106
Lecture 3: Markov processes, master equation Outline: • Preliminaries and definitions • Chapman-Kolmogorov equation • Wiener process • Markov chains • eigenvectors and eigenvalues • detailed balance • Monte Carlo • master equation

Lecture 3: Markov processes, master equation Outline: Preliminaries and definitions Chapman-Kolmogorov equation Wiener process Markov chains eigenvectors

Embed Size (px)

Citation preview

Lecture 3: Markov processes, master equation

Outline:• Preliminaries and definitions• Chapman-Kolmogorov equation• Wiener process• Markov chains

• eigenvectors and eigenvalues• detailed balance• Monte Carlo

• master equation

Stochastic processes

Random function x(t)

Stochastic processes

Random function x(t)

Defined by a distribution functional P[x], or by all its moments

Stochastic processes

Random function x(t)

Defined by a distribution functional P[x], or by all its moments

x(t) , x(t1)x(t2) , x(t1)x(t2)x(t3) , L

Stochastic processes

Random function x(t)

Defined by a distribution functional P[x], or by all its moments

or by its characteristic functional:

x(t) , x(t1)x(t2) , x(t1)x(t2)x(t3) , L

G[k] = exp i k(t)x(t)dt∫( )

Stochastic processes

Random function x(t)

Defined by a distribution functional P[x], or by all its moments

or by its characteristic functional:

x(t) , x(t1)x(t2) , x(t1)x(t2)x(t3) , L

G[k] = exp i k(t)x(t)dt∫( )

=1− i k(t) x(t) dt∫ − 12 k(t1) x(t1)x(t2)∫∫ k(t2)dt1dt2 +L

Stochastic processes (2)

Cumulant generating functional:

Stochastic processes (2)

Cumulant generating functional:

logG[k] =1− i k(t) x(t) dt∫ − 12 k(t1) x(t1)x(t2)∫∫ k(t2)dt1dt2

− i3! k(t1)∫ k(t2)k(t3) x(t1)x(t2)x(t2)∫∫ dt1dt2dt3 +L

Stochastic processes (2)

Cumulant generating functional:

where

logG[k] =1− i k(t) x(t) dt∫ − 12 k(t1) x(t1)x(t2)∫∫ k(t2)dt1dt2

− i3! k(t1)∫ k(t2)k(t3) x(t1)x(t2)x(t2)∫∫ dt1dt2dt3 +L

x(t1)x(t2) = x(t1)x(t2) − x(t1) x(t2)

Stochastic processes (2)

Cumulant generating functional:

where

logG[k] =1− i k(t) x(t) dt∫ − 12 k(t1) x(t1)x(t2)∫∫ k(t2)dt1dt2

− i3! k(t1)∫ k(t2)k(t3) x(t1)x(t2)x(t2)∫∫ dt1dt2dt3 +L

x(t1)x(t2) = x(t1)x(t2) − x(t1) x(t2) correlation function

Stochastic processes (2)

Cumulant generating functional:

where

etc.

logG[k] =1− i k(t) x(t) dt∫ − 12 k(t1) x(t1)x(t2)∫∫ k(t2)dt1dt2

− i3! k(t1)∫ k(t2)k(t3) x(t1)x(t2)x(t2)∫∫ dt1dt2dt3 +L

x(t1)x(t2) = x(t1)x(t2) − x(t1) x(t2)

x(t1)x(t2)x(t3) = x(t1)x(t2)x(t3) − x(t1)x(t2) x(t3)

− x(t2)x(t3) x(t1) − x(t3)x(t1) x(t2)

correlation function

Stochastic processes (3)

Gaussian process:

Stochastic processes (3)

Gaussian process:

G[k] = exp i k(t) x(t) dt∫ − 12 k(t1) x(t1)x(t2)∫∫ k(t2)dt1dt2[ ]

Stochastic processes (3)

Gaussian process:

(no higher-order cumulants)

G[k] = exp i k(t) x(t) dt∫ − 12 k(t1) x(t1)x(t2)∫∫ k(t2)dt1dt2[ ]

Stochastic processes (3)

Gaussian process:

(no higher-order cumulants)

Conditional probabilities:

G[k] = exp i k(t) x(t) dt∫ − 12 k(t1) x(t1)x(t2)∫∫ k(t2)dt1dt2[ ]

Stochastic processes (3)

Gaussian process:

(no higher-order cumulants)

Conditional probabilities:

G[k] = exp i k(t) x(t) dt∫ − 12 k(t1) x(t1)x(t2)∫∫ k(t2)dt1dt2[ ]

Q x(t1),L x(tk ) | x(tk +1),L x(tm )( ), t1 > t2L > tk > tk +1L > tm

Stochastic processes (3)

Gaussian process:

(no higher-order cumulants)

Conditional probabilities:

= probability of x(t1) … x(tk), given x(tk+1) … x(tm)

G[k] = exp i k(t) x(t) dt∫ − 12 k(t1) x(t1)x(t2)∫∫ k(t2)dt1dt2[ ]

Q x(t1),L x(tk ) | x(tk +1),L x(tm )( ), t1 > t2L > tk > tk +1L > tm

Wiener-Khinchin theorem

Fourier analyze x(t):

x(ω) =1

Tdt

−T / 2

T / 2

∫ e iωt x(t)

Wiener-Khinchin theorem

Fourier analyze x(t):

Power spectrum:

x(ω) =1

Tdt

−T / 2

T / 2

∫ e iωt x(t)

P(ω) ≡ x(ω)2

Wiener-Khinchin theorem

Fourier analyze x(t):

Power spectrum:

x(ω) =1

Tdt

−T / 2

T / 2

∫ e iωt x(t)

P(ω) ≡ x(ω)2

= limT →∞

1

Tdtd ′ t

−T / 2

T / 2

∫−T / 2

T / 2

∫ e−iω ′ t e iωt x( ′ t )x(t)

Wiener-Khinchin theorem

Fourier analyze x(t):

Power spectrum:

x(ω) =1

Tdt

−T / 2

T / 2

∫ e iωt x(t)

P(ω) ≡ x(ω)2

= limT →∞

1

Tdtd ′ t

−T / 2

T / 2

∫−T / 2

T / 2

∫ e−iω ′ t e iωt x( ′ t )x(t)

= limT →∞

1

Tdtdτ∫ e−iω(t +τ )e iωt x(t + τ )x(t)

−T / 2

T / 2

Wiener-Khinchin theorem

Fourier analyze x(t):

Power spectrum:

x(ω) =1

Tdt

−T / 2

T / 2

∫ e iωt x(t)

P(ω) ≡ x(ω)2

= limT →∞

1

Tdtd ′ t

−T / 2

T / 2

∫−T / 2

T / 2

∫ e−iω ′ t e iωt x( ′ t )x(t)

= limT →∞

1

Tdtdτ∫ e−iω(t +τ )e iωt x(t + τ )x(t)

−T / 2

T / 2

= limT →∞

1

Tdtdτ∫ e−iω(t +τ )e iωtC(τ )

−T / 2

T / 2

Wiener-Khinchin theorem

Fourier analyze x(t):

Power spectrum:

x(ω) =1

Tdt

−T / 2

T / 2

∫ e iωt x(t)

P(ω) ≡ x(ω)2

= limT →∞

1

Tdtd ′ t

−T / 2

T / 2

∫−T / 2

T / 2

∫ e−iω ′ t e iωt x( ′ t )x(t)

= limT →∞

1

Tdtdτ∫ e−iω(t +τ )e iωt x(t + τ )x(t)

−T / 2

T / 2

= limT →∞

1

Tdtdτ∫ e−iω(t +τ )e iωtC(τ )

−T / 2

T / 2

∫= dτ∫ e± iωτ C(τ )

Wiener-Khinchin theorem

Fourier analyze x(t):

Power spectrum:

Power spectrum is Fourier transform of the correlation function

x(ω) =1

Tdt

−T / 2

T / 2

∫ e iωt x(t)

P(ω) ≡ x(ω)2

= limT →∞

1

Tdtd ′ t

−T / 2

T / 2

∫−T / 2

T / 2

∫ e−iω ′ t e iωt x( ′ t )x(t)

= limT →∞

1

Tdtdτ∫ e−iω(t +τ )e iωt x(t + τ )x(t)

−T / 2

T / 2

= limT →∞

1

Tdtdτ∫ e−iω(t +τ )e iωtC(τ )

−T / 2

T / 2

∫= dτ∫ e± iωτ C(τ )

Markov processes

No information about the future from past values earlier than the latest available:

Markov processes

No information about the future from past values earlier than the latest available:

Q x(t1),L x(tk ) | x(tk +1),L x(tm )( ) = Q x(t1),L x(tk ) | x(tk +1)( )

Markov processes

No information about the future from past values earlier than the latest available:

Q x(t1),L x(tk ) | x(tk +1),L x(tm )( ) = Q x(t1),L x(tk ) | x(tk +1)( )

Can get general distribution by iterating Q:

Markov processes

No information about the future from past values earlier than the latest available:

Q x(t1),L x(tk ) | x(tk +1),L x(tm )( ) = Q x(t1),L x(tk ) | x(tk +1)( )

Can get general distribution by iterating Q:

P x(tn ),L ,x(t0)( ) = Q x(tn ) | x(tn−1)( )Q x(tn−1) | x(tn−2)( )L Q x(t1) | x(t0)( )P x(t0)( )

Markov processes

No information about the future from past values earlier than the latest available:

Q x(t1),L x(tk ) | x(tk +1),L x(tm )( ) = Q x(t1),L x(tk ) | x(tk +1)( )

Can get general distribution by iterating Q:

where P(x(t0)) is the initial distribution.

P x(tn ),L ,x(t0)( ) = Q x(tn ) | x(tn−1)( )Q x(tn−1) | x(tn−2)( )L Q x(t1) | x(t0)( )P x(t0)( )

Markov processes

No information about the future from past values earlier than the latest available:

Q x(t1),L x(tk ) | x(tk +1),L x(tm )( ) = Q x(t1),L x(tk ) | x(tk +1)( )

Can get general distribution by iterating Q:

where P(x(t0)) is the initial distribution.

Integrate this over x(tn-1), … x(t1) to get

P x(tn ),L ,x(t0)( ) = Q x(tn ) | x(tn−1)( )Q x(tn−1) | x(tn−2)( )L Q x(t1) | x(t0)( )P x(t0)( )

Markov processes

No information about the future from past values earlier than the latest available:

Q x(t1),L x(tk ) | x(tk +1),L x(tm )( ) = Q x(t1),L x(tk ) | x(tk +1)( )

Can get general distribution by iterating Q:

where P(x(t0)) is the initial distribution.

Integrate this over x(tn-1), … x(t1) to get

P x(tn ),L ,x(t0)( ) = Q x(tn ) | x(tn−1)( )Q x(tn−1) | x(tn−2)( )L Q x(t1) | x(t0)( )P x(t0)( )

Q x(tn ) | x(t0)( ) = dx(tn−1)L dx(t1∫ )Q x(tn ) | x(tn−1)( )Q x(tn−1) | x(tn−2)( )L Q x(t1) | x(t0)( )

Markov processes

No information about the future from past values earlier than the latest available:

Q x(t1),L x(tk ) | x(tk +1),L x(tm )( ) = Q x(t1),L x(tk ) | x(tk +1)( )

Can get general distribution by iterating Q:

where P(x(t0)) is the initial distribution.

Integrate this over x(tn-1), … x(t1) to get

The case n = 2 is the

P x(tn ),L ,x(t0)( ) = Q x(tn ) | x(tn−1)( )Q x(tn−1) | x(tn−2)( )L Q x(t1) | x(t0)( )P x(t0)( )

Q x(tn ) | x(t0)( ) = dx(tn−1)L dx(t1∫ )Q x(tn ) | x(tn−1)( )Q x(tn−1) | x(tn−2)( )L Q x(t1) | x(t0)( )

Chapman-Kolmogorov equation

Q x(t f ) | x(ti)( ) = dx( ′ t )∫ Q x(t f ) | x( ′ t )( )Q x( ′ t ) | x(ti)( )

Chapman-Kolmogorov equation

Q x(t f ) | x(ti)( ) = dx( ′ t )∫ Q x(t f ) | x( ′ t )( )Q x( ′ t ) | x(ti)( )

Chapman-Kolmogorov equation

Q x(t f ) | x(ti)( ) = dx( ′ t )∫ Q x(t f ) | x( ′ t )( )Q x( ′ t ) | x(ti)( )

(for any t’)

Chapman-Kolmogorov equation

Q x(t f ) | x(ti)( ) = dx( ′ t )∫ Q x(t f ) | x( ′ t )( )Q x( ′ t ) | x(ti)( )

(for any t’)

Examples: (1)Wiener process (Brownian motion/random walk):

Chapman-Kolmogorov equation

Q x(t f ) | x(ti)( ) = dx( ′ t )∫ Q x(t f ) | x( ′ t )( )Q x( ′ t ) | x(ti)( )

(for any t’)

Examples: (1)Wiener process (Brownian motion/random walk):

Q(x2, t2 | x1, t1) =1

2π (t2 − t1)exp −

x2 − x1( )2 t2 − t1( )

2 ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Chapman-Kolmogorov equation

Q x(t f ) | x(ti)( ) = dx( ′ t )∫ Q x(t f ) | x( ′ t )( )Q x( ′ t ) | x(ti)( )

(for any t’)

Examples: (1)Wiener process (Brownian motion/random walk):

(2)(cumulative) Poisson process

Q(x2, t2 | x1, t1) =1

2π (t2 − t1)exp −

x2 − x1( )2 t2 − t1( )

2 ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Q(n2, t2 | n1, t1) =t2 − t1( )

n2 −n1

n2 − n1( )!e−(t2 −t1 )

Markov chains

Both t and x discrete, assuming stationarity

Q(x, t | ′ x , ′ t ) ⇒ Q(n, t +1 | ′ n , t) ≡ Tn ′ n

Markov chains

Both t and x discrete, assuming stationarity

Q(x, t | ′ x , ′ t ) ⇒ Q(n, t +1 | ′ n , t) ≡ Tn ′ n

Tn ′ n > 0, Tn ′ n

n

∑ =1

Markov chains

Both t and x discrete, assuming stationarity

(because they are probabilities)

Q(x, t | ′ x , ′ t ) ⇒ Q(n, t +1 | ′ n , t) ≡ Tn ′ n

Tn ′ n > 0, Tn ′ n

n

∑ =1

Markov chains

Both t and x discrete, assuming stationarity

(because they are probabilities)

Equation of motion:

Q(x, t | ′ x , ′ t ) ⇒ Q(n, t +1 | ′ n , t) ≡ Tn ′ n

Pn (t +1) = Tn ′ n ′ n

∑ P ′ n (t)€

Tn ′ n > 0, Tn ′ n

n

∑ =1

Markov chains

Both t and x discrete, assuming stationarity

(because they are probabilities)

Equation of motion:

Formal solution:

Q(x, t | ′ x , ′ t ) ⇒ Q(n, t +1 | ′ n , t) ≡ Tn ′ n

Pn (t +1) = Tn ′ n ′ n

∑ P ′ n (t)

P(t) =TtP(0)

Tn ′ n > 0, Tn ′ n

n

∑ =1

Markov chains (2): properties of T

T has a left eigenvector

0 = (1,1,L ,1)

Markov chains (2): properties of T

T has a left eigenvector (because )

0 = (1,1,L ,1)

Tn ′ n

n

∑ =1

Markov chains (2): properties of T

T has a left eigenvector (because )

Its eigenvalue is 1.

0 = (1,1,L ,1)

Tn ′ n

n

∑ =1

Markov chains (2): properties of T

T has a left eigenvector (because )

Its eigenvalue is 1.

The corresponding right eigenvector is

0 =

p10

p20

...

pN0

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

0 = (1,1,L ,1)

Tn ′ n

n

∑ =1

Markov chains (2): properties of T

T has a left eigenvector (because )

Its eigenvalue is 1.

The corresponding right eigenvector is

(the stationary state, because the eigenvalue is 1: )

0 =

p10

p20

...

pN0

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

0 = (1,1,L ,1)

Tn ′ n

n

∑ =1

T 0 = 0

Markov chains (2): properties of T

T has a left eigenvector (because )

Its eigenvalue is 1.

The corresponding right eigenvector is

(the stationary state, because the eigenvalue is 1: )

For all other right eigenvectors with components

0 =

p10

p20

...

pN0

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

0 = (1,1,L ,1)

pmj , j >1;

j

Tn ′ n

n

∑ =1

T 0 = 0

Markov chains (2): properties of T

T has a left eigenvector (because )

Its eigenvalue is 1.

The corresponding right eigenvector is

(the stationary state, because the eigenvalue is 1: )

For all other right eigenvectors with components

0 =

p10

p20

...

pN0

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

0 = (1,1,L ,1)

pmj , j >1; pm

j

m

∑ = 0

j

Tn ′ n

n

∑ =1

T 0 = 0

Markov chains (2): properties of T

T has a left eigenvector (because )

Its eigenvalue is 1.

The corresponding right eigenvector is

(the stationary state, because the eigenvalue is 1: )

For all other right eigenvectors with components

(because they must be orthogonal to : )

0 =

p10

p20

...

pN0

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

0 = (1,1,L ,1)

pmj , j >1; pm

j

m

∑ = 0

0

j

0 j = 0

Tn ′ n

n

∑ =1

T 0 = 0

Markov chains (2): properties of T

T has a left eigenvector (because )

Its eigenvalue is 1.

The corresponding right eigenvector is

(the stationary state, because the eigenvalue is 1: )

For all other right eigenvectors with components

(because they must be orthogonal to : )

All other eigenvalues are < 1.

0 =

p10

p20

...

pN0

⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟

0 = (1,1,L ,1)

pmj , j >1; pm

j

m

∑ = 0

0

j

0 j = 0

Tn ′ n

n

∑ =1

T 0 = 0

Detailed balance

If there is a stationary distribution P0 with components and

pm0

Detailed balance

If there is a stationary distribution P0 with components and

Tmn

Tnm

=pm

0

pn0

pm0

Detailed balance

If there is a stationary distribution P0 with components and

Tmn

Tnm

=pm

0

pn0

pm0

Detailed balance

If there is a stationary distribution P0 with components and

can prove (if ergodicity*) convergence to P0 from any initial state:

Tmn

Tnm

=pm

0

pn0

pm0

Detailed balance

If there is a stationary distribution P0 with components and

can prove (if ergodicity*) convergence to P0 from any initial state:

Tmn

Tnm

=pm

0

pn0

pm0

* Can reach any state from any other and no cycles

Detailed balance

If there is a stationary distribution P0 with components and

can prove (if ergodicity*) convergence to P0 from any initial state:

Define ,

Tmn

Tnm

=pm

0

pn0

pm0

* Can reach any state from any other and no cycles

Smn = δmn pm0

Detailed balance

If there is a stationary distribution P0 with components and

can prove (if ergodicity*) convergence to P0 from any initial state:

Define ,

make a similarity transformation

Tmn

Tnm

=pm

0

pn0

pm0

* Can reach any state from any other and no cycles

Smn = δmn pm0

Detailed balance

If there is a stationary distribution P0 with components and

can prove (if ergodicity*) convergence to P0 from any initial state:

Define ,

make a similarity transformation

Tmn

Tnm

=pm

0

pn0

pm0

* Can reach any state from any other and no cycles

Smn = δmn pm0

R = S−1TS, i.e., Rmn =1

pm0

Tmn pn0

Detailed balance

If there is a stationary distribution P0 with components and

can prove (if ergodicity*) convergence to P0 from any initial state:

Define ,

make a similarity transformation

R is symmetric, has complete set of eigenvectors , components(Eigenvalues λj same as those of T.)

Tmn

Tnm

=pm

0

pn0

pm0

* Can reach any state from any other and no cycles

Smn = δmn pm0

R = S−1TS, i.e., Rmn =1

pm0

Tmn pn0

qmj

q j

Detailed balance (2)

Rq j = λ jq j

Detailed balance (2)

Rq j = λ jq j ⇒ S−1TSq j = λ jq j ⇒

Detailed balance (2)

Rq j = λ jq j ⇒ S−1TSq j = λ jq j ⇒

TSq j = λ jSq j ⇒

Detailed balance (2)

Right eigenvectors of T:

p j = j = Sq j or pmj = pm

0 qmj

Rq j = λ jq j ⇒ S−1TSq j = λ jq j ⇒

TSq j = λ jSq j ⇒

Detailed balance (2)

Right eigenvectors of T:

Now look at evolution:

p j = j = Sq j or pmj = pm

0 qmj

Rq j = λ jq j ⇒ S−1TSq j = λ jq j ⇒

TSq j = λ jSq j ⇒

P(t) =TtP(0)

Detailed balance (2)

Right eigenvectors of T:

Now look at evolution:

p j = j = Sq j or pmj = pm

0 qmj

Rq j = λ jq j ⇒ S−1TSq j = λ jq j ⇒

TSq j = λ jSq j ⇒

P(t) =TtP(0)

=Tt a0 0 + a j jj

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Detailed balance (2)

Right eigenvectors of T:

Now look at evolution:

p j = j = Sq j or pmj = pm

0 qmj

Rq j = λ jq j ⇒ S−1TSq j = λ jq j ⇒

TSq j = λ jSq j ⇒

P(t) =TtP(0)

=Tt a0 0 + a j jj

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

= a0 0 + a jλ jt j

j

Detailed balance (2)

Right eigenvectors of T:

Now look at evolution:

p j = j = Sq j or pmj = pm

0 qmj

Rq j = λ jq j ⇒ S−1TSq j = λ jq j ⇒

TSq j = λ jSq j ⇒

P(t) =TtP(0)

=Tt a0 0 + a j jj

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

= a0 0 + a jλ jt j

j

∑ t →∞ ⏐ → ⏐ ⏐ a0 0

Detailed balance (2)

Right eigenvectors of T:

Now look at evolution:

(since )

p j = j = Sq j or pmj = pm

0 qmj

Rq j = λ jq j ⇒ S−1TSq j = λ jq j ⇒

TSq j = λ jSq j ⇒

P(t) =TtP(0)

=Tt a0 0 + a j jj

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

= a0 0 + a jλ jt j

j

∑ t →∞ ⏐ → ⏐ ⏐ a0 0

λ j <1, j > 0

Detailed balance (2)

Right eigenvectors of T:

Now look at evolution:

(since )

p j = j = Sq j or pmj = pm

0 qmj

Rq j = λ jq j ⇒ S−1TSq j = λ jq j ⇒

TSq j = λ jSq j ⇒

P(t) =TtP(0)

=Tt a0 0 + a j jj

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

= a0 0 + a jλ jt j

j

∑ t →∞ ⏐ → ⏐ ⏐ a0 0 = 0

λ j <1, j > 0

Monte Carlo

72

an example of detailed balance

Monte Carlo

73

an example of detailed balance

Ising model: Binary “spins” Si(t) = ±1

Monte Carlo

74

an example of detailed balance

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

Monte Carlo

75

an example of detailed balance

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random

Monte Carlo

76

an example of detailed balance

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t)

Monte Carlo

77

an example of detailed balance

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t) Jij = Jji

Monte Carlo

78

an example of detailed balance

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t) Jij = Jji (3) Si(t + Δt) = +1 with probability

P(hi) =exp βhi( )

exp βhi( ) + exp −βhi( )

Monte Carlo

79

an example of detailed balance

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t) Jij = Jji (3) Si(t + Δt) = +1 with probability

P(hi) =exp βhi( )

exp βhi( ) + exp −βhi( )=

1

1+ exp(−2βhi)

Monte Carlo

80

an example of detailed balance

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t) Jij = Jji (3) Si(t + Δt) = +1 with probability

P(hi) =exp βhi( )

exp βhi( ) + exp −βhi( )=

1

1+ exp(−2βhi)

Monte Carlo

81

an example of detailed balance

Ising model: Binary “spins” Si(t) = ±1Dynamics: at every time step,

(1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t) Jij = Jji (3) Si(t + Δt) = +1 with probability

(equilibration of Si, given current values of other S’s)

P(hi) =exp βhi( )

exp βhi( ) + exp −βhi( )=

1

1+ exp(−2βhi)

Monte Carlo (2)

In language of Markov chains, states (n) are

S = (S1,S2,L ,SN )

Monte Carlo (2)

In language of Markov chains, states (n) areSingle-spin flips: transitions only between neighboring pointson hypercube

S = (S1,S2,L ,SN )

Monte Carlo (2)

In language of Markov chains, states (n) areSingle-spin flips: transitions only between neighboring pointson hypercube

S = (S1,S2,L ,SN )

+ = S1,S2,L Si−1,+1,Si+1,L ,SN( )

− = S1,S2,L Si−1,−1,Si+1,L ,SN( )

Monte Carlo (2)

In language of Markov chains, states (n) areSingle-spin flips: transitions only between neighboring pointson hypercube

T matrix elements:

S = (S1,S2,L ,SN )

+ = S1,S2,L Si−1,+1,Si+1,L ,SN( )

− = S1,S2,L Si−1,−1,Si+1,L ,SN( )

+ T + + T −

− T + − T −

⎝ ⎜ ⎜

⎠ ⎟ ⎟=

exp βhi( )exp βhi( ) + exp −βhi( )

exp βhi( )exp βhi( ) + exp −βhi( )

exp −βhi( )exp βhi( ) + exp −βhi( )

exp −βhi( )exp βhi( ) + exp −βhi( )

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

Monte Carlo (2)

In language of Markov chains, states (n) areSingle-spin flips: transitions only between neighboring pointson hypercube

T matrix elements:

all other Tmn = 0.

S = (S1,S2,L ,SN )

+ = S1,S2,L Si−1,+1,Si+1,L ,SN( )

− = S1,S2,L Si−1,−1,Si+1,L ,SN( )

+ T + + T −

− T + − T −

⎝ ⎜ ⎜

⎠ ⎟ ⎟=

exp βhi( )exp βhi( ) + exp −βhi( )

exp βhi( )exp βhi( ) + exp −βhi( )

exp −βhi( )exp βhi( ) + exp −βhi( )

exp −βhi( )exp βhi( ) + exp −βhi( )

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

Monte Carlo (2)

In language of Markov chains, states (n) areSingle-spin flips: transitions only between neighboring pointson hypercube

T matrix elements:

all other Tmn = 0.

Note:

S = (S1,S2,L ,SN )

+ = S1,S2,L Si−1,+1,Si+1,L ,SN( )

− = S1,S2,L Si−1,−1,Si+1,L ,SN( )

+ T + + T −

− T + − T −

⎝ ⎜ ⎜

⎠ ⎟ ⎟=

exp βhi( )exp βhi( ) + exp −βhi( )

exp βhi( )exp βhi( ) + exp −βhi( )

exp −βhi( )exp βhi( ) + exp −βhi( )

exp −βhi( )exp βhi( ) + exp −βhi( )

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

T+−

T−+

=exp(βhi)

exp(−βhi)

Monte Carlo (2)

In language of Markov chains, states (n) areSingle-spin flips: transitions only between neighboring pointson hypercube

T matrix elements:

all other Tmn = 0.

Note:

S = (S1,S2,L ,SN )

+ = S1,S2,L Si−1,+1,Si+1,L ,SN( )

− = S1,S2,L Si−1,−1,Si+1,L ,SN( )

+ T + + T −

− T + − T −

⎝ ⎜ ⎜

⎠ ⎟ ⎟=

exp βhi( )exp βhi( ) + exp −βhi( )

exp βhi( )exp βhi( ) + exp −βhi( )

exp −βhi( )exp βhi( ) + exp −βhi( )

exp −βhi( )exp βhi( ) + exp −βhi( )

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

T+−

T−+

=exp(βhi)

exp(−βhi)=

exp(β JijS jj∑ )

exp(−β JijS jj∑ )

Monte Carlo (3)

T satisfies detailed balance:

T+−

T−+

=exp(β JijS jj

∑ )

exp(−β JijS jj∑ )

=p+

0

p−0,

Monte Carlo (3)

T satisfies detailed balance:

where p0 is the Gibbs distribution:

T+−

T−+

=exp(β JijS jj

∑ )

exp(−β JijS jj∑ )

=p+

0

p−0,

p0(S) = Z−1 exp β JijSiS j

ij

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟= exp −βE S( )( )

Monte Carlo (3)

T satisfies detailed balance:

where p0 is the Gibbs distribution:

After many Monte Carlo steps, converge to p0:

T+−

T−+

=exp(β JijS jj

∑ )

exp(−β JijS jj∑ )

=p+

0

p−0,

p0(S) = Z−1 exp β JijSiS j

ij

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟= exp −βE S( )( )

Monte Carlo (3)

T satisfies detailed balance:

where p0 is the Gibbs distribution:

After many Monte Carlo steps, converge to p0: S’s sample Gibbs distribution

T+−

T−+

=exp(β JijS jj

∑ )

exp(−β JijS jj∑ )

=p+

0

p−0,

p0(S) = Z−1 exp β JijSiS j

ij

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟= exp −βE S( )( )

Monte Carlo (3): Metropolis versionThe foregoing was for “heat-bath” MC. Another possibility isthe Metropolis algorithm:

Monte Carlo (3): Metropolis versionThe foregoing was for “heat-bath” MC. Another possibility isthe Metropolis algorithm:

If hiSi < 0, Si(t+Δt) = -Si(t),

Monte Carlo (3): Metropolis versionThe foregoing was for “heat-bath” MC. Another possibility isthe Metropolis algorithm:

If hiSi < 0, Si(t+Δt) = -Si(t), If hiSi > 0, Si(t+Δt) = -Si(t) with probability exp(-hiSi)

Monte Carlo (3): Metropolis versionThe foregoing was for “heat-bath” MC. Another possibility isthe Metropolis algorithm:

If hiSi < 0, Si(t+Δt) = -Si(t), If hiSi > 0, Si(t+Δt) = -Si(t) with probability exp(-hiSi)

Thus,

T++ T+−

T−+ T−−

⎝ ⎜

⎠ ⎟=

1− e−2βhi 1

e−2βhi 0

⎝ ⎜

⎠ ⎟, hi > 0;

Monte Carlo (3): Metropolis versionThe foregoing was for “heat-bath” MC. Another possibility isthe Metropolis algorithm:

If hiSi < 0, Si(t+Δt) = -Si(t), If hiSi > 0, Si(t+Δt) = -Si(t) with probability exp(-hiSi)

Thus,

T++ T+−

T−+ T−−

⎝ ⎜

⎠ ⎟=

1− e−2βhi 1

e−2βhi 0

⎝ ⎜

⎠ ⎟, hi > 0;

T++ T+−

T−+ T−−

⎝ ⎜

⎠ ⎟=

0 e2βhi

1 1− e2βhi

⎝ ⎜

⎠ ⎟, hi < 0.

Monte Carlo (3): Metropolis versionThe foregoing was for “heat-bath” MC. Another possibility isthe Metropolis algorithm:

If hiSi < 0, Si(t+Δt) = -Si(t), If hiSi > 0, Si(t+Δt) = -Si(t) with probability exp(-hiSi)

Thus,

In either case,

T++ T+−

T−+ T−−

⎝ ⎜

⎠ ⎟=

1− e−2βhi 1

e−2βhi 0

⎝ ⎜

⎠ ⎟, hi > 0;

T++ T+−

T−+ T−−

⎝ ⎜

⎠ ⎟=

0 e2βhi

1 1− e2βhi

⎝ ⎜

⎠ ⎟, hi < 0.

T+−

T−+

= exp 2βhi( ) =p+

0

p−0

Monte Carlo (3): Metropolis versionThe foregoing was for “heat-bath” MC. Another possibility isthe Metropolis algorithm:

If hiSi < 0, Si(t+Δt) = -Si(t), If hiSi > 0, Si(t+Δt) = -Si(t) with probability exp(-hiSi)

Thus,

In either case,

i.e., detailed balance with Gibbs

T++ T+−

T−+ T−−

⎝ ⎜

⎠ ⎟=

1− e−2βhi 1

e−2βhi 0

⎝ ⎜

⎠ ⎟, hi > 0;

T++ T+−

T−+ T−−

⎝ ⎜

⎠ ⎟=

0 e2βhi

1 1− e2βhi

⎝ ⎜

⎠ ⎟, hi < 0.

T+−

T−+

= exp 2βhi( ) =p+

0

p−0

p+−0

Continuous-time limit:master equation

P(t + Δt) =TP(t)For Markov chain:

Continuous-time limit:master equation

P(t + Δt) =TP(t)

= P(t) + (T−1)P(t)

For Markov chain:

Continuous-time limit:master equation

P(t + Δt) =TP(t)

= P(t) + (T−1)P(t)

dP(t)

dt= lim

Δt →0

T−1

Δt

⎝ ⎜

⎠ ⎟P(t)

For Markov chain:

Differential equation:

Continuous-time limit:master equation

P(t + Δt) =TP(t)

= P(t) + (T−1)P(t)

dP(t)

dt= lim

Δt →0

T−1

Δt

⎝ ⎜

⎠ ⎟P(t)

dPm

dt= lim

Δt →0

1

ΔtTmnPn − Pm

n

∑ ⎛

⎝ ⎜

⎠ ⎟

For Markov chain:

Differential equation:

In components:

Continuous-time limit:master equation

P(t + Δt) =TP(t)

= P(t) + (T−1)P(t)

dP(t)

dt= lim

Δt →0

T−1

Δt

⎝ ⎜

⎠ ⎟P(t)

dPm

dt= lim

Δt →0

1

ΔtTmnPn − Pm

n

∑ ⎛

⎝ ⎜

⎠ ⎟

= limΔt →0

1

ΔtTmnPn − Tnm

n

∑ Pm

n

∑ ⎛

⎝ ⎜

⎠ ⎟

= WmnPn −WnmPm( )n≠m

For Markov chain:

Differential equation:

In components:

(using normalization ofcolumns of T:)

Continuous-time limit:master equation

P(t + Δt) =TP(t)

= P(t) + (T−1)P(t)

dP(t)

dt= lim

Δt →0

T−1

Δt

⎝ ⎜

⎠ ⎟P(t)

dPm

dt= lim

Δt →0

1

ΔtTmnPn − Pm

n

∑ ⎛

⎝ ⎜

⎠ ⎟

= limΔt →0

1

ΔtTmnPn − Tnm

n

∑ Pm

n

∑ ⎛

⎝ ⎜

⎠ ⎟

= WmnPn −WnmPm( )n≠m

Wmn ≡ limΔt →0

Tmn

Δt

For Markov chain:

Differential equation:

In components:

(using normalization ofcolumns of T:)

(expect , m ≠ n)

Tmn ∝Δt

Continuous-time limit:master equation

P(t + Δt) =TP(t)

= P(t) + (T−1)P(t)

dP(t)

dt= lim

Δt →0

T−1

Δt

⎝ ⎜

⎠ ⎟P(t)

dPm

dt= lim

Δt →0

1

ΔtTmnPn − Pm

n

∑ ⎛

⎝ ⎜

⎠ ⎟

= limΔt →0

1

ΔtTmnPn − Tnm

n

∑ Pm

n

∑ ⎛

⎝ ⎜

⎠ ⎟

= WmnPn −WnmPm( )n≠m

Wmn ≡ limΔt →0

Tmn

Δt

For Markov chain:

Differential equation:

In components:

(using normalization ofcolumns of T:)

(expect , m ≠ n)

Tmn ∝Δt

transition rate matrix