26
1/25/2018 1 ECE 5322 21 st Century Electromagnetics Instructor: Office: Phone: E‐Mail: Dr. Raymond C. Rumpf A‐337 (915) 747‐6958 [email protected] Transmission Lines Embedded in Arbitrary Anisotropic Media Lecture #4 Lecture 4 1 Lecture Outline RF transmission lines Transmission lines embedded in anisotropic media Finite-difference analysis of transmission lines embedded in arbitrary anisotropic media Formulation Implementation Example Generalization of the method Lecture 4 Slide 2

Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

  • Upload
    dodang

  • View
    226

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

1

ECE 5322 21st Century Electromagnetics

Instructor:Office:Phone:E‐Mail:

Dr. Raymond C. RumpfA‐337(915) 747‐[email protected]

Transmission Lines Embedded in Arbitrary

Anisotropic Media

Lecture #4

Lecture 4 1

Lecture Outline

• RF transmission lines

• Transmission lines embedded in anisotropic media

• Finite-difference analysis of transmission lines embedded in arbitrary anisotropic media– Formulation

– Implementation

– Example

• Generalization of the method

Lecture 4 Slide 2

Page 2: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

2

RF Transmission Lines

What are Transmission Lines?

Lecture 4 Slide 4

Transmission lines are metallic structures that guide electromagnetic waves from DC to very high frequencies.

Microstrip Coaxial Cable

Stripline Slotline

Page 3: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

3

Characteristic Impedance

Lecture 4 Slide 5

The ratio of the voltage to current as well as the electric to magnetic field is a constant along the length of the transmission line.  This ratio is the characteristic impedance.

The value of the characteristic impedance alone has little meaning.  Reflections are caused whenever the impedance changes.

c

LZ

C

1 2

377 21 1 ln 2.230 4.454 4.464 3.89c r r r

rr

H H H HZ

W W WW

S. Y. Poh, W. C. Chew, J. A. Kong, “Approximate Formulas for Line Capacitance and Characteristic Impedance of Microstrip Line”, IEEE Trans. Microwave Theory Tech., vol. MTT‐29, no. 2, pp. 135‐142, May 1981.

For small H/W,

2

2 2

1ln 8

32377

2 1 11ln 8 0.041 0.454

16 1

c

r r

r r

H W

W HHZ

H W W

W H H

For large H/W,

21st Century Electromagnetics 6

Approximate Equations

0

60ln

r

bZ

a

Coaxial

10

120cosh

2r

dZ

ab

Twin‐Lead

0

120

r

dZ

w

Parallel Plate

0

60 2 8 ln 1

4

120 1

2 3 ln 1.444 1.393

1 1

2 2 1 12 2r r

d w

D d w dZ

w

D w d w d d

Dd

Microstrip

Page 4: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

4

Analysis: Electrostatic Approximation

Lecture 4 Slide 7

Transmission lines are waveguides.  To be rigorous, they should be modeled as such.  This can be rather computationally intensive.  An alternative is to analyze transmission lines using Laplace’s equation.

The dimensions of transmission lines are typically much smaller than the operating wavelength so the wave nature of electromagnetics is less important to consider.  Therefore, we are essentially solving Maxwell’s equations as 0.  Setting =0 is called the electrostatic approximationand the solution approximates the TEM solution of a waveguide.

0

0

B

D

H J D t

E B t

0

0

0

B

D

H J

E

All of the field components are separable.  The transmission line is TEM.

Rigorously, the transmission line is quasi‐TEM.

Analysis: Inhomogeneous Isotropic Laplace’s Equation

Lecture 4 Slide 8

The divergence condition for the electric field is

0D

But, we know that D=rE, so this equation becomes

0r E

The electric field E is related to the scalar potential V as follows.

E V

The inhomogeneous Laplace’s equation is derived by substituting Eq. (3) into Eq. (2).

Eq. (1)

Eq. (2)

Eq. (3)

2 0r

r

V V

Page 5: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

5

Analysis: Calculating Distributed Capacitance

Lecture 4 Slide 9

In the electrostatic approximation, the transmission line is a capacitor.  The total energy stored in a capacitor is

12

A

U D E dA

The integral is performed over the entire cross section of device.  For open devices like microstrips, this is infinite area.  In practice, we integrate over a large enough area to incorporate as much of of the electric field as possible.

This equation is valid in anisotropic media.

The capacitance is related to the total stored energy through

20

2

CVU V0 is the voltage across the capacitor.

If we set the above equations equal and substitute                  into the expression, we derive the equation for the distributed capacitance. 

20

1

A

C D E dAV

E V

Analysis: Calculating Distributed Inductance

Lecture 4 Slide 10

The voltage along the transmission line travels at the same velocity as the electric field so we can write

Assuming the surrounding medium is homogeneous, we can calculate the distributed inductance from the above equation as

20

1 1 r r

V Ev v LCcLC

20

r rLc C

This means that for the dielectric only case, we can calculate the 

distributed inductance directly from the distributed capacitance.

Dielectric materials should not alter the inductance.  However if we use the value of C calculated previously, it will.  This is incorrect.  The solution is to calculate capacitance with a homogeneous dielectric Ch and then calculate inductance from this.  It is simplest to use just air.

20

1

h

Lc C

Page 6: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

6

Analysis: Calculating TL Parameters

Lecture 4 Slide 11

The characteristic impedance is calculated from the distributed inductance and capacitance through

The velocity of a signal travelling along the transmission line is

c

LZ

C

1v

LC

The effective refractive index neff is therefore

0eff 0

cn c LC

v Both Zc and neff are needed to analyze 

transmission line circuits using network theory.

Two Step Modeling Approach

Lecture 4 Slide 12

outer conductor

inner conductor

outer conductor

inner conductor

1

air

air

air

2

Homogeneous Case

Inhomogeneous Case

distributed inductance

distributed capacitance

L

C

Step 1

Step 2

Page 7: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

7

How We Will Analyze Transmission Lines

Lecture 4 Slide 13

Step 1Construct homogeneous TL

2

src

1src

0h

h h

h h

V

L v v

v L v

02

0

20

1

h h h

A

h

C D E dAV

Lc C

c

LZ

C 0n c LC

Step 4Construct inhomogeneous TL

Step 2Construct and solve matrix equation

Step 3Calculate distributed inductance

Step 5Construct and solve matrix equation

2

src

1src

0r

r

V V

Lv v

v L v

Step 6Calculate distributed capacitance

02

0 A

C D E dAV

Step 7Calculate TL parameters

outer conductor

inner conductor

outer conductor

inner conductor

1

air

air

air

2

Transmission Lines Embedded

in Anisotropic Media

Page 8: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

8

Effect of Strength of Anisotropy

Lecture 4 15

• Dielectric anisotropy has no effect on the distributed inductance.

• Capacitance increases and impedance lowers with increasing yy.

• Field develops most strongly in the direction with highest permittivity.

• The degree to which field follows highest  is proportional to the strength of the anisotropy.

Effect of Spatially Varying the Tensor Orientation

Lecture 4 16

• Impedance changes in the presences of the anisotropic medium.

• Field actually “follows” the anisotropy.

• Impedance changes slightly with tilt.

• Impedance relatively constant regardless of spatial variance.

Page 9: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

9

Isolation of a Microstrip

Lecture 4 17

Ordinary microstrip with metal ball in proximity.  Near‐field is perturbed affecting the signal in the line.

Same microstrip embedded in an anisotropic material with dielectric tensor tilted away from ball.  Near‐field is less perturbed, affecting the 

line much less.

Experimental Results

Lecture 4 18

Ordinary Microstrip

Embedded Microstrip

Page 10: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

10

Finite-Difference Analysis of Transmission Lines Embedded in Arbitrary

Anisotropic Media

Formulation

The Grid

Lecture 4 20

We have two unknowns, V and E, so we adopt a staggered grid.  

We can use our yeeder() function to construct the derivative operators.

V Ex

Ey

Page 11: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

11

Governing Equations

Lecture 4 21

0 0

x

y

z

x xx xy xz x

y yx yy yz y

z zx zy zz z

x

y

z

D

D Dx y z

D

D E

D E D E

D E

E x

E V E y V

E z

Reduction to Two Dimensions

Lecture 4 22

x y z

0

00

zx

xy

yz

x

y

z

DD

DD

DD x y

D

D

D

0zxx xy xz x

x xx xy xyx yy yz y

y yx yy yzx zy zz z

x

y

z

EE

D EE

D EE

E

E

E

x

y

z

x

y

E xV V

E y

Transmission line properties are independent of xz, yz, zx, zy, and zz.

Page 12: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

12

Finite-Difference Approximation

Lecture 4 23

? ?

0

?

x xe ex

xx xy

y

yy y

x xx xy x x x

y yx y x yyy y y y

vx x x

vy y y

D

Dx y

D E

D E

E xV

E y

dD D 0

d

d e

d e

e Dv

e D

ε ε

ε ε

The Problem with the Tensor

Lecture 4 24

In the first finite‐difference equation, Ey is in a physically different position than Ex and Dx.  

Similarly, in the second finite‐difference equation, Ex is in a physically different position than Ey and  Dy.

The finite‐difference equations above are incorrect because not all of the terms exist at the same position in space.

,???

, , , ,

???, , ,, ,

x xx x xy yx xx xy x

y yx yy y y yx x yy y

i j i j i j i jx xx x xy

i j i j i j i jy

i jy

i jxyx yy y

D E ED E

D E D E E

D E

D E

E

E

Page 13: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

13

The Correction

Lecture 4 25

, , 1, 1, , 1 , 1 1, 1 1, 1, , ,

, , 1, 1, , 1 , 1 1, 1 1, 1, , ,

4

4

i j i j i j i j i j i j i j i jxy y xy y xy y xy yi j i j i j

x xx x

i j i j i j i j i j i j i j i jyx x yx x yx x yx xi j i j i j

y yy y

x xx x x y xy y

y x y yx x

E E E ED E

E E E ED E

d ε e R R ε e

d R R ε e xy yε e

Recall the interpolation matrices                                                     from Lecture 10 in “Computational Electromagnetics.”

, , , , , and x y z x y z R R R R R R

interpolation matrix

axis along which average is taken

direction of adjacent cell

a

a

R

Revised Finite-Difference Approximation

Lecture 4 26

0x xe e

x yy y

x xx xy x x xxx x y xy

y yx yy y y yx y yx yy

vx x x

vy y y

D

Dx y

D E

D E

E xV

E y

dD D 0

d

d eε R R ε

d eR R ε ε

e Dv

e D

We modify our tensor by incorporating the interpolation matrices.

Page 14: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

14

Matrix Form of the Inhomogeneous Laplace’s Equation

Lecture 4 27

Eq. 1

Eq. 2

Eq. 3

xe ex y

y

x xxx x y xy

y yx y yx yy

vx x

vy y

dD D 0

d

d eε R R ε

d eR R ε ε

e Dv

e D

We now derive the matrix form of the inhomogeneous Laplaces’ equation.

Step 1: Substitute Eq. (2) into Eq. (1)

xxx x y xye ex y

yx y yx yy

eε R R εD D 0

eR R ε ε

Step 2: Substitute Eq. (3) into the above

vxx x y xy xe e

x y vx y yx yy y

ε R R ε DD D v 0

R R ε ε D

Step 3: Drop the negative sign

vxx x y xy xe e

x y vx y yx yy y

ε R R ε DD D v 0

R R ε ε D

Matrix Form of the Homogeneous Laplace’s Equation

Lecture 4 28

For the homogeneous case, our tensor reduces to

xx x y xy

x y yx yy

ε R R ε I 0

R R ε ε 0 I

Substituting this into the inhomogeneous Laplace’s equation gives us

vxe e

x y vy

vxe e

x y vy

DI 0D D v 0

D0 I

DD D v 0

D

Page 15: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

15

The Excitation Vector b

Lecture 4 29

We have Lv = 0.  This is not solvable because we have not stated the applied potentials.  When we do this, our equation becomes Lv = b.

? +‐

V0 V z

Lv 0 Lv b

1

2

metalmetal applied applied

1

'

# # # # # # 0

# # # # # # 0

0 0 1 0 0

# # # # # # 0

# # # # # # 0x y

x y

mm m m

N N

N N

V

V

VV V V

V

V

bvL

Enforcing the Known Potentials

Lecture 4 30

It turns out we must also modify L in addition to constructing b.

Each point on the grid containing a metal must be forced to some known potential.  We do this by modifying the corresponding row in the matrix as follows:

1. Replace entire row in L with all zeroes.

2. Place a 1 in the positionalong the center diagonal.

3. Place the value of the applied potential inthe same row in b.

Page 16: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

16

Fancy Way of Forcing Potentials

Lecture 4 31

We construct two terms:

Force matrixF Diagonal matrix containing 1’s in the positions corresponding to values we wish to force.

forced potentialsf v Column vector containing the forced potentials.Numbers in positions not being forced are ignored.

1. Replace forced rows in L with all zeros.

L I F L

2. Place a 1 in the diagonal element.

L F I F L

2. Place the forced potentials in b.

fb Fv Use same b for both homogeneous and inhomogeneous cases.

1

2

metalmetal applied applied

1

'

# # # # # # 0

# # # # # # 0

0 0 1 0 0

# # # # # # 0

# # # # # # 0x y

x y

mm m m

N N

N N

V

V

VV V V

V

V

bvL

Calculating Transmission Line Parameters

Lecture 4 32

Calculate the field quantities

,

,

, ,

, ,

v vx x x h x

v hvy y y h y

x x x h x hxx x y xy

y y y h y hx y yx yy

e D e Dv v

e D e D

d e d eε R R ε

d e d eR R ε ε

0

T

x x

y y

C x y

d e

d e, ,

2, 0

0,

1

T

x h x hh

y h y h h

C x y Lc C

d e

d e

Calculate the transmission line parameters

c

LZ

C eff 0n c LC 2

,eff effr n

CAUTION:Be careful that you are consistent with your units.  For example, it is incorrect to set centimeters=1 and then set e0=8.854e-12 because 0 has units of F/m.

Note: we have moved the constant 0 to the capacitance equation for convenience.

Calculate the inductance and capacitance using numerical integration

Page 17: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

17

Finite-Difference Analysis of Transmission Lines Embedded in Arbitrary

Anisotropic Media

Implementation

Step 1: Choose a Transmission Line

Lecture 4 34

We will choose to model a microstrip transmission line with the following parameters:

wh

r,sub

w = 4.0 mmh = 3.0 mm

r,sup

,sup

1.0 0 0

0 1.0 0 air superstrate

0 0 1.0r

,sub

9.0 0 0

0 9.0 0 dielectric substrate

0 0 9.0r

Page 18: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

18

Step 2:Build Device on Grid (1 of 2)

Lecture 4 35

Nx unit cells

Nyunit cells

We will use Dirichletboundary conditions so there must be sufficient space between the microstrip and boundaries.

Rule‐of‐Thumb:Spacer regions should be around three times the width of the line.

Step 2:Build Device on Grid (2 of 2)

Lecture 4 36

We use six arrays to describe the transmission line.

1× grid 

ER2xx ER2xy ER2yx ER2yy

9’s 0’s 0’s 9’s

0’s 0’s

2× grid 

We do not need to build ER2xz, ER2yz, ER2zx, ER2zy, or ER2zz.

Page 19: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

19

Step 3:Construct Matrix Operators

Lecture 4 37

We use yeeder() to calculate the derivative operators.

% CALL FUNCTION TO CONSTRUCT DERIVATIVE OPERATORSNS = [Nx Ny]; %grid sizeRES = [dx dy]; %grid resolutionBC = [0 0]; %Dirichlet BCs[DVX,DVY,DEX,DEY] = yeeder(NS,RES,BC); %Build matrices

Since we are using Dirichlet boundary conditions, we can construct our interpolation matrices directly from the derivative operators.

2 2

v ex x y y x y

x y R D R D R R R

% FORM INTERPOLATION MATRIX FROM DERIVATIVE OPERATORSRXP = (dx/2)*abs(DVX);RYM = (dy/2)*abs(DEY);R = RXP*RYM;

11

2 2i i i if f f f

1i if f

Step 4:Construct Diagonalized Tensor

Lecture 4 38

Step 1: Parse materials from 2 grid to 1 grid.

ERxx = ER2xx(2:2:Nx2,1:2:Ny2);ERxy = ER2xy(1:2:Nx2,2:2:Ny2);ERyx = ER2yx(2:2:Nx2,1:2:Ny2);ERyy = ER2yy(1:2:Nx2,2:2:Ny2);

Step 2: Diagonalize all four tensor elements.

ERxx = diag(sparse(ERxx(:)));ERxy = diag(sparse(ERxy(:)));ERyx = diag(sparse(ERyx(:)));ERyy = diag(sparse(ERyy(:)));

Step 3: Construct composite tensor

ER = [ ERxx , R*ERxy ; R’*ERyx , ERyy ];

Note the complex transpose here.

Page 20: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

20

Step 5:Build L and Lh

Lecture 4 39

Step 1.  Build the inhomogeneous matrix L

L = [ DEX DEY ] * ER * [ DVX ; DVY ];

Step 2.  Build the homogeneous matrix Lh

Lh = [ DEX DEY ] * [ DVX ; DVY ];

L

Step 6:Force Known Potentials

Lecture 4 40

Step 1.  Build the force matrix F that identifies the locations of the forced potentials.

F = SIG | GND;F = diag(sparse(F(:)));

Step 2: Build the column vector containing the values of the forced potentials.

vf = 1*SIG + 0*GND;

Step 3: Force the known potentials.

L = (I - F)*L + F;Lh = (I - F)*Lh + F;b = F*vf(:);

For multiple conductors…

F = SIG1 | SIG2 | … | GND;

1 volt applied to SIG

For two conductors…

vf = 0.5*SIG1 – 0.5*SIG2 + 0*GND;

Page 21: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

21

Step 7:Compute the Fields

Lecture 4 41

Step 1.  Compute the potentials.  BIG COMPUTATIONAL STEP!!!!

Step 2: Calculate the E fields.

Step 3: Compute the D fields.

1v L b

,

,

vx h x

h hvy h y

e De v

e D

x xx xy xH

y yx yy y

d ε Rε ed

d R ε ε e

1h h

v L b

vx x

vy y

e De v

e D

, ,

, ,

x h x h

hy h y h

d ed

d e

Step 8:Compute TL Parameters

Lecture 4 42

Step 1.  Compute the distributed capacitance C.

Step 2: Calculate the distributed inductance L.

Step 3: Calculate characteristic impedance impedance

20

1

A

C D E dAV

0

LZ

C

C = (e0*dx*dy)*dxy'*exy;

2

0

20

1

1

h h h

A

h

C D E dAV

L c C

Ch = (e0*dx*dy)*dxyh'*exyh;L = 1/(c0^2*Ch);

Recall that we moved the 0

term to this equation for convenience.

Be sure you are consistent with your units!

Page 22: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

22

Step 9:Visualize the Fields

Lecture 4 43

Step 1.  Extract the x and y components of E.

Step 2: Reshape from column vectors to 2D arrays.

v = reshape(v,Nx,Ny);Ex = reshape(Ex,Nx,Ny);Ey = reshape(Ey,Nx,Ny);

Step 3: Visualize in MATLAB using imagesc(), pcolor(), and/or quiver().

Ex = exy(1:M);Ey = exy(M+1:2*M);

x

y

ee

e

For day‐to‐day data analysis, I use imagesc().  For generating pictures for publications and presentations, I use pcolor().

Finite-Difference Analysis of Transmission Lines Embedded in Arbitrary

Anisotropic Media

Examples

Page 23: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

23

Example #1:Ordinary Microstrip (1 of 2)

Lecture 4 45

wh

r,sub

w = 4.0 mmh = 3.0 mm

r,sup

,sup

1.0 0 0

0 1.0 0 air

0 0 1.0r

,sub

9.0 0 0

0 9.0 0 dielectric

0 0 9.0r

Example #1:Ordinary Microstrip (2 of 2)

Lecture 4 46

Nx = 200Ny = 150dx = 0.13793dy = 0.13636Z0 = 44.3436 ohms

Page 24: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

24

Example #2:Anisotropic Microstrip (1 of 3)

Lecture 4 47

w = 4.0 mmh = 3.0 mm

wh

r,sub

r,sup

,sup

3.0000 3.4641

3.4641 7.0000r

,sub

3.0000 3.4641

3.4641 7.0000r

x

y

z

Example #2:Anisotropic Microstrip (2 of 3)

Lecture 4 48

1.0 0 0

0 9.0 0 30

0 0 1.0r z

To generate correct tensors, we start with the diagonalized tensor and the angle that it should be rotated around the z‐axis.

The rotation matrix is

cos 30 sin 30 0 0.8660 0.5000 0

30 sin 30 cos 30 0 0.5000 0.8660 0

0 0 1 0 0 1zR R

The rotated tensor is then

1

1

0.8660 0.5000 0 1.0 0 0 0.8660 0.5000 0 3.0000 3.4641 0

0.5000 0.8660 0 0 9.0 0 0.5000 0.8660 0 3.4641 7.0000 0

0 0 1 0 0 1.0 0 0 1 0 0 1rR R

x

y

z

z

Page 25: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

25

Example #2:Anisotropic Microstrip (3 of 3)

Lecture 4 49

Nx = 200Ny = 150dx = 0.13793dy = 0.13636Z0 = 49.9482 ohms

Generalizationof the Method

Page 26: Lecture 4 -- Transmission lines in anisotropic mediaemlab.utep.edu/ee5390em21/Lecture 4 -- Transmission lines...1/25/2018 3 Characteristic Impedance Lecture 4 Slide 5 The ratio of

1/25/2018

26

Method Can Do More than Transmission Lines!

Lecture 4 51

1 5 VV

2 7 VV

2 0 VV

5 V

7 V

0 V

The model we just developed simply calculates the potential in the vicinity of multiple forced potentials.  We used it to model a transmission line, but the method has other applications.

Potential

Think of Laplace’s Equation as a Linear “Number Filler Inner”

Lecture 4 52

Given known values at certain points (boundary conditions), Laplace’s equation calculates the numbers everywhere else so they vary linearly.

Map of known values (boundary values) Laplace’s equation is solved to fill in the values away from the boundaries.