52
9/28/2015 1 1 Lecture #2 – Fall 2015 1 D. Mohr by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing Lecture #2: Split Hopkinson Bar Systems © 2015

Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

  • Upload
    others

  • View
    23

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 1 1 Lecture #2 – Fall 2015 1 D. Mohr

151-0735: Dynamic behavior of materials and structures

by Dirk Mohr

ETH Zurich, Department of Mechanical and Process Engineering,

Chair of Computational Modeling of Materials in Manufacturing

Lecture #2: Split Hopkinson Bar Systems

© 2015

Page 2: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 2 2 Lecture #2 – Fall 2015 2 D. Mohr

151-0735: Dynamic behavior of materials and structures

Uniaxial Compression Testing • Useful experiment to characterize the flow behavior of materials at large strains

loading platen (top)

loading platen (bottom load

cell

piston

Base plate

Hydraulic actuator

Fixed cross-head

Page 3: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 3 3 Lecture #2 – Fall 2015 3 D. Mohr

151-0735: Dynamic behavior of materials and structures

Uniaxial Compression Testing

• Axial strain definitions

Ll

FF c cF = applied compression force

cF

1L

leng (engineering or nominal strain) ]1ln[ eng (true or logarithmic strain)

• Axial stress definitions

0A

Feng (engineering or nominal stress) ]1[ engeng

A

F (true stress)

l = current length

0L = initial length

undeformed deformed

l = current length

0L = initial length

0 (extension)

0 (shortening)

0 (tension)

0 (compression)

Only valid for incompressible

materials

Page 4: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 4 4 Lecture #2 – Fall 2015 4 D. Mohr

151-0735: Dynamic behavior of materials and structures

Uniaxial Compression Testing

Force-displacement curve

l

FF c

cF

-1000

-800

-600

-400

-200

0

-1 -0.75 -0.5 -0.25 0

Tru

e s

tre

ss [

MP

a]

Logarithmic strain [-] -2000

-1500

-1000

-500

0

-0.6 -0.4 -0.2 0

Engi

ne

eri

ng

stre

ss [

MP

a]

Engineering strain [-] -200

-150

-100

-50

0

-10 -7.5 -5 -2.5 0

Ap

plie

d f

orc

e F

[kN

]

Change in length l-L0 [mm] -2000

-1500

-1000

-500

0

-0.6 -0.4 -0.2 0

Engi

ne

eri

ng

stre

ss [

MP

a]

Engineering strain [-] -200

-150

-100

-50

0

-10 -7.5 -5 -2.5 0

Ap

plie

d f

orc

e F

[kN

]

Change in length l-L0 [mm]

Engineering stress-strain curve

True stress-strain curve

Page 5: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 5 5 Lecture #2 – Fall 2015 5 D. Mohr

151-0735: Dynamic behavior of materials and structures

Uniaxial Compression Testing

Source: https://www.youtube.com/watch?feature=player_detailpage&v=OzzWc-SfF-w

• Numerical Simulation (→ also topic of computer lab #2)

Page 6: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 6 6 Lecture #2 – Fall 2015 6 D. Mohr

151-0735: Dynamic behavior of materials and structures

Uniaxial Compression Testing

Plastic buckling

Shear buckling

barreling

• H/D too large • Poor alignment • anisotropy

• Friction too high • H/D too small

optimal

• Excellent lubrication • H/D ~ 1.5

• Experimental challenges • Recommended size for metals testing:

H=15mm

D=10mm

Page 7: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 7 7 Lecture #2 – Fall 2015 7 D. Mohr

151-0735: Dynamic behavior of materials and structures

Strain rate in a compression experiment

• Nominal strain rate

Ll

undeformed deformed

1L

leng

L

u

L

leng

Llu

• True strain rate

]1ln[ eng eng

eng

1

• Equiv. strain rate

eng

eng

1

0u (extension)

0u (shortening)

Page 8: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 8 8 Lecture #2 – Fall 2015 8 D. Mohr

151-0735: Dynamic behavior of materials and structures

)(tFin

)(tFout

L

initial

Compression of a cylindrical specimen

Quasi-static equilibrium

)()( tFtF outin

Principle of Quasi-static Equilibrium

Page 9: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 9 9 Lecture #2 – Fall 2015 9 D. Mohr

151-0735: Dynamic behavior of materials and structures

Strain at the end of the experiment: max

Average strain rate (over time): av

Duration of

experiment av

T

max

Example:

15.0max

sav /500smssT 3003.00003.0

500

15.0

Note: T is independent of

specimen dimensions!

Time scale #1

Page 10: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 10 10 Lecture #2 – Fall 2015 10 D. Mohr

151-0735: Dynamic behavior of materials and structures

L

Wave propagation speed:

Ec

Specimen length:

Wave travel

time c

Lt

L

c

Example:

smc /5000

mmL 10sst 2102

105

10 6

6

Note: t does depend on specimen dimensions!

Time scale #2

Page 11: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 11 11 Lecture #2 – Fall 2015 11 D. Mohr

151-0735: Dynamic behavior of materials and structures

Long time scale:

)()( tFtF outin Tt

Duration of

experiment av

T

max

Wave travel

time c

Lt

Short time scale:

Condition for quasi-static equilibrium:

L c

Principle of Quasi-static Equilibrium

(when testing an elasto-plastic material)

Page 12: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 12 12 Lecture #2 – Fall 2015 12 D. Mohr

151-0735: Dynamic behavior of materials and structures

Example for challenging experiments (w/

regards to quasi-static equilibrium)

avc

L

maxTt

Condition of quasi-static equilibrium

‒ Brittle materials, e.g. ceramics

‒ Soft materials, e.g. polymers

01.0~max

smc /1000~

‒ Materials of coarse microstructure, e.g.

metallic foams mmL 1

Principle of Quasi-static Equilibrium

Page 13: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 13 13 Lecture #2 – Fall 2015 13 D. Mohr

151-0735: Dynamic behavior of materials and structures

Example for challenging experiments (w/ regards to quasi-static

equilibrium)

Zhao et al. (1997)

Dynamic testing of foams

Page 14: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 14 14 Lecture #2 – Fall 2015 14 D. Mohr

151-0735: Dynamic behavior of materials and structures

LIMITATION OF UNIVERSAL TESTING MACHINES

st 2

st 201

st 2002

]max[maxexp i

av

tT

Condition of validity

breaks often down at around 10/s

• Vibration issues

Page 15: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 15 15 Lecture #2 – Fall 2015 15 D. Mohr

151-0735: Dynamic behavior of materials and structures

LIMITATION OF UNIVERSAL TESTING MACHINES

Ringing of conventional load cell

Page 16: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 16 16 Lecture #2 – Fall 2015 16 D. Mohr

151-0735: Dynamic behavior of materials and structures

SEPARATION OF TIME SCALES

310 210 110 1 10 210 310 410

][ 1s

Universal testing machines SHPB

expTtsys expTtsys

Characteristic time

scale of testing system

syst

Duration of experiment

av

T

max

exp

versus

Page 17: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 17 17 Lecture #2 – Fall 2015 17 D. Mohr

151-0735: Dynamic behavior of materials and structures

Wave Equation • Derived wave equation for bars under the assumption of uniaxial stress

dxx

dx

ux ,

position axial displacement

02

2

2

22

t

u

x

uc

• longitudinal elastic wave velocity:

Ec

Differential equation for axial displacement u[x,t]:

• the particle velocity: t

utxutxv

],[],[

Page 18: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 18 18 Lecture #2 – Fall 2015 18 D. Mohr

151-0735: Dynamic behavior of materials and structures

General Solution • General solution of wave equation

02

2

2

22

t

u

x

uc

][ ][ ],[ ctxgctxftxu

],[],[],[],[ txtxcx

gc

x

fctxutxv rl

• displacement:

• particle velocity

][ ctxf ][ ctxg

Leftward traveling

rightward traveling

],[],[],['],[ txtxx

g

x

ftxutx rl

• strain

Page 19: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 19 19 Lecture #2 – Fall 2015 19 D. Mohr

151-0735: Dynamic behavior of materials and structures

Elastic Wave Velocities

• Particle velocity depends on applied loading, while the wave velocity is an intrinsic material property

Material Density [g/cm3]

Young’s modulus [GPa]

Wave velocity [m/s]

Air 340

Steel 7.8 210 5188

Aluminum 2.7 70 5091

Magnesium 1.7 44 5087

Tungsten 19.3 400 4552

Lead 10.2 14 1171

PMMA 1.2 3 1581

Concrete 3 30 3162

All values are rough estimates and may vary depending on the exact material composition and environmental conditions

Page 20: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 20 20 Lecture #2 – Fall 2015 20 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

Typical system characteristics:

• Striker bar length: Ls =1000 mm • Input bar length: Li= 3000 mm • Output bar length: Lo= 3000 mm • Bar diameter: D= 20 mm

Specimen characteristics (for simplified theoretical analysis):

• Ideal plastic, constant force

Page 21: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 21 21 Lecture #2 – Fall 2015 21 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

righ

twar

d

left

war

d

tota

l

Page 22: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 22 22 Lecture #2 – Fall 2015 22 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

righ

twar

d

left

war

d

tota

l

Page 23: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 23 23 Lecture #2 – Fall 2015 23 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

righ

twar

d

left

war

d

tota

l

Page 24: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 24 24 Lecture #2 – Fall 2015 24 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

righ

twar

d

left

war

d

tota

l

Page 25: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 25 25 Lecture #2 – Fall 2015 25 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

righ

twar

d

left

war

d

tota

l

Page 26: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 26 26 Lecture #2 – Fall 2015 26 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

righ

twar

d

left

war

d

tota

l

Page 27: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 27 27 Lecture #2 – Fall 2015 27 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

righ

twar

d

left

war

d

tota

l

Page 28: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 28 28 Lecture #2 – Fall 2015 28 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

righ

twar

d

left

war

d

tota

l

Page 29: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 29 29 Lecture #2 – Fall 2015 29 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

righ

twar

d

left

war

d

tota

l

Page 30: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 30 30 Lecture #2 – Fall 2015 30 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

righ

twar

d

left

war

d

tota

l

Page 31: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 31 31 Lecture #2 – Fall 2015 31 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

righ

twar

d

left

war

d

tota

l

Page 32: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 32 32 Lecture #2 – Fall 2015 32 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

righ

twar

d

left

war

d

tota

l

Page 33: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 33 33 Lecture #2 – Fall 2015 33 D. Mohr

151-0735: Dynamic behavior of materials and structures

Hopkinson Bar Experiment

righ

twar

d

left

war

d

tota

l

Page 34: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 34 34 Lecture #2 – Fall 2015 34 D. Mohr

151-0735: Dynamic behavior of materials and structures

Stra

in

Time

HOPKINSON BAR TECHNIQUE

)(tF

Ax

Measuring force with a slender bar

Forc

e

Time

),( txR)(tA

),( txLL

),( txAR

),( txAL

),(),(

)(

txtx

t

ALAR

A

measured

applied

cxA / cxL A /)2(

cxL A /)(2

Page 35: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 35 35 Lecture #2 – Fall 2015 35 D. Mohr

151-0735: Dynamic behavior of materials and structures

HOPKINSON BAR TECHNIQUE

)(tF

Ax

Measuring force with a slender bar

Forc

e

Time

Forc

e

Time

),( txR)(tA

),( txL

BxFo

rce

Time

)(tB

duration of valid

measurement

Page 36: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 36 36 Lecture #2 – Fall 2015 36 D. Mohr

151-0735: Dynamic behavior of materials and structures

HOPKINSON BAR TECHNIQUE

)(tu

specimen

0v

striker

Direct impact experiment:

output bar

)(tout

)(tout

output bar

specimen

One force measurement (output bar only)

outL

out

outc

TL

2

Length of output bar duration of the experiment

Strategy: Experiment ends before leftward traveling wave in output bar reaches strain gage

Page 37: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 37 37 Lecture #2 – Fall 2015 37 D. Mohr

151-0735: Dynamic behavior of materials and structures

HOPKINSON BAR TECHNIQUE

0vstriker

Split Hopkinson Pressure Bar (SHPB) experiment

output bar input bar specimen

Two force measurements

Stra

in

Time

),0( tR

Stra

in

Time

),0( t ),( tLin),2/( tLin

Stra

in

Time

)(tR

)(tL

)(tR

)(tL

)(tR

)(tL

inLstL

cLst /2

Page 38: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 38 38 Lecture #2 – Fall 2015 38 D. Mohr

151-0735: Dynamic behavior of materials and structures

HOPKINSON BAR TECHNIQUE

0vstriker

Criterion to avoid wave superposition at strain gage position

output bar input bar specimen

),2/( tLin

Stra

in

Time

)(tR

)(tL

inLstL

cLst /2

cLin 2/

cLin 2/3cLcLcL stinin /22/2/3

stin LL 2

Page 39: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 39 39 Lecture #2 – Fall 2015 39 D. Mohr

151-0735: Dynamic behavior of materials and structures

SPLIT HOPKINSON PRESSURE BAR (SHPB) SYSTEM Kolsky (1949)

0vstriker

Input force measurement:

output bar input bar specimen

Stra

in

Time

)(tin

R

)(tin

L

Stra

in

Time

)2/()( cLtt in

in

Rinc

)2/()( cLtt inLre

inL

wave

“transport”

measured calculated

increin EAF

)(tFin

Page 40: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 40 40 Lecture #2 – Fall 2015 40 D. Mohr

151-0735: Dynamic behavior of materials and structures

SPLIT HOPKINSON PRESSURE BAR (SHPB) SYSTEM

0vstriker output bar input bar specimen

Calculate forces and velocities at specimen boundaries

)(ttra

)(tre

)(tinc

Input bar/specimen interface:

increin EAF

increin cv

Output bar/specimen interface:

traout EAF

traout cv

)(tFin )(tFout

)(tvin )(tvout

Specimen specific post-processing

Verify quasi-static equilibrium

Coupling with other measurements (e.g. high speed photography)

Calculate stress, strain and strain rate

)(tin

L

)(tin

R

)(tout

R

Page 41: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 41 41 Lecture #2 – Fall 2015 41 D. Mohr

151-0735: Dynamic behavior of materials and structures

DESIGN OF A STEEL SHPB SYSTEM

0vstriker output bar input bar specimen

Duration of the experiment:

sTav

500

1000

5.0max

Minimum output bar length:

msmsTcLout 25.12//50000005.02/

Minimum striker bar length:

mTcLst 25.12/

Minimum input bar length:

mLL stin 5.22

The bar diameters need to be chosen in accordance with the forces required to deform the

specimen (force associated with incident wave should be much higher than the specimen

resistance)

Page 42: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 42 42 Lecture #2 – Fall 2015 42 D. Mohr

151-0735: Dynamic behavior of materials and structures

EXAMPLE EXPERIMENT

0vstriker output bar input bar specimen

Page 43: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 43 43 Lecture #2 – Fall 2015 43 D. Mohr

151-0735: Dynamic behavior of materials and structures

Kolsky bar system

Requirements: • Striker, input and output bar made from the same bar stock (i.e. same material, same diameter)

• Length of input and output bars identical • Striker bar length less then half the input bar length • Strain gages positioned at the center of the input and

output bars

striker bar

strain gage

strain gage

specimen input bar output bar

Launching system

L/2 L/2 L/2 L/2

Page 44: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 44 44 Lecture #2 – Fall 2015 44 D. Mohr

151-0735: Dynamic behavior of materials and structures

Kolsky bar formulas

striker bar

strain gage

strain gage

specimen input bar output bar

Launching system

L/2 L/2 L/2 L/2

)(ttra

)(tre

)(tinc

)()( tA

EAt tra

s

s

)(2

)( tl

ct re

s

s

• Stress in specimen:

• Strain rate in specimen:

s

sl

s

Page 45: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 45 45 Lecture #2 – Fall 2015 45 D. Mohr

151-0735: Dynamic behavior of materials and structures

Wave Dispersion Effects co

mp

ress

ive

str

ain

time

com

pre

ssiv

e s

trai

n

time

“Pochhammer-Chree” oscillations

long rise time

[t] recorded by strain gage

v

c

v

2

1D THEORY EXPERIMENT

Page 46: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 46 46 Lecture #2 – Fall 2015 46 D. Mohr

151-0735: Dynamic behavior of materials and structures

Wave Dispersion Effects

Simplified model: axial compression only:

Reality: axial compression &

radial expansion:

In reality, the wave propagation in a bar is a 3D problem and lateral inertia effects come into play due to the Poisson’s effect!

Inertia forces along the radial direction delay the radial expansion upon axial compression

x

D

x )1(

D)1(

Page 47: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 47 47 Lecture #2 – Fall 2015 47 D. Mohr

151-0735: Dynamic behavior of materials and structures

Geometric Wave Dispersion • Consider a rightward traveling sinusoidal wave train of wave length L in an

infinite bar of radius a raveling at wave speed

*],[ tx

L

x

D

1.0

cc /L

LD

0.5 0.

0.5

1.0

Lc

• The wave propagation speed depends on wave length!

• The 1D theory only true for very long wave lengths (or very thin bars)

• High frequency waves propagate more slowly than low frequency waves

Ec • Theoretical wave speed (1D analysis):

• Theoretical wave speed (3D analysis):

Pochhammer-Chree 3D analysis

Page 48: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 48 48 Lecture #2 – Fall 2015 48 D. Mohr

151-0735: Dynamic behavior of materials and structures

-2

-1

0

1

2

-2

-1

0

1

2

-4

-2

0

2

4

0 10 20 30 40 50 60 70 80

Geometric Wave Dispersion • Example: Rightward propagating wave in a steel bar

mm20

5.01LD

1.02LD

skmc /1.31

skmc /9.42

mm401 L

mm2002 L

kHzf 781

kHzf 252

mm2000

sT 6421

sT 4062

-2

-1

0

1

2

-4

-2

0

2

4

-2

-1

0

1

2

[t] [t]

superposition

low frequency

high frequency

superposition

low frequency

high frequency

Page 49: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 49 49 Lecture #2 – Fall 2015 49 D. Mohr

151-0735: Dynamic behavior of materials and structures

Geometric Wave Dispersion • Example

[t] recorded by strain gage

v

Chen & Song (2010)

Page 50: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 50 50 Lecture #2 – Fall 2015 50 D. Mohr

151-0735: Dynamic behavior of materials and structures

Modern Hopkinson Bar Systems

striker bar

strain gage

specimen

input bar output bar

Launching system

L L

High speed camera

Features: • Striker and input typically made from the same bar stock (i.e. same material, same diameter)

• Small diameter output bar for accurate force measurement • Similar length of all bars • Output bar strain gages positioned near specimen end • Wave propagation modeled with dispersion • Strains are measured directly on specimen surface using Digital

Image Correlation (DIC)

Page 51: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 51 51 Lecture #2 – Fall 2015 51 D. Mohr

151-0735: Dynamic behavior of materials and structures

ADVANCED TOPICS related to SHPB technique

• Accurate wave transport taking geometric wave dispersion into

account

• Use of visco-elastic bars (slower wave propagation than in metallic

bars, more sensitive for soft materials)

• Torsion and tension Hopkinson bar systems

• Lateral inertia at the specimen level

• Friction at the bar/specimen interfaces

• Dynamic testing of materials (where quasi-static equilibrium cannot

be achieved)

• Pulse shaping

• Intermediate strain rate testing

• Infrared temperature measurements

• Experiments to characterize brittle fracture

• Multi-axial ductile fracture experiments

• Experiments under lateral confinement

… and many others.

Page 52: Lecture #2: Split Hopkinson Bar Systems...D. Mohr 9/28/2015 Lecture #2 – Fall 2015 2 2 2 151-0735: Dynamic behavior of materials and structures Uniaxial Compression Testing • Useful

9/28/2015 52 52 Lecture #2 – Fall 2015 52 D. Mohr

151-0735: Dynamic behavior of materials and structures

Reading Materials for Lecture #2

• George T. Gray, “High-Strain-Rate Testing of Materials: The Split-Hopkinson Pressure Bar”: http://onlinelibrary.wiley.com/doi/10.1002/0471266965.com023.pub2/abstract

• M.A. Meyers, “Dynamic behavior of Materials” (chapter 2): http://onlinelibrary.wiley.com/book/10.1002/9780470172278

• W. Chen, B. Song, “Split Hopkinson (Kolsky) Bar”: http://link.springer.com/book/10.1007%2F978-1-4419-7982-7