8
ELECTROMAGNETICS AND APPLICATIONS Lecture 20 Transmitting Antennas Luca Daniel

Lecture 20 Transmitting Antennas

Embed Size (px)

DESCRIPTION

Lecture 20 Transmitting Antennas. 6.013. ELECTROMAGNETICS AND APPLICATIONS. Luca Daniel. Outline. Review of Fundamental Electromagnetic Laws Electromagnetic Waves in Media and Interfaces Digital & Analog Communications Wireless Communications Radiation Fundamentals - PowerPoint PPT Presentation

Citation preview

Page 1: Lecture 20 Transmitting Antennas

ELECTROMAGNETICS AND APPLICATIONS

Lecture 20Transmitting Antennas

Luca Daniel

Page 2: Lecture 20 Transmitting Antennas

L20-2

• Review of Fundamental Electromagnetic Laws• Electromagnetic Waves in Media and Interfaces• Digital & Analog Communications• Wireless Communications

o Radiation Fundamentalso Transmitting Antennas, Gain

Radiated Power from an Antenna Antenna [Directivity] Gain Example: Dipole Directivity Gain Short Dipole Radiation Resistance Arrays of Antennas Wire Antennas

o Receiving Antennas; Wireless Communicat. Systemso Aperture antennas; Diffraction

• Acoustic waves and Acoustic antennas• e.g. speakers, musical instruments, voice

Outline

TodayToday

Page 3: Lecture 20 Transmitting Antennas

L20-3

I(,,r) = Transmitted Intensity [W/m2]

Radiated Power

For isotropic antenna:

Steradian: unit of solid angled, d: units of radians.Spheres: span 4 steradiansd (steradians)

2 2R 0 0

P I( , ,r)r sin d d

Isotropic:

I(,,r)area =r2(d)(sin d)

d steradians

r

x

z

main beam

backlobessidelobes

Antenna pattern:

I(r)

R2

PI( , ,r) constant

4 r

PR = Total power radiated [W]

For non-isotropic antenna:

Page 4: Lecture 20 Transmitting Antennas

L20-4

Antenna [Directivity] Gain G(,)

Intensity at receiver:

[Directivity] Gain over Isotropic, G(,):

Actual intensity radiated in (, ) direction

Intensity if PR were radiated isotropically

backlobessidelobes

G(,)

Isotropic gain

2R

I( , ,r)G( , )

P / 4 r

2R2

PI( , ,r) G( , ) [W/m ]

4 r

Intensity if the powerwere to be radiated“isotropically”

[Directivity] GainThink of it as a“shaping factor”

Page 5: Lecture 20 Transmitting Antennas

L20-5

Short Dipole Antennas – Directivity Gain

Currents on Short Dipole:

q qo oq effv v

dJ dv I (z)dz I d I2

Radiated Intensity [W/m2] (from last time):2

2oo effkI dI( , ,r) sin

2 4 r

0

I

+Io -

z z

d

deff

I(z)

Io

R

22o eff

o0 0

kI dP I( , ,r) (r sin d ) r d

3 2

Power Radiated [W]:

Gain of a short dipole:

22

R

I( , ,r) 3G( , ) sin2P / 4 r

z

y

x

Page 6: Lecture 20 Transmitting Antennas

L20-6

2o eff

oI d

3

Short Dipole Antennas - Radiation Resistance

Currents on Short Dipole:

q qo oq effv v

dJ dv I (z)dz I d I2

Radiated Intensity [W/m2] (from last time):2

2oo effkI dI( , ,r) sin

2 4 r

Radiation Resistance Rr:

R2

o r1P I R [W]2

0

I

+Io -

z z

d

deff

I(z)

Io

Io

+

-

Rr

Equivalent resistance

R

22o eff

o0 0

kI dP I( , ,r) (r sin d ) r d

3 2

Power Radiated [W]:

o eff2

r2 d

R = ohms3

Page 7: Lecture 20 Transmitting Antennas

L20-7

How to Increase Antenna Gain G() in some directions?

Focus the energy

Lenses

Mirrors

Phasing

Page 8: Lecture 20 Transmitting Antennas

L20-8

Antenna Arrays

Radiation from a Pair of Short Dipoles:

Example, D = /2:

Io

Io

+-

+-

z

I

y

x

I

y

x

D

x

y

3Null if , etc.2 2

Null

NullsinD

Null

2sin

2

S

φ

oNull 90

Superposition applies

Null2

sin oNull 30Example, D = :