16
EE142 Lecture23 1 Amin Arbabian Jan M. Rabaey Lecture 24 Oscillators: Steady-State Analysis EE142 Fall 2010 Nov. 23 rd , 2010 University of California, Berkeley 2 EE142-Fall 2010 Review Analyzed a multi-pole system with feedback, derived oscillation conditions Feedback view of oscillators, condition for oscillation (gain and phase) Today we will cover steady-state conditions for oscillation and look at amplitude limiting mechanisms….

Lecture 24 Oscillators: Steady-State Analysisbwrcs.eecs.berkeley.edu/Classes/icdesign/ee142_f10/...EE142 Lecture23 1 Amin Arbabian Jan M. Rabaey Lecture 24 Oscillators: Steady-State

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • EE142 Lecture23

    1

    Amin Arbabian

    Jan M. Rabaey

    Lecture 24

    Oscillators:

    Steady-State Analysis

    EE142 – Fall 2010

    Nov. 23rd, 2010

    University of California, Berkeley

    2 EE142-Fall 2010

    Review

    Analyzed a multi-pole system with feedback,

    derived oscillation conditions

    Feedback view of oscillators, condition for

    oscillation (gain and phase)

    Today we will cover steady-state conditions for

    oscillation and look at amplitude limiting

    mechanisms….

  • EE142 Lecture23

    2

    3 EE142-Fall 2010

    Review: LC Oscillator

    AC

    Small-Signal AC

    4 EE142-Fall 2010

    Small Signal Equivalent Circuit

    With Loading

    Loop Gain:

    @ Resonance

    𝐴𝑙 =𝑔𝑚𝑅

    𝑛

  • EE142 Lecture23

    3

    5 EE142-Fall 2010

    Closed Loop Transfer Function

    6 EE142-Fall 2010

    Closed Loop Gain vs Al

  • EE142 Lecture23

    4

    7 EE142-Fall 2010

    Magnitude of the Poles

    8 EE142-Fall 2010

    Root Locus

  • EE142 Lecture23

    5

    9 EE142-Fall 2010

    Role of Loop Gain

    A

    2

    3

    10 EE142-Fall 2010

    Steady-State Analysis

  • EE142 Lecture23

    6

    11 EE142-Fall 2010

    Steady-State Waveforms

    12 EE142-Fall 2010

    Steady State Equations

    The input waveform is a scaled version of the output

    This implies that:

    Or that the loop gain in steady-state is unity and the

    phase of the loop gain is zero degrees (an exact multiple

    of 2π)

  • EE142 Lecture23

    7

    13 EE142-Fall 2010

    Large Signal Gm

    14 EE142-Fall 2010

    Large Signal Gm (2)

  • EE142 Lecture23

    8

    15 EE142-Fall 2010

    Large Signal Gm (3)

    16 EE142-Fall 2010

    Stability (Intuition)

  • EE142 Lecture23

    9

    17 EE142-Fall 2010

    Intuition

    18 EE142-Fall 2010

    BJT Oscillator Design Procedure

  • EE142 Lecture23

    10

    19 EE142-Fall 2010

    Design (2)

    20 EE142-Fall 2010

    Common Base Oscillator

  • EE142 Lecture23

    11

    21 EE142-Fall 2010

    Colpitts Oscillator

    22 EE142-Fall 2010

    Colpitts with Bias

  • EE142 Lecture23

    12

    23 EE142-Fall 2010

    Colpitts Family

    If we remove the explicit ground connection on the

    oscillator, we have the template for a generic oscillator.

    Will come back to this later on (one-port view)

    24 EE142-Fall 2010

    Common-Emitter and Common-Collector…

  • EE142 Lecture23

    13

    25 EE142-Fall 2010

    Pierce Oscillator

    26 EE142-Fall 2010

    Pierce Oscillator with Bias

  • EE142 Lecture23

    14

    27 EE142-Fall 2010

    Common-Collector Oscillator

    28 EE142-Fall 2010

    Clapp Oscillator

  • EE142 Lecture23

    15

    29 EE142-Fall 2010

    Negative Resistance Perspective

    30 EE142-Fall 2010

    Oscillator Stability

  • EE142 Lecture23

    16

    31 EE142-Fall 2010

    Negative Resistance LC Oscillator

    32 EE142-Fall 2010

    Oscillation Condition