47
Computer Graphics and Imaging UC Berkeley CS184/284A Lecture 21: Introduction to Color Science

Lecture 21: Introduction to Color Science

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 21: Introduction to Color Science

Computer Graphics and Imaging UC Berkeley CS184/284A

Lecture 21:

Introduction to Color Science

Page 2: Lecture 21: Introduction to Color Science
Page 3: Lecture 21: Introduction to Color Science
Page 4: Lecture 21: Introduction to Color Science

Wassily Kandinsky, Color Study. Squares with Concentric Circles, 1913 Munich, The Städtische Galerie im Lenbachhaus

Page 5: Lecture 21: Introduction to Color Science

Mark Rothko No. 61. Rust and Blue 1953, Museum of Contemporary Art, Los Angeles

Page 6: Lecture 21: Introduction to Color Science
Page 7: Lecture 21: Introduction to Color Science
Page 8: Lecture 21: Introduction to Color Science
Page 9: Lecture 21: Introduction to Color Science
Page 10: Lecture 21: Introduction to Color Science

Ren NgCS184/284A

Page 11: Lecture 21: Introduction to Color Science

Ren NgCS184/284A

Page 12: Lecture 21: Introduction to Color Science
Page 13: Lecture 21: Introduction to Color Science
Page 14: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Watercolor Illusion

Pinna & Tanca, JOV, 2008

Page 15: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Watercolor Illusion

Pinna & Tanca, JOV, 2008

Page 16: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Watercolor Illusion

Pinna & Tanca, JOV, 2008

Page 17: Lecture 21: Introduction to Color Science

Notice R, G, B sub-pixel geometry. Effectively three lights at each (x,y) location.

Page 18: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Recall: Real LCD Screen Pixels (Closeup)

iPhone 6S

Page 19: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

• Mantis shrimp! A lot of photoreceptor classes. 16!

• Tetrachromacy — some women have 4 types of cone cells.

• Color is from different wavelengths

• Nothing inherently special to our visible spectrum, except H20 being transparent

• Synesthesia — hear music and see colors

• People couldn’t see or recognize blue until relatively modern times (?)

Discussion: Warm Ups (Breakout Rooms)What is a fact you know about color? What is something you want to learn about color?

• Your language shapes your perception of color. E.g. lack of blue/green distinction in some languages

• Our eyes are more sensitive to green — why our displays have more green pixels (?)

• Color does not always correspond to one wavelength

• Blue light disrupts sleep patterns — why we make our displays red at bedtime

• Red and yellow are most appetizing colors

Page 20: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

• 3D - 3 cone receptors in the human retina

• Some thought 3D, some thought wavelength (1D?)

• If function of frequency spectrum, then infinite dimensional

• Hidden dimensions of color — e.g. Ren’s research on Oz Vision project

Discussion: What is The Dimensionality of Color?

How do we know?

• Red green blue white black — 5D?

• CMYK printing — 4D?

• Position of the color may be important — e.g. the Lotto cube illusion

• HSV / RGB —

• Perception is 3D, but dimensionality of the ray of light itself perhaps infinite?

Page 21: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

What is Color?

• Color is a phenomenon of human perception; it is not a universal property of light

• Colors are the perceptual sensations that arise from seeing light of different spectral power distributions

• Technically speaking, different wavelengths of light are not “colors”

Page 22: Lecture 21: Introduction to Color Science

Physical Basis of Color

Page 23: Lecture 21: Introduction to Color Science

credit: Science Media Group.

Page 24: Lecture 21: Introduction to Color Science

Ren NgCS294-164

Isaac Newton's Experimentum Crucis

Isaac Newton performing his crucial prism experiment – the 'experimentum crucis' – in his Woolsthorpe Manor bedroom. Acrylic painting by Sascha Grusche (17 Dec 2015)

Page 25: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

The Fundamental Components of Light

• Newton showed sunlight can be subdivided into a rainbow with a prism • Resulting light cannot be further subdivided with a second prism

Page 26: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Electromagnetic radiation

• Oscillations of different frequencies (wavelengths)

The Visible Spectrum of Light

Image credit: Licensed under CC BY-SA 3.0 via Commons https://commons.wikimedia.org/wiki/File:EM_spectrum.svg#/media/File:EM_spectrum.svg

Visible electromagnetic spectrum

Page 27: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

MonochromatorHegyi et al. "Introduction to Practical Biochem

istry" http://elte.prom

pt.hu/sites/default/files/tananyagok/IntroductionToPracticalBiochemistry/ch04s07.htm

l

A monochromator delivers light of a single wavelength from a light source with broad spectrum.

Control which wavelength by angle of prism.

Page 28: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Spectral Power Distribution (SPD)

Salient property in measuring light

• The amount of light present at each wavelength

• Units:

• radiometric units / nanometer (e.g. watts / nm)

• Can also be unit-less

• Often use “relative units” scaled to maximum wavelength for comparison across wavelengths when absolute units are not important

Page 29: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Daylight Spectral Power Distributions Vary

Blue sky Solar disk

[Brian Wandell]

Page 30: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Spectral Power Distribution of Light Sources

Describes distribution of energy by wavelength

Figure credit:

Page 31: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

SpectrometerHegyi et al. "Introduction to Practical Biochem

istry" http://elte.prom

pt.hu/sites/default/files/tananyagok/IntroductionToPracticalBiochemistry/ch04s07.htm

l

For unknown light source, use a monochromator to isolate each wavelength of light for measurement

Detector

Page 32: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Superposition (Linearity) of Spectral Power Distributions[Brian W

andell]

Page 33: Lecture 21: Introduction to Color Science

Biological Basis of Color

Page 34: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Anatomy of The Human Eye

Page 35: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Retinal Photoreceptor Cells: Rods and Cones

Rod cells Cone cellsRods are primary receptors in very low light (“scotopic” conditions), e.g. dim moonlight

• ~120 million rods in eye

• Perceive only shades of gray, no color

Cones are primary receptors in typical light levels (“photopic”)

• ~6-7 million cones in eye

• Three types of cones, each with different spectral sensitivity

• Provide sensation of colorhttp://ebooks.bfwpub.com/life.php Figure 45.18

Page 36: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Human Retinal Cone Cell Response Functions (L, M, S Types)

rL(�)<latexit sha1_base64="DSBcDilXdsDN8Zn3/L3UUooJZvk=">AAAB8nicbVBNS8NAFHypX7V+VT16WSxCeymJl+qt4EXBQwVjC00om82mXbrZhN2NUELBX+HFg4pXf403/42btgdtHVgYZubx3k6Qcqa0bX9bpbX1jc2t8nZlZ3dv/6B6ePSgkkwS6pKEJ7IXYEU5E9TVTHPaSyXFccBpNxhfFX73kUrFEnGvJyn1YzwULGIEayN5cnBb97iJh7gxqNbspj0DWiXOgtTajSco0BlUv7wwIVlMhSYcK9V37FT7OZaaEU6nFS9TNMVkjIe0b6jAMVV+Prt5is6MEqIokeYJjWbq74kcx0pN4sAkY6xHatkrxP+8fqajCz9nIs00FWS+KMo40gkqCkAhk5RoPjEEE8nMrYiMsMREm5oqpgRn+curxD1vXjbtO1PGDcxRhhM4hTo40II2XEMHXCCQwjO8wpuVWS/Wu/Uxj5asxcwx/IH1+QPVjpHc</latexit><latexit sha1_base64="DSBcDilXdsDN8Zn3/L3UUooJZvk=">AAAB8nicbVBNS8NAFHypX7V+VT16WSxCeymJl+qt4EXBQwVjC00om82mXbrZhN2NUELBX+HFg4pXf403/42btgdtHVgYZubx3k6Qcqa0bX9bpbX1jc2t8nZlZ3dv/6B6ePSgkkwS6pKEJ7IXYEU5E9TVTHPaSyXFccBpNxhfFX73kUrFEnGvJyn1YzwULGIEayN5cnBb97iJh7gxqNbspj0DWiXOgtTajSco0BlUv7wwIVlMhSYcK9V37FT7OZaaEU6nFS9TNMVkjIe0b6jAMVV+Prt5is6MEqIokeYJjWbq74kcx0pN4sAkY6xHatkrxP+8fqajCz9nIs00FWS+KMo40gkqCkAhk5RoPjEEE8nMrYiMsMREm5oqpgRn+curxD1vXjbtO1PGDcxRhhM4hTo40II2XEMHXCCQwjO8wpuVWS/Wu/Uxj5asxcwx/IH1+QPVjpHc</latexit><latexit sha1_base64="DSBcDilXdsDN8Zn3/L3UUooJZvk=">AAAB8nicbVBNS8NAFHypX7V+VT16WSxCeymJl+qt4EXBQwVjC00om82mXbrZhN2NUELBX+HFg4pXf403/42btgdtHVgYZubx3k6Qcqa0bX9bpbX1jc2t8nZlZ3dv/6B6ePSgkkwS6pKEJ7IXYEU5E9TVTHPaSyXFccBpNxhfFX73kUrFEnGvJyn1YzwULGIEayN5cnBb97iJh7gxqNbspj0DWiXOgtTajSco0BlUv7wwIVlMhSYcK9V37FT7OZaaEU6nFS9TNMVkjIe0b6jAMVV+Prt5is6MEqIokeYJjWbq74kcx0pN4sAkY6xHatkrxP+8fqajCz9nIs00FWS+KMo40gkqCkAhk5RoPjEEE8nMrYiMsMREm5oqpgRn+curxD1vXjbtO1PGDcxRhhM4hTo40II2XEMHXCCQwjO8wpuVWS/Wu/Uxj5asxcwx/IH1+QPVjpHc</latexit>

rS(�)<latexit sha1_base64="qSOhER+8qJVFYltFzk2K/XXWQeM=">AAAB8nicbVBNS8NAFHypX7V+VT16WSxCeymJl+qt4EVvFY0tNKFsNpt26WYTdjdCCQV/hRcPKl79Nd78N27aHrR1YGGYmcd7O0HKmdK2/W2V1tY3NrfK25Wd3b39g+rh0YNKMkmoSxKeyF6AFeVMUFczzWkvlRTHAafdYHxV+N1HKhVLxL2epNSP8VCwiBGsjeTJwV3d4yYe4sagWrOb9gxolTgLUms3nqBAZ1D98sKEZDEVmnCsVN+xU+3nWGpGOJ1WvEzRFJMxHtK+oQLHVPn57OYpOjNKiKJEmic0mqm/J3IcKzWJA5OMsR6pZa8Q//P6mY4u/JyJNNNUkPmiKONIJ6goAIVMUqL5xBBMJDO3IjLCEhNtaqqYEpzlL68S97x52bRvTRk3MEcZTuAU6uBAC9pwDR1wgUAKz/AKb1ZmvVjv1sc8WrIWM8fwB9bnD+BikeM=</latexit><latexit sha1_base64="qSOhER+8qJVFYltFzk2K/XXWQeM=">AAAB8nicbVBNS8NAFHypX7V+VT16WSxCeymJl+qt4EVvFY0tNKFsNpt26WYTdjdCCQV/hRcPKl79Nd78N27aHrR1YGGYmcd7O0HKmdK2/W2V1tY3NrfK25Wd3b39g+rh0YNKMkmoSxKeyF6AFeVMUFczzWkvlRTHAafdYHxV+N1HKhVLxL2epNSP8VCwiBGsjeTJwV3d4yYe4sagWrOb9gxolTgLUms3nqBAZ1D98sKEZDEVmnCsVN+xU+3nWGpGOJ1WvEzRFJMxHtK+oQLHVPn57OYpOjNKiKJEmic0mqm/J3IcKzWJA5OMsR6pZa8Q//P6mY4u/JyJNNNUkPmiKONIJ6goAIVMUqL5xBBMJDO3IjLCEhNtaqqYEpzlL68S97x52bRvTRk3MEcZTuAU6uBAC9pwDR1wgUAKz/AKb1ZmvVjv1sc8WrIWM8fwB9bnD+BikeM=</latexit><latexit sha1_base64="qSOhER+8qJVFYltFzk2K/XXWQeM=">AAAB8nicbVBNS8NAFHypX7V+VT16WSxCeymJl+qt4EVvFY0tNKFsNpt26WYTdjdCCQV/hRcPKl79Nd78N27aHrR1YGGYmcd7O0HKmdK2/W2V1tY3NrfK25Wd3b39g+rh0YNKMkmoSxKeyF6AFeVMUFczzWkvlRTHAafdYHxV+N1HKhVLxL2epNSP8VCwiBGsjeTJwV3d4yYe4sagWrOb9gxolTgLUms3nqBAZ1D98sKEZDEVmnCsVN+xU+3nWGpGOJ1WvEzRFJMxHtK+oQLHVPn57OYpOjNKiKJEmic0mqm/J3IcKzWJA5OMsR6pZa8Q//P6mY4u/JyJNNNUkPmiKONIJ6goAIVMUqL5xBBMJDO3IjLCEhNtaqqYEpzlL68S97x52bRvTRk3MEcZTuAU6uBAC9pwDR1wgUAKz/AKb1ZmvVjv1sc8WrIWM8fwB9bnD+BikeM=</latexit>

rM (�)<latexit sha1_base64="XCKO9LSygpv9mtDU9sdmbxu1vkg=">AAAB8nicbVBNS8NAFHypX7V+VT16WSxCeymJl+qt4EUPQgVjC00om82mXbrZhN2NUELBX+HFg4pXf403/42btgdtHVgYZubx3k6Qcqa0bX9bpbX1jc2t8nZlZ3dv/6B6ePSgkkwS6pKEJ7IXYEU5E9TVTHPaSyXFccBpNxhfFX73kUrFEnGvJyn1YzwULGIEayN5cnBb97iJh7gxqNbspj0DWiXOgtTajSco0BlUv7wwIVlMhSYcK9V37FT7OZaaEU6nFS9TNMVkjIe0b6jAMVV+Prt5is6MEqIokeYJjWbq74kcx0pN4sAkY6xHatkrxP+8fqajCz9nIs00FWS+KMo40gkqCkAhk5RoPjEEE8nMrYiMsMREm5oqpgRn+curxD1vXjbtO1PGDcxRhhM4hTo40II2XEMHXCCQwjO8wpuVWS/Wu/Uxj5asxcwx/IH1+QPXGpHd</latexit><latexit sha1_base64="XCKO9LSygpv9mtDU9sdmbxu1vkg=">AAAB8nicbVBNS8NAFHypX7V+VT16WSxCeymJl+qt4EUPQgVjC00om82mXbrZhN2NUELBX+HFg4pXf403/42btgdtHVgYZubx3k6Qcqa0bX9bpbX1jc2t8nZlZ3dv/6B6ePSgkkwS6pKEJ7IXYEU5E9TVTHPaSyXFccBpNxhfFX73kUrFEnGvJyn1YzwULGIEayN5cnBb97iJh7gxqNbspj0DWiXOgtTajSco0BlUv7wwIVlMhSYcK9V37FT7OZaaEU6nFS9TNMVkjIe0b6jAMVV+Prt5is6MEqIokeYJjWbq74kcx0pN4sAkY6xHatkrxP+8fqajCz9nIs00FWS+KMo40gkqCkAhk5RoPjEEE8nMrYiMsMREm5oqpgRn+curxD1vXjbtO1PGDcxRhhM4hTo40II2XEMHXCCQwjO8wpuVWS/Wu/Uxj5asxcwx/IH1+QPXGpHd</latexit><latexit sha1_base64="XCKO9LSygpv9mtDU9sdmbxu1vkg=">AAAB8nicbVBNS8NAFHypX7V+VT16WSxCeymJl+qt4EUPQgVjC00om82mXbrZhN2NUELBX+HFg4pXf403/42btgdtHVgYZubx3k6Qcqa0bX9bpbX1jc2t8nZlZ3dv/6B6ePSgkkwS6pKEJ7IXYEU5E9TVTHPaSyXFccBpNxhfFX73kUrFEnGvJyn1YzwULGIEayN5cnBb97iJh7gxqNbspj0DWiXOgtTajSco0BlUv7wwIVlMhSYcK9V37FT7OZaaEU6nFS9TNMVkjIe0b6jAMVV+Prt5is6MEqIokeYJjWbq74kcx0pN4sAkY6xHatkrxP+8fqajCz9nIs00FWS+KMo40gkqCkAhk5RoPjEEE8nMrYiMsMREm5oqpgRn+curxD1vXjbtO1PGDcxRhhM4hTo40II2XEMHXCCQwjO8wpuVWS/Wu/Uxj5asxcwx/IH1+QPXGpHd</latexit>

Brainard, Color and the Cone Mosaic, 2015.

Proba

bility

that

a pho

ton w

ill ca

use a

ph

otopig

men

t isom

eriza

tion

Three types of cone cells: S, M, and L (corresponding to peak response at short, medium, and long wavelengths)

Page 37: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

An Aside: Spatial Resolution of Rods and Cones in the Retina

• Highest density of cones is in fovea (and no rods there)

• “Blind spot” at the optic disc, where optic nerve exits eye

[Roorda 1999]

Page 38: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Fraction of Three Cone Cell Types Varies Widely

Hof

er, H

. et a

l. J.

Neu

rosc

i. 20

05;2

5:96

69-9

679

Distribution of cone cells at edge of fovea in 12 different humans with normal color vision. Note high variability of percentage of different cone cell types. (false color image)

Page 39: Lecture 21: Introduction to Color Science

Measuring Light

Page 40: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

A Simple Model of a Light Detector

Produces a scalar value (a number) when photons land on it

• Value depends only on the number of photons detected

• Each photon has a probability of being detected that depends on the wavelength

• No way to distinguish between signals caused by light of different wavelengths: there is just a number

This model works for many detectors:

• based on semiconductors (such as in a digital camera)

• based on visual photopigments (such as in human eyes)

Page 41: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

A Simple Model of a Light DetectorCredit: M

arschner

Page 42: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Mathematics of Light Detection

Same math carries over to spectral power distributions

• Light entering the detector has its spectral power distribution, s(λ)

• Detector has its spectral sensitivity or spectral response, r(λ)

measured signal

input spectrum

detector’s sensitivity

Page 43: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

If we think of s and r as discrete, sampled representations (vectors) rather than continuous functions, this integral operation is a dot product: We can also write this in matrix form:

Mathematics of Light Detection

X =⇥

s⇤2

64r

3

75

<latexit sha1_base64="qedqoX87FN/ZR1nvNzvrbED6B8o=">AAAC3HicbVFNb9NAEF2brzR8JeXIZUUEQkhYdlEFHCoq9UJvRSI0UmxF6/UkWXU/rN01JDU+ckK99nf12iu/hLXjAE0YaaQ3b97bWc2kOWfGhuG159+6fefuvc5O9/6Dh48e9/q7X4wqNIUhVVzpUUoMcCZhaJnlMMo1EJFyOE3Pjur+6VfQhin52S5zSASZSTZllFhHTXrfRwddjOMUZkyWqSBWs0XlGMfNlT5PicYvsHH5p4zj2gAy+yvftMduonVaJ61zXW75Jr1BGIRN4G0QtWDw4Qo1cTLpe8dxpmghQFrKiTHjKMxtUhJtGeXgJhcGckLPyAzGDkoiwCRls6YKP3dMhqdKu5QWN+y/DveMJsvqJiWMWYrUmd2n52azV5P/640LO32XlEzmhQVJV7OnBcdW4foMOGMaqOVLBwjVzH0f0znRhFp3rG4s4RtVQhCZvSrX66vKWBccxq8jWCRlGOzntirfBPuwqKoNR3urtaPWJK20NTbLjzZXvQ2Ge8H7IPwUDg6PV0dAHfQUPUMvUYTeokP0EZ2gIaLol9fx+t6uP/F/+D/9i5XU91rPE3Qj/MvfuO7krg==</latexit><latexit sha1_base64="qedqoX87FN/ZR1nvNzvrbED6B8o=">AAAC3HicbVFNb9NAEF2brzR8JeXIZUUEQkhYdlEFHCoq9UJvRSI0UmxF6/UkWXU/rN01JDU+ckK99nf12iu/hLXjAE0YaaQ3b97bWc2kOWfGhuG159+6fefuvc5O9/6Dh48e9/q7X4wqNIUhVVzpUUoMcCZhaJnlMMo1EJFyOE3Pjur+6VfQhin52S5zSASZSTZllFhHTXrfRwddjOMUZkyWqSBWs0XlGMfNlT5PicYvsHH5p4zj2gAy+yvftMduonVaJ61zXW75Jr1BGIRN4G0QtWDw4Qo1cTLpe8dxpmghQFrKiTHjKMxtUhJtGeXgJhcGckLPyAzGDkoiwCRls6YKP3dMhqdKu5QWN+y/DveMJsvqJiWMWYrUmd2n52azV5P/640LO32XlEzmhQVJV7OnBcdW4foMOGMaqOVLBwjVzH0f0znRhFp3rG4s4RtVQhCZvSrX66vKWBccxq8jWCRlGOzntirfBPuwqKoNR3urtaPWJK20NTbLjzZXvQ2Ge8H7IPwUDg6PV0dAHfQUPUMvUYTeokP0EZ2gIaLol9fx+t6uP/F/+D/9i5XU91rPE3Qj/MvfuO7krg==</latexit><latexit sha1_base64="qedqoX87FN/ZR1nvNzvrbED6B8o=">AAAC3HicbVFNb9NAEF2brzR8JeXIZUUEQkhYdlEFHCoq9UJvRSI0UmxF6/UkWXU/rN01JDU+ckK99nf12iu/hLXjAE0YaaQ3b97bWc2kOWfGhuG159+6fefuvc5O9/6Dh48e9/q7X4wqNIUhVVzpUUoMcCZhaJnlMMo1EJFyOE3Pjur+6VfQhin52S5zSASZSTZllFhHTXrfRwddjOMUZkyWqSBWs0XlGMfNlT5PicYvsHH5p4zj2gAy+yvftMduonVaJ61zXW75Jr1BGIRN4G0QtWDw4Qo1cTLpe8dxpmghQFrKiTHjKMxtUhJtGeXgJhcGckLPyAzGDkoiwCRls6YKP3dMhqdKu5QWN+y/DveMJsvqJiWMWYrUmd2n52azV5P/640LO32XlEzmhQVJV7OnBcdW4foMOGMaqOVLBwjVzH0f0znRhFp3rG4s4RtVQhCZvSrX66vKWBccxq8jWCRlGOzntirfBPuwqKoNR3urtaPWJK20NTbLjzZXvQ2Ge8H7IPwUDg6PV0dAHfQUPUMvUYTeokP0EZ2gIaLol9fx+t6uP/F/+D/9i5XU91rPE3Qj/MvfuO7krg==</latexit>

Page 44: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Dimensionality Reduction From ∞ to 1

At the detector: • SPD is a function of wavelength (∞ - dimensional signal)

• Detector result is a scalar value (1 - dimensional signal)

Page 45: Lecture 21: Introduction to Color Science

Tristimulus Theory of Color

Page 46: Lecture 21: Introduction to Color Science

Kanazawa & NgCS184/284A

Maxwell's Crucial Color Matching Experiment

http://designblog.rietveldacademie.nl/?p=68422

Portrait: http://rsta.royalsocietypublishing.org/content/366/1871/1685

Page 47: Lecture 21: Introduction to Color Science

To Be Continued