium emittance is:

• This vertical emittance can be generally neglected. For the ILC DR βz/ ~ 40/100 and z ~ 8 10-14, which is 4% of the design vertical emittance, not completely negligible

z =Cq

2Jz

βz / ρ 3

1/ ρ 2

Page 29: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Vertical Emittance

In practice the vertical emittance comes from:

• coupling of horizontal and vertical betatron oscillations due to:– skew quadrupole field errors (angular errors in the

quadrupole alignment and vertical orbit in the sextupoles)

– errors in the compensation of detector solenoids

• vertical dispersion due to:– angular errors in the dipole alignment – vertical orbit in the quadrupoles

Page 30: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Effect of Damping Wigglers

• We have already seen that insertion of wigglers in a ring increases I2 and therefore the energy radiated per turn

• The main effect is a reduction of the damping times

U0 = Cγ

E 4

ρ a

+ Cγ E 2 e2c 2

2πBw

2

0

Lw

∫ ds = Ua + Uw

τ y = 2E0T0

JyU0

Wigglers can have a strong effect on emittance

We assume: Jx~1 and Fw = Uw/Ua

x0 =εa

1+ Fw

+ εw

Fw

1+ Fw€

a = Cqγ2 I5a

I2a

arc emittance

w = Cqγ2 I5w

I2w

wiggler emittance

Page 31: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Effect of Damping Wigglers

• If Fw>>1 the arc emittance is reduced by the factor Fw and the ring emittance is dominated by the wiggler

• Inserting the wigglers in a zero dispersion section the wiggler emittance can be made very small

• Therefore insertion of wigglers allows to reduce both the beam emittance and the damping time

• Wigglers are extensively used in damping rings: the ILC DR has 200 m of wigglers

• Wigglers in dispersive sections are sometimes used to increase the emittance in storage ring colliders

x0 =εa

1+ Fw

+ εw

Fw

1+ Fw

Page 32: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

Vertical Emittance

0 < < 1

If the vertical emittance depends on a large number of small errors randomly distributed along the ring, it can be described in terms of a coupling

coefficient

The sum of the horizontal and vertical emittances is constant, often called “natural

beam emittance”

x =1

1+ κε0 ; εy =

κ

1+ κε0

Page 33: Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school

References

• M. Sands, "The physics of electron storage rings. An Introduction" - SLAC 121

• CAS, General Accelerator Physics, University of Jyvaskyla, Finland, September 1992 - CERN 94/01:– J.Le Duff, ‘Longitudinal beam dynamics in circular accelerators’,– R. P. Walker, “Synchrotron Radiation’ , ‘Radiation damping’,

and ‘Quantum excitation and equilibrium beam properties’,– A. Wrulich, ‘Single-beam lifetime’

• S.Y. Lee, ”Accelerator Physics”, World Scientific,1999• Andy Wolski,”Notes for USPAS Course on Linear Colliders”,

Santa Barbara, June 2003